Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmModel.hh 105120 2017-07-13 13:24:43Z gcosmo $ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class header file 30 // GEANT4 Class header file 29 // 31 // 30 // 32 // 31 // File name: G4VEmModel 33 // File name: G4VEmModel 32 // 34 // 33 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 34 // 36 // 35 // Creation date: 03.01.2002 37 // Creation date: 03.01.2002 36 // 38 // 37 // Modifications: 39 // Modifications: 38 // 40 // 39 // 23-12-02 V.Ivanchenko change interface befo 41 // 23-12-02 V.Ivanchenko change interface before move to cut per region 40 // 24-01-03 Cut per region (V.Ivanchenko) 42 // 24-01-03 Cut per region (V.Ivanchenko) 41 // 13-02-03 Add name (V.Ivanchenko) 43 // 13-02-03 Add name (V.Ivanchenko) 42 // 25-02-03 Add sample theta and displacement 44 // 25-02-03 Add sample theta and displacement (V.Ivanchenko) 43 // 23-07-03 Replace G4Material by G4MaterialCu 45 // 23-07-03 Replace G4Material by G4MaterialCutCouple in dE/dx and CrossSection 44 // calculation (V.Ivanchenko) 46 // calculation (V.Ivanchenko) 45 // 01-03-04 L.Urban signature changed in Sampl 47 // 01-03-04 L.Urban signature changed in SampleCosineTheta 46 // 23-04-04 L.urban signature of SampleCosineT 48 // 23-04-04 L.urban signature of SampleCosineTheta changed back 47 // 17-11-04 Add method CrossSectionPerAtom (V. 49 // 17-11-04 Add method CrossSectionPerAtom (V.Ivanchenko) 48 // 14-03-05 Reduce number of pure virtual meth 50 // 14-03-05 Reduce number of pure virtual methods and make inline part 49 // separate (V.Ivanchenko) 51 // separate (V.Ivanchenko) 50 // 24-03-05 Remove IsInCharge and add G4VParti 52 // 24-03-05 Remove IsInCharge and add G4VParticleChange in the constructor (VI) 51 // 08-04-05 Major optimisation of internal int 53 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 52 // 15-04-05 optimize internal interface for ms 54 // 15-04-05 optimize internal interface for msc (V.Ivanchenko) 53 // 08-05-05 A -> N (V.Ivanchenko) 55 // 08-05-05 A -> N (V.Ivanchenko) 54 // 25-07-05 Move constructor and destructor to 56 // 25-07-05 Move constructor and destructor to the body (V.Ivanchenko) 55 // 02-02-06 ComputeCrossSectionPerAtom: defaul 57 // 02-02-06 ComputeCrossSectionPerAtom: default value A=0. (mma) 56 // 06-02-06 add method ComputeMeanFreePath() ( 58 // 06-02-06 add method ComputeMeanFreePath() (mma) 57 // 07-03-06 Optimize msc methods (V.Ivanchenko 59 // 07-03-06 Optimize msc methods (V.Ivanchenko) 58 // 29-06-06 Add member currentElement and Get/ 60 // 29-06-06 Add member currentElement and Get/Set methods (V.Ivanchenko) 59 // 29-10-07 Added SampleScattering (V.Ivanchen 61 // 29-10-07 Added SampleScattering (V.Ivanchenko) 60 // 15-07-08 Reorder class members and improve 62 // 15-07-08 Reorder class members and improve comments (VI) 61 // 21-07-08 Added vector of G4ElementSelector 63 // 21-07-08 Added vector of G4ElementSelector and methods to use it (VI) 62 // 12-09-08 Added methods GetParticleCharge, G 64 // 12-09-08 Added methods GetParticleCharge, GetChargeSquareRatio, 63 // CorrectionsAlongStep, ActivateNucl 65 // CorrectionsAlongStep, ActivateNuclearStopping (VI) 64 // 16-02-09 Moved implementations of virtual m 66 // 16-02-09 Moved implementations of virtual methods to source (VI) 65 // 07-04-09 Moved msc methods from G4VEmModel 67 // 07-04-09 Moved msc methods from G4VEmModel to G4VMscModel (VI) 66 // 13-10-10 Added G4VEmAngularDistribution (VI 68 // 13-10-10 Added G4VEmAngularDistribution (VI) 67 // 69 // 68 // Class Description: 70 // Class Description: 69 // 71 // 70 // Abstract interface to energy loss models 72 // Abstract interface to energy loss models 71 73 72 // ------------------------------------------- 74 // ------------------------------------------------------------------- 73 // 75 // 74 76 75 #ifndef G4VEmModel_h 77 #ifndef G4VEmModel_h 76 #define G4VEmModel_h 1 78 #define G4VEmModel_h 1 77 79 78 #include "globals.hh" 80 #include "globals.hh" 79 #include "G4DynamicParticle.hh" 81 #include "G4DynamicParticle.hh" 80 #include "G4ParticleDefinition.hh" 82 #include "G4ParticleDefinition.hh" 81 #include "G4MaterialCutsCouple.hh" 83 #include "G4MaterialCutsCouple.hh" 82 #include "G4Material.hh" 84 #include "G4Material.hh" 83 #include "G4Element.hh" 85 #include "G4Element.hh" 84 #include "G4ElementVector.hh" 86 #include "G4ElementVector.hh" 85 #include "G4Isotope.hh" 87 #include "G4Isotope.hh" 86 #include "G4DataVector.hh" 88 #include "G4DataVector.hh" 87 #include "G4VEmFluctuationModel.hh" 89 #include "G4VEmFluctuationModel.hh" 88 #include "G4VEmAngularDistribution.hh" 90 #include "G4VEmAngularDistribution.hh" 89 #include "G4EmElementSelector.hh" 91 #include "G4EmElementSelector.hh" 90 #include <CLHEP/Random/RandomEngine.h> 92 #include <CLHEP/Random/RandomEngine.h> 91 #include <vector> 93 #include <vector> 92 94 93 class G4ElementData; 95 class G4ElementData; 94 class G4PhysicsTable; 96 class G4PhysicsTable; 95 class G4Region; 97 class G4Region; 96 class G4VParticleChange; 98 class G4VParticleChange; 97 class G4ParticleChangeForLoss; 99 class G4ParticleChangeForLoss; 98 class G4ParticleChangeForGamma; 100 class G4ParticleChangeForGamma; 99 class G4Track; 101 class G4Track; 100 class G4LossTableManager; 102 class G4LossTableManager; 101 103 102 class G4VEmModel 104 class G4VEmModel 103 { 105 { 104 106 105 public: 107 public: 106 108 107 explicit G4VEmModel(const G4String& nam); 109 explicit G4VEmModel(const G4String& nam); 108 110 109 virtual ~G4VEmModel(); 111 virtual ~G4VEmModel(); 110 112 111 //------------------------------------------ 113 //------------------------------------------------------------------------ 112 // Virtual methods to be implemented for any 114 // Virtual methods to be implemented for any concrete model 113 //------------------------------------------ 115 //------------------------------------------------------------------------ 114 116 115 virtual void Initialise(const G4ParticleDefi 117 virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&) = 0; 116 118 117 virtual void SampleSecondaries(std::vector<G 119 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 118 const G4Mater 120 const G4MaterialCutsCouple*, 119 const G4Dynam 121 const G4DynamicParticle*, 120 G4double tmin 122 G4double tmin = 0.0, 121 G4double tmax 123 G4double tmax = DBL_MAX) = 0; 122 124 123 //------------------------------------------ 125 //------------------------------------------------------------------------ 124 // Methods for initialisation of MT; may be 126 // Methods for initialisation of MT; may be overwritten if needed 125 //------------------------------------------ 127 //------------------------------------------------------------------------ 126 128 127 // initialisation in local thread << 129 // initilisation in local thread 128 virtual void InitialiseLocal(const G4Particl 130 virtual void InitialiseLocal(const G4ParticleDefinition*, 129 G4VEmModel* mas 131 G4VEmModel* masterModel); 130 132 131 // initialisation of a new material at run t << 133 // initilisation of a new material at run time 132 virtual void InitialiseForMaterial(const G4P 134 virtual void InitialiseForMaterial(const G4ParticleDefinition*, 133 const G4M 135 const G4Material*); 134 136 135 // initialisation of a new element at run ti << 137 // initilisation of a new element at run time 136 virtual void InitialiseForElement(const G4Pa 138 virtual void InitialiseForElement(const G4ParticleDefinition*, 137 G4int Z); 139 G4int Z); 138 140 139 //------------------------------------------ 141 //------------------------------------------------------------------------ 140 // Methods with standard implementation; may 142 // Methods with standard implementation; may be overwritten if needed 141 //------------------------------------------ 143 //------------------------------------------------------------------------ 142 144 143 // main method to compute dEdx 145 // main method to compute dEdx 144 virtual G4double ComputeDEDXPerVolume(const 146 virtual G4double ComputeDEDXPerVolume(const G4Material*, 145 const 147 const G4ParticleDefinition*, 146 G4doub 148 G4double kineticEnergy, 147 G4doub 149 G4double cutEnergy = DBL_MAX); 148 150 149 // main method to compute cross section per 151 // main method to compute cross section per Volume 150 virtual G4double CrossSectionPerVolume(const 152 virtual G4double CrossSectionPerVolume(const G4Material*, 151 const 153 const G4ParticleDefinition*, 152 G4dou 154 G4double kineticEnergy, 153 G4dou 155 G4double cutEnergy = 0.0, 154 G4dou 156 G4double maxEnergy = DBL_MAX); 155 157 156 // method to get partial cross section 158 // method to get partial cross section 157 virtual G4double GetPartialCrossSection(cons 159 virtual G4double GetPartialCrossSection(const G4Material*, 158 G4in 160 G4int level, 159 cons 161 const G4ParticleDefinition*, 160 G4do 162 G4double kineticEnergy); 161 163 162 // main method to compute cross section per 164 // main method to compute cross section per atom 163 virtual G4double ComputeCrossSectionPerAtom( 165 virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 164 166 G4double kinEnergy, 165 167 G4double Z, 166 168 G4double A = 0., /* amu */ 167 169 G4double cutEnergy = 0.0, 168 170 G4double maxEnergy = DBL_MAX); 169 171 170 // main method to compute cross section per 172 // main method to compute cross section per atomic shell 171 virtual G4double ComputeCrossSectionPerShell 173 virtual G4double ComputeCrossSectionPerShell(const G4ParticleDefinition*, 172 174 G4int Z, G4int shellIdx, 173 175 G4double kinEnergy, 174 176 G4double cutEnergy = 0.0, 175 177 G4double maxEnergy = DBL_MAX); 176 178 177 // Compute effective ion charge square 179 // Compute effective ion charge square 178 virtual G4double ChargeSquareRatio(const G4T 180 virtual G4double ChargeSquareRatio(const G4Track&); 179 181 180 // Compute effective ion charge square 182 // Compute effective ion charge square 181 virtual G4double GetChargeSquareRatio(const 183 virtual G4double GetChargeSquareRatio(const G4ParticleDefinition*, 182 const 184 const G4Material*, 183 G4doub 185 G4double kineticEnergy); 184 186 185 // Compute ion charge 187 // Compute ion charge 186 virtual G4double GetParticleCharge(const G4P 188 virtual G4double GetParticleCharge(const G4ParticleDefinition*, 187 const G4M 189 const G4Material*, 188 G4double 190 G4double kineticEnergy); 189 191 190 // Initialisation for a new track 192 // Initialisation for a new track 191 virtual void StartTracking(G4Track*); 193 virtual void StartTracking(G4Track*); 192 194 193 // add correction to energy loss and compute 195 // add correction to energy loss and compute non-ionizing energy loss 194 virtual void CorrectionsAlongStep(const G4Ma 196 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 195 const G4Dy 197 const G4DynamicParticle*, 196 const G4do << 198 G4double& eloss, 197 G4double& << 199 G4double& niel, >> 200 G4double length); 198 201 199 // value which may be tabulated (by default 202 // value which may be tabulated (by default cross section) 200 virtual G4double Value(const G4MaterialCutsC 203 virtual G4double Value(const G4MaterialCutsCouple*, 201 const G4ParticleDefin 204 const G4ParticleDefinition*, 202 G4double kineticEnerg 205 G4double kineticEnergy); 203 206 204 // threshold for zero value 207 // threshold for zero value 205 virtual G4double MinPrimaryEnergy(const G4Ma 208 virtual G4double MinPrimaryEnergy(const G4Material*, 206 const G4Pa 209 const G4ParticleDefinition*, 207 G4double c 210 G4double cut = 0.0); 208 211 209 // model can define low-energy limit for the 212 // model can define low-energy limit for the cut 210 virtual G4double MinEnergyCut(const G4Partic 213 virtual G4double MinEnergyCut(const G4ParticleDefinition*, 211 const G4Materi 214 const G4MaterialCutsCouple*); 212 215 213 // initialisation at run time for a given ma << 216 // initilisation at run time for a given material 214 virtual void SetupForMaterial(const G4Partic 217 virtual void SetupForMaterial(const G4ParticleDefinition*, 215 const G4Materi 218 const G4Material*, 216 G4double kinet 219 G4double kineticEnergy); 217 220 218 // add a region for the model 221 // add a region for the model 219 virtual void DefineForRegion(const G4Region* 222 virtual void DefineForRegion(const G4Region*); 220 223 221 // fill number of different type of secondar << 222 virtual void FillNumberOfSecondaries(G4int& << 223 G4int& << 224 << 225 // for automatic documentation 224 // for automatic documentation 226 virtual void ModelDescription(std::ostream& << 225 virtual void ModelDescription(std::ostream& outFile) const; 227 226 228 protected: 227 protected: 229 228 230 // initialisation of the ParticleChange for 229 // initialisation of the ParticleChange for the model 231 G4ParticleChangeForLoss* GetParticleChangeFo 230 G4ParticleChangeForLoss* GetParticleChangeForLoss(); 232 231 233 // initialisation of the ParticleChange for 232 // initialisation of the ParticleChange for the model 234 G4ParticleChangeForGamma* GetParticleChangeF 233 G4ParticleChangeForGamma* GetParticleChangeForGamma(); 235 234 236 // kinematically allowed max kinetic energy 235 // kinematically allowed max kinetic energy of a secondary 237 virtual G4double MaxSecondaryEnergy(const G4 236 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 238 G4double 237 G4double kineticEnergy); 239 238 240 public: 239 public: 241 240 242 //------------------------------------------ 241 //------------------------------------------------------------------------ 243 // Generic methods common to all models 242 // Generic methods common to all models 244 //------------------------------------------ 243 //------------------------------------------------------------------------ 245 244 246 // should be called at initialisation to bui 245 // should be called at initialisation to build element selectors 247 void InitialiseElementSelectors(const G4Part 246 void InitialiseElementSelectors(const G4ParticleDefinition*, 248 const G4Data 247 const G4DataVector&); 249 248 250 // should be called at initialisation to acc 249 // should be called at initialisation to access element selectors 251 inline std::vector<G4EmElementSelector*>* Ge 250 inline std::vector<G4EmElementSelector*>* GetElementSelectors(); 252 251 253 // should be called at initialisation to set 252 // should be called at initialisation to set element selectors 254 inline void SetElementSelectors(std::vector< 253 inline void SetElementSelectors(std::vector<G4EmElementSelector*>*); 255 254 256 // dEdx per unit length, base material appro << 255 // dEdx per unit length 257 inline G4double ComputeDEDX( const G4Materia << 256 virtual inline G4double ComputeDEDX(const G4MaterialCutsCouple*, 258 const G4Particl << 257 const G4ParticleDefinition*, 259 G4double kineti << 258 G4double kineticEnergy, 260 G4double cutEne << 259 G4double cutEnergy = DBL_MAX); 261 260 262 // cross section per volume, base material a << 261 // cross section per volume 263 inline G4double CrossSection(const G4Materia 262 inline G4double CrossSection(const G4MaterialCutsCouple*, 264 const G4Particl 263 const G4ParticleDefinition*, 265 G4double kineti 264 G4double kineticEnergy, 266 G4double cutEne 265 G4double cutEnergy = 0.0, 267 G4double maxEne 266 G4double maxEnergy = DBL_MAX); 268 267 269 // compute mean free path via cross section 268 // compute mean free path via cross section per volume 270 inline G4double ComputeMeanFreePath(const G4 269 inline G4double ComputeMeanFreePath(const G4ParticleDefinition*, 271 G4double 270 G4double kineticEnergy, 272 const G4 271 const G4Material*, 273 G4double 272 G4double cutEnergy = 0.0, 274 G4double 273 G4double maxEnergy = DBL_MAX); 275 274 276 // generic cross section per element 275 // generic cross section per element 277 inline G4double ComputeCrossSectionPerAtom(c 276 inline G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 278 c 277 const G4Element*, 279 G 278 G4double kinEnergy, 280 G 279 G4double cutEnergy = 0.0, 281 G 280 G4double maxEnergy = DBL_MAX); 282 281 >> 282 // select isotope in order to have precise mass of the nucleus >> 283 inline G4int SelectIsotopeNumber(const G4Element*); >> 284 283 // atom can be selected effitiantly if eleme 285 // atom can be selected effitiantly if element selectors are initialised 284 inline const G4Element* SelectRandomAtom(con 286 inline const G4Element* SelectRandomAtom(const G4MaterialCutsCouple*, 285 con 287 const G4ParticleDefinition*, 286 G4d 288 G4double kineticEnergy, 287 G4d 289 G4double cutEnergy = 0.0, 288 G4d 290 G4double maxEnergy = DBL_MAX); 289 // same as SelectRandomAtom above but more e << 290 inline const G4Element* SelectTargetAtom(con << 291 con << 292 G4d << 293 G4d << 294 G4d << 295 G4d << 296 291 297 // to select atom cross section per volume i 292 // to select atom cross section per volume is recomputed for each element 298 const G4Element* SelectRandomAtom(const G4Ma 293 const G4Element* SelectRandomAtom(const G4Material*, 299 const G4Pa 294 const G4ParticleDefinition*, 300 G4double k 295 G4double kineticEnergy, 301 G4double c 296 G4double cutEnergy = 0.0, 302 G4double m 297 G4double maxEnergy = DBL_MAX); 303 298 304 // to select atom if cross section is propor 299 // to select atom if cross section is proportional number of electrons 305 const G4Element* GetCurrentElement(const G4M << 300 inline G4int SelectRandomAtomNumber(const G4Material*); 306 G4int SelectRandomAtomNumber(const G4Materia << 307 << 308 // select isotope in order to have precise m << 309 const G4Isotope* GetCurrentIsotope(const G4E << 310 G4int SelectIsotopeNumber(const G4Element*) << 311 301 312 //------------------------------------------ 302 //------------------------------------------------------------------------ 313 // Get/Set methods 303 // Get/Set methods 314 //------------------------------------------ 304 //------------------------------------------------------------------------ 315 305 316 void SetParticleChange(G4VParticleChange*, G 306 void SetParticleChange(G4VParticleChange*, G4VEmFluctuationModel* f=nullptr); 317 307 318 void SetCrossSectionTable(G4PhysicsTable*, G 308 void SetCrossSectionTable(G4PhysicsTable*, G4bool isLocal); 319 309 320 inline G4ElementData* GetElementData(); 310 inline G4ElementData* GetElementData(); 321 311 322 inline G4PhysicsTable* GetCrossSectionTable( 312 inline G4PhysicsTable* GetCrossSectionTable(); 323 313 324 inline G4VEmFluctuationModel* GetModelOfFluc 314 inline G4VEmFluctuationModel* GetModelOfFluctuations(); 325 315 326 inline G4VEmAngularDistribution* GetAngularD 316 inline G4VEmAngularDistribution* GetAngularDistribution(); 327 317 328 inline G4VEmModel* GetTripletModel(); << 329 << 330 inline void SetTripletModel(G4VEmModel*); << 331 << 332 inline void SetAngularDistribution(G4VEmAngu 318 inline void SetAngularDistribution(G4VEmAngularDistribution*); 333 319 334 inline G4double HighEnergyLimit() const; 320 inline G4double HighEnergyLimit() const; 335 321 336 inline G4double LowEnergyLimit() const; 322 inline G4double LowEnergyLimit() const; 337 323 338 inline G4double HighEnergyActivationLimit() 324 inline G4double HighEnergyActivationLimit() const; 339 325 340 inline G4double LowEnergyActivationLimit() c 326 inline G4double LowEnergyActivationLimit() const; 341 327 342 inline G4double PolarAngleLimit() const; 328 inline G4double PolarAngleLimit() const; 343 329 344 inline G4double SecondaryThreshold() const; 330 inline G4double SecondaryThreshold() const; 345 331 >> 332 inline G4bool LPMFlag() const; >> 333 346 inline G4bool DeexcitationFlag() const; 334 inline G4bool DeexcitationFlag() const; 347 335 348 inline G4bool ForceBuildTableFlag() const; 336 inline G4bool ForceBuildTableFlag() const; 349 337 350 inline G4bool UseAngularGeneratorFlag() cons 338 inline G4bool UseAngularGeneratorFlag() const; 351 339 352 inline void SetAngularGeneratorFlag(G4bool); 340 inline void SetAngularGeneratorFlag(G4bool); 353 341 354 inline void SetHighEnergyLimit(G4double); 342 inline void SetHighEnergyLimit(G4double); 355 343 356 inline void SetLowEnergyLimit(G4double); 344 inline void SetLowEnergyLimit(G4double); 357 345 358 inline void SetActivationHighEnergyLimit(G4d 346 inline void SetActivationHighEnergyLimit(G4double); 359 347 360 inline void SetActivationLowEnergyLimit(G4do 348 inline void SetActivationLowEnergyLimit(G4double); 361 349 362 inline G4bool IsActive(G4double kinEnergy) c << 350 inline G4bool IsActive(G4double kinEnergy); 363 351 364 inline void SetPolarAngleLimit(G4double); 352 inline void SetPolarAngleLimit(G4double); 365 353 366 inline void SetSecondaryThreshold(G4double); 354 inline void SetSecondaryThreshold(G4double); 367 355 >> 356 inline void SetLPMFlag(G4bool val); >> 357 368 inline void SetDeexcitationFlag(G4bool val); 358 inline void SetDeexcitationFlag(G4bool val); 369 359 370 inline void SetForceBuildTable(G4bool val); 360 inline void SetForceBuildTable(G4bool val); 371 361 372 inline void SetFluctuationFlag(G4bool val); 362 inline void SetFluctuationFlag(G4bool val); 373 363 374 inline G4bool IsMaster() const; << 364 inline void SetMasterThread(G4bool val); 375 << 376 inline void SetUseBaseMaterials(G4bool val); << 377 365 378 inline G4bool UseBaseMaterials() const; << 366 inline G4bool IsMaster() const; 379 367 380 inline G4double MaxSecondaryKinEnergy(const 368 inline G4double MaxSecondaryKinEnergy(const G4DynamicParticle* dynParticle); 381 369 382 inline const G4String& GetName() const; 370 inline const G4String& GetName() const; 383 371 384 inline void SetCurrentCouple(const G4Materia 372 inline void SetCurrentCouple(const G4MaterialCutsCouple*); 385 373 386 inline G4bool IsLocked() const; << 374 inline const G4Element* GetCurrentElement() const; 387 375 388 inline void SetLocked(G4bool); << 376 inline const G4Isotope* GetCurrentIsotope() const; 389 377 390 // obsolete methods << 378 inline G4bool IsLocked() const; 391 [[deprecated("Use G4EmParameters::Instance() << 392 void SetLPMFlag(G4bool); << 393 << 394 void SetMasterThread(G4bool); << 395 379 396 // hide assignment operator << 380 inline void SetLocked(G4bool); 397 G4VEmModel & operator=(const G4VEmModel &ri << 398 G4VEmModel(const G4VEmModel&) = delete; << 399 381 400 protected: 382 protected: 401 383 402 inline const G4MaterialCutsCouple* CurrentCo 384 inline const G4MaterialCutsCouple* CurrentCouple() const; 403 385 404 inline void SetCurrentElement(const G4Elemen 386 inline void SetCurrentElement(const G4Element*); 405 387 406 private: 388 private: 407 389 >> 390 // hide assignment operator >> 391 G4VEmModel & operator=(const G4VEmModel &right) = delete; >> 392 G4VEmModel(const G4VEmModel&) = delete; >> 393 408 // ======== Parameters of the class fixed at 394 // ======== Parameters of the class fixed at construction ========= 409 395 410 G4VEmFluctuationModel* flucModel = null << 396 G4VEmFluctuationModel* flucModel; 411 G4VEmAngularDistribution* anglModel = null << 397 G4VEmAngularDistribution* anglModel; 412 G4VEmModel* fTripletModel = << 398 const G4String name; 413 const G4MaterialCutsCouple* fCurrentCouple = << 399 414 const G4Element* fCurrentElement << 400 // ======== Parameters of the class fixed at initialisation ======= 415 std::vector<G4EmElementSelector*>* elmSelect << 401 416 G4LossTableManager* fEmManager; << 402 G4double lowLimit; >> 403 G4double highLimit; >> 404 G4double eMinActive; >> 405 G4double eMaxActive; >> 406 G4double polarAngleLimit; >> 407 G4double secondaryThreshold; >> 408 G4bool theLPMflag; >> 409 G4bool flagDeexcitation; >> 410 G4bool flagForceBuildTable; >> 411 G4bool isMaster; >> 412 >> 413 G4bool localTable; >> 414 G4bool localElmSelectors; >> 415 G4bool useAngularGenerator; >> 416 G4bool isLocked; >> 417 G4int nSelectors; >> 418 std::vector<G4EmElementSelector*>* elmSelectors; >> 419 G4LossTableManager* fEmManager; 417 420 418 protected: 421 protected: 419 422 420 G4ElementData* fElementData = << 423 G4ElementData* fElementData; 421 G4VParticleChange* pParticleChange << 424 G4VParticleChange* pParticleChange; 422 G4PhysicsTable* xSectionTable = << 425 G4PhysicsTable* xSectionTable; 423 const G4Material* pBaseMaterial = << 426 const std::vector<G4double>* theDensityFactor; 424 const std::vector<G4double>* theDensityFacto << 427 const std::vector<G4int>* theDensityIdx; 425 const std::vector<G4int>* theDensityIdx = << 428 size_t idxTable; >> 429 G4bool lossFlucFlag; >> 430 const static G4double inveplus; 426 431 427 G4double inveplus; << 432 // ======== Cached values - may be state dependent ================ 428 G4double pFactor = 1.0; << 429 433 430 private: 434 private: 431 435 432 G4double lowLimit; << 436 const G4MaterialCutsCouple* fCurrentCouple; 433 G4double highLimit; << 437 const G4Element* fCurrentElement; 434 G4double eMinActive = 0.0; << 438 const G4Isotope* fCurrentIsotope; 435 G4double eMaxActive = DBL_MAX; << 436 G4double secondaryThreshold = DBL_MAX; << 437 G4double polarAngleLimit; << 438 << 439 G4int nSelectors = 0; << 440 G4int nsec = 5; << 441 << 442 protected: << 443 439 444 std::size_t currentCoupleIndex = 0; << 440 G4int nsec; 445 std::size_t basedCoupleIndex = 0; << 446 G4bool lossFlucFlag = true; << 447 << 448 private: << 449 << 450 G4bool flagDeexcitation = false; << 451 G4bool flagForceBuildTable = false; << 452 G4bool isMaster = true; << 453 << 454 G4bool localTable = true; << 455 G4bool localElmSelectors = true; << 456 G4bool useAngularGenerator = false; << 457 G4bool useBaseMaterials = false; << 458 G4bool isLocked = false; << 459 << 460 const G4String name; << 461 std::vector<G4double> xsec; 441 std::vector<G4double> xsec; 462 442 463 }; 443 }; 464 444 465 // ======== Run time inline methods ========== 445 // ======== Run time inline methods ================ 466 446 467 inline void G4VEmModel::SetCurrentCouple(const << 447 inline void G4VEmModel::SetCurrentCouple(const G4MaterialCutsCouple* p) 468 { 448 { 469 if(fCurrentCouple != ptr) { << 449 fCurrentCouple = p; 470 fCurrentCouple = ptr; << 471 basedCoupleIndex = currentCoupleIndex = pt << 472 pBaseMaterial = ptr->GetMaterial(); << 473 pFactor = 1.0; << 474 if(useBaseMaterials) { << 475 basedCoupleIndex = (*theDensityIdx)[curr << 476 if(nullptr != pBaseMaterial->GetBaseMate << 477 pBaseMaterial = pBaseMaterial->GetBaseMateri << 478 pFactor = (*theDensityFactor)[currentCou << 479 } << 480 } << 481 } 450 } 482 451 483 //....oooOO0OOooo........oooOO0OOooo........oo 452 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 484 453 485 inline const G4MaterialCutsCouple* G4VEmModel: 454 inline const G4MaterialCutsCouple* G4VEmModel::CurrentCouple() const 486 { 455 { 487 return fCurrentCouple; 456 return fCurrentCouple; 488 } 457 } 489 458 490 //....oooOO0OOooo........oooOO0OOooo........oo 459 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 491 460 492 inline void G4VEmModel::SetCurrentElement(cons 461 inline void G4VEmModel::SetCurrentElement(const G4Element* elm) 493 { 462 { 494 fCurrentElement = elm; 463 fCurrentElement = elm; >> 464 fCurrentIsotope = nullptr; >> 465 } >> 466 >> 467 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 468 >> 469 inline const G4Element* G4VEmModel::GetCurrentElement() const >> 470 { >> 471 return fCurrentElement; >> 472 } >> 473 >> 474 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 475 >> 476 inline const G4Isotope* G4VEmModel::GetCurrentIsotope() const >> 477 { >> 478 return fCurrentIsotope; 495 } 479 } 496 480 497 //....oooOO0OOooo........oooOO0OOooo........oo 481 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 498 482 499 inline 483 inline 500 G4double G4VEmModel::MaxSecondaryKinEnergy(con 484 G4double G4VEmModel::MaxSecondaryKinEnergy(const G4DynamicParticle* dynPart) 501 { 485 { 502 return MaxSecondaryEnergy(dynPart->GetPartic 486 return MaxSecondaryEnergy(dynPart->GetParticleDefinition(), 503 dynPart->GetKineti 487 dynPart->GetKineticEnergy()); 504 } 488 } 505 489 506 //....oooOO0OOooo........oooOO0OOooo........oo 490 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 507 491 508 inline G4double G4VEmModel::ComputeDEDX(const 492 inline G4double G4VEmModel::ComputeDEDX(const G4MaterialCutsCouple* couple, 509 const 493 const G4ParticleDefinition* part, 510 G4doub 494 G4double kinEnergy, 511 G4doub 495 G4double cutEnergy) 512 { 496 { 513 SetCurrentCouple(couple); 497 SetCurrentCouple(couple); 514 return pFactor*ComputeDEDXPerVolume(pBaseMat << 498 return ComputeDEDXPerVolume(couple->GetMaterial(),part,kinEnergy,cutEnergy); 515 } 499 } 516 500 517 //....oooOO0OOooo........oooOO0OOooo........oo 501 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 518 502 519 inline G4double G4VEmModel::CrossSection(const 503 inline G4double G4VEmModel::CrossSection(const G4MaterialCutsCouple* couple, 520 const 504 const G4ParticleDefinition* part, 521 G4dou 505 G4double kinEnergy, 522 G4dou 506 G4double cutEnergy, 523 G4dou 507 G4double maxEnergy) 524 { 508 { 525 SetCurrentCouple(couple); 509 SetCurrentCouple(couple); 526 return pFactor*CrossSectionPerVolume(pBaseMa << 510 return CrossSectionPerVolume(couple->GetMaterial(),part,kinEnergy, 527 cutEner << 511 cutEnergy,maxEnergy); 528 } 512 } 529 513 530 //....oooOO0OOooo........oooOO0OOooo........oo 514 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 531 515 532 inline 516 inline 533 G4double G4VEmModel::ComputeMeanFreePath(const 517 G4double G4VEmModel::ComputeMeanFreePath(const G4ParticleDefinition* part, 534 G4dou 518 G4double ekin, 535 const 519 const G4Material* material, 536 G4dou 520 G4double emin, 537 G4dou 521 G4double emax) 538 { 522 { 539 G4double cross = CrossSectionPerVolume(mater 523 G4double cross = CrossSectionPerVolume(material,part,ekin,emin,emax); 540 return (cross > 0.0) ? 1./cross : DBL_MAX; << 524 return cross > 0.0 ? 1./cross : DBL_MAX; 541 } 525 } 542 526 543 //....oooOO0OOooo........oooOO0OOooo........oo 527 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 544 528 545 inline G4double 529 inline G4double 546 G4VEmModel::ComputeCrossSectionPerAtom(const G 530 G4VEmModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition* part, 547 const G 531 const G4Element* elm, 548 G4doubl 532 G4double kinEnergy, 549 G4doubl 533 G4double cutEnergy, 550 G4doubl 534 G4double maxEnergy) 551 { 535 { 552 fCurrentElement = elm; << 536 SetCurrentElement(elm); 553 return ComputeCrossSectionPerAtom(part,kinEn 537 return ComputeCrossSectionPerAtom(part,kinEnergy,elm->GetZ(),elm->GetN(), 554 cutEnergy, 538 cutEnergy,maxEnergy); 555 } 539 } 556 540 557 //....oooOO0OOooo........oooOO0OOooo........oo 541 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 558 542 559 inline const G4Element* 543 inline const G4Element* 560 G4VEmModel::SelectRandomAtom(const G4MaterialC 544 G4VEmModel::SelectRandomAtom(const G4MaterialCutsCouple* couple, 561 const G4ParticleD 545 const G4ParticleDefinition* part, 562 G4double kinEnerg 546 G4double kinEnergy, 563 G4double cutEnerg 547 G4double cutEnergy, 564 G4double maxEnerg 548 G4double maxEnergy) 565 { 549 { 566 SetCurrentCouple(couple); << 550 fCurrentCouple = couple; 567 fCurrentElement = (nSelectors > 0) ? << 551 if(nSelectors > 0) { 568 ((*elmSelectors)[couple->GetIndex()])->Sel << 552 fCurrentElement = 569 SelectRandomAtom(pBaseMaterial,part,kinEne << 553 ((*elmSelectors)[couple->GetIndex()])->SelectRandomAtom(kinEnergy); >> 554 } else { >> 555 fCurrentElement = SelectRandomAtom(couple->GetMaterial(),part,kinEnergy, >> 556 cutEnergy,maxEnergy); >> 557 } >> 558 fCurrentIsotope = nullptr; 570 return fCurrentElement; 559 return fCurrentElement; 571 } 560 } 572 561 573 //....oooOO0OOooo........oooOO0OOooo........oo 562 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 574 563 575 inline const G4Element* << 564 inline G4int G4VEmModel::SelectRandomAtomNumber(const G4Material* mat) 576 G4VEmModel::SelectTargetAtom(const G4MaterialC << 577 const G4ParticleD << 578 G4double kinEnerg << 579 G4double logKinE, << 580 G4double cutEnerg << 581 G4double maxEnerg << 582 { 565 { 583 SetCurrentCouple(couple); << 566 // this algorith assumes that cross section is proportional to 584 fCurrentElement = (nSelectors > 0) << 567 // number electrons multiplied by number of atoms 585 ? ((*elmSelectors)[couple->GetIndex()])->Se << 568 size_t nn = mat->GetNumberOfElements(); 586 : SelectRandomAtom(pBaseMaterial,part,kinEn << 569 const G4ElementVector* elmv = mat->GetElementVector(); 587 return fCurrentElement; << 570 G4int Z = (*elmv)[0]->GetZasInt(); >> 571 if(1 < nn) { >> 572 const G4double* at = mat->GetVecNbOfAtomsPerVolume(); >> 573 G4double tot = mat->GetTotNbOfAtomsPerVolume()*G4UniformRand(); >> 574 for( size_t i=0; i<nn; ++i) { >> 575 tot -= at[i]; >> 576 if(tot <= 0.0) { >> 577 Z = (*elmv)[i]->GetZasInt(); >> 578 break; >> 579 } >> 580 } >> 581 } >> 582 return Z; >> 583 } >> 584 >> 585 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 586 >> 587 inline G4int G4VEmModel::SelectIsotopeNumber(const G4Element* elm) >> 588 { >> 589 SetCurrentElement(elm); >> 590 G4int N = G4lrint(elm->GetN()); >> 591 G4int ni = elm->GetNumberOfIsotopes(); >> 592 fCurrentIsotope = nullptr; >> 593 if(ni > 0) { >> 594 G4int idx = 0; >> 595 if(ni > 1) { >> 596 G4double* ab = elm->GetRelativeAbundanceVector(); >> 597 G4double x = G4UniformRand(); >> 598 for(; idx<ni; ++idx) { >> 599 x -= ab[idx]; >> 600 if (x <= 0.0) { break; } >> 601 } >> 602 if(idx >= ni) { idx = ni - 1; } >> 603 } >> 604 fCurrentIsotope = elm->GetIsotope(idx); >> 605 N = fCurrentIsotope->GetN(); >> 606 } >> 607 return N; 588 } 608 } 589 609 590 // ======== Get/Set inline methods used at ini 610 // ======== Get/Set inline methods used at initialisation ================ 591 611 592 inline G4VEmFluctuationModel* G4VEmModel::GetM 612 inline G4VEmFluctuationModel* G4VEmModel::GetModelOfFluctuations() 593 { 613 { 594 return flucModel; 614 return flucModel; 595 } 615 } 596 616 597 //....oooOO0OOooo........oooOO0OOooo........oo 617 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 598 618 599 inline G4VEmAngularDistribution* G4VEmModel::G 619 inline G4VEmAngularDistribution* G4VEmModel::GetAngularDistribution() 600 { 620 { 601 return anglModel; 621 return anglModel; 602 } 622 } 603 623 604 //....oooOO0OOooo........oooOO0OOooo........oo 624 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 605 625 606 inline void G4VEmModel::SetAngularDistribution 626 inline void G4VEmModel::SetAngularDistribution(G4VEmAngularDistribution* p) 607 { 627 { 608 if(p != anglModel) { 628 if(p != anglModel) { 609 delete anglModel; 629 delete anglModel; 610 anglModel = p; 630 anglModel = p; 611 } 631 } 612 } 632 } 613 633 614 //....oooOO0OOooo........oooOO0OOooo........oo 634 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 615 635 616 inline G4VEmModel* G4VEmModel::GetTripletModel << 617 { << 618 return fTripletModel; << 619 } << 620 << 621 //....oooOO0OOooo........oooOO0OOooo........oo << 622 << 623 inline void G4VEmModel::SetTripletModel(G4VEmM << 624 { << 625 if(p != fTripletModel) { << 626 delete fTripletModel; << 627 fTripletModel = p; << 628 } << 629 } << 630 << 631 //....oooOO0OOooo........oooOO0OOooo........oo << 632 << 633 inline G4double G4VEmModel::HighEnergyLimit() 636 inline G4double G4VEmModel::HighEnergyLimit() const 634 { 637 { 635 return highLimit; 638 return highLimit; 636 } 639 } 637 640 638 //....oooOO0OOooo........oooOO0OOooo........oo 641 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 639 642 640 inline G4double G4VEmModel::LowEnergyLimit() c 643 inline G4double G4VEmModel::LowEnergyLimit() const 641 { 644 { 642 return lowLimit; 645 return lowLimit; 643 } 646 } 644 647 645 //....oooOO0OOooo........oooOO0OOooo........oo 648 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 649 647 inline G4double G4VEmModel::HighEnergyActivati 650 inline G4double G4VEmModel::HighEnergyActivationLimit() const 648 { 651 { 649 return eMaxActive; 652 return eMaxActive; 650 } 653 } 651 654 652 //....oooOO0OOooo........oooOO0OOooo........oo 655 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 653 656 654 inline G4double G4VEmModel::LowEnergyActivatio 657 inline G4double G4VEmModel::LowEnergyActivationLimit() const 655 { 658 { 656 return eMinActive; 659 return eMinActive; 657 } 660 } 658 661 659 //....oooOO0OOooo........oooOO0OOooo........oo 662 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 660 663 661 inline G4double G4VEmModel::PolarAngleLimit() 664 inline G4double G4VEmModel::PolarAngleLimit() const 662 { 665 { 663 return polarAngleLimit; 666 return polarAngleLimit; 664 } 667 } 665 668 666 //....oooOO0OOooo........oooOO0OOooo........oo 669 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 667 670 668 inline G4double G4VEmModel::SecondaryThreshold 671 inline G4double G4VEmModel::SecondaryThreshold() const 669 { 672 { 670 return secondaryThreshold; 673 return secondaryThreshold; 671 } 674 } 672 675 673 //....oooOO0OOooo........oooOO0OOooo........oo 676 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 674 677 >> 678 inline G4bool G4VEmModel::LPMFlag() const >> 679 { >> 680 return theLPMflag; >> 681 } >> 682 >> 683 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 684 675 inline G4bool G4VEmModel::DeexcitationFlag() c 685 inline G4bool G4VEmModel::DeexcitationFlag() const 676 { 686 { 677 return flagDeexcitation; 687 return flagDeexcitation; 678 } 688 } 679 689 680 //....oooOO0OOooo........oooOO0OOooo........oo 690 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 681 691 682 inline G4bool G4VEmModel::ForceBuildTableFlag( 692 inline G4bool G4VEmModel::ForceBuildTableFlag() const 683 { 693 { 684 return flagForceBuildTable; 694 return flagForceBuildTable; 685 } 695 } 686 696 687 //....oooOO0OOooo........oooOO0OOooo........oo 697 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 688 698 689 inline G4bool G4VEmModel::UseAngularGeneratorF 699 inline G4bool G4VEmModel::UseAngularGeneratorFlag() const 690 { 700 { 691 return useAngularGenerator; 701 return useAngularGenerator; 692 } 702 } 693 703 694 //....oooOO0OOooo........oooOO0OOooo........oo 704 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 695 705 696 inline void G4VEmModel::SetAngularGeneratorFla 706 inline void G4VEmModel::SetAngularGeneratorFlag(G4bool val) 697 { 707 { 698 useAngularGenerator = val; 708 useAngularGenerator = val; 699 } 709 } 700 710 701 //....oooOO0OOooo........oooOO0OOooo........oo << 702 << 703 inline void G4VEmModel::SetFluctuationFlag(G4b 711 inline void G4VEmModel::SetFluctuationFlag(G4bool val) 704 { 712 { 705 lossFlucFlag = val; 713 lossFlucFlag = val; 706 } 714 } 707 715 708 //....oooOO0OOooo........oooOO0OOooo........oo 716 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 709 717 710 inline G4bool G4VEmModel::IsMaster() const << 718 inline void G4VEmModel::SetMasterThread(G4bool val) 711 { << 712 return isMaster; << 713 } << 714 << 715 //....oooOO0OOooo........oooOO0OOooo........oo << 716 << 717 inline void G4VEmModel::SetUseBaseMaterials(G4 << 718 { 719 { 719 useBaseMaterials = val; << 720 isMaster = val; 720 } 721 } 721 722 722 //....oooOO0OOooo........oooOO0OOooo........oo 723 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 723 724 724 inline G4bool G4VEmModel::UseBaseMaterials() c << 725 inline G4bool G4VEmModel::IsMaster() const 725 { 726 { 726 return useBaseMaterials; << 727 return isMaster; 727 } 728 } 728 729 729 //....oooOO0OOooo........oooOO0OOooo........oo 730 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 730 731 731 inline void G4VEmModel::SetHighEnergyLimit(G4d 732 inline void G4VEmModel::SetHighEnergyLimit(G4double val) 732 { 733 { 733 highLimit = val; 734 highLimit = val; 734 } 735 } 735 736 736 //....oooOO0OOooo........oooOO0OOooo........oo 737 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 737 738 738 inline void G4VEmModel::SetLowEnergyLimit(G4do 739 inline void G4VEmModel::SetLowEnergyLimit(G4double val) 739 { 740 { 740 lowLimit = val; 741 lowLimit = val; 741 } 742 } 742 743 743 //....oooOO0OOooo........oooOO0OOooo........oo 744 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 744 745 745 inline void G4VEmModel::SetActivationHighEnerg 746 inline void G4VEmModel::SetActivationHighEnergyLimit(G4double val) 746 { 747 { 747 eMaxActive = val; 748 eMaxActive = val; 748 } 749 } 749 750 750 //....oooOO0OOooo........oooOO0OOooo........oo 751 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 752 752 inline void G4VEmModel::SetActivationLowEnergy 753 inline void G4VEmModel::SetActivationLowEnergyLimit(G4double val) 753 { 754 { 754 eMinActive = val; 755 eMinActive = val; 755 } 756 } 756 757 757 //....oooOO0OOooo........oooOO0OOooo........oo 758 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 758 759 759 inline G4bool G4VEmModel::IsActive(G4double ki << 760 inline G4bool G4VEmModel::IsActive(G4double kinEnergy) 760 { 761 { 761 return (kinEnergy >= eMinActive && kinEnergy 762 return (kinEnergy >= eMinActive && kinEnergy <= eMaxActive); 762 } 763 } 763 764 764 //....oooOO0OOooo........oooOO0OOooo........oo 765 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 765 766 766 inline void G4VEmModel::SetPolarAngleLimit(G4d 767 inline void G4VEmModel::SetPolarAngleLimit(G4double val) 767 { 768 { 768 if(!isLocked) { polarAngleLimit = val; } 769 if(!isLocked) { polarAngleLimit = val; } 769 } 770 } 770 771 771 //....oooOO0OOooo........oooOO0OOooo........oo 772 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 772 773 773 inline void G4VEmModel::SetSecondaryThreshold( 774 inline void G4VEmModel::SetSecondaryThreshold(G4double val) 774 { 775 { 775 secondaryThreshold = val; 776 secondaryThreshold = val; 776 } 777 } 777 778 778 //....oooOO0OOooo........oooOO0OOooo........oo 779 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 779 780 >> 781 inline void G4VEmModel::SetLPMFlag(G4bool val) >> 782 { >> 783 theLPMflag = val; >> 784 } >> 785 >> 786 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 787 780 inline void G4VEmModel::SetDeexcitationFlag(G4 788 inline void G4VEmModel::SetDeexcitationFlag(G4bool val) 781 { 789 { 782 flagDeexcitation = val; 790 flagDeexcitation = val; 783 } 791 } 784 792 785 //....oooOO0OOooo........oooOO0OOooo........oo 793 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 786 794 787 inline void G4VEmModel::SetForceBuildTable(G4b 795 inline void G4VEmModel::SetForceBuildTable(G4bool val) 788 { 796 { 789 flagForceBuildTable = val; 797 flagForceBuildTable = val; 790 } 798 } 791 799 792 //....oooOO0OOooo........oooOO0OOooo........oo 800 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 793 801 794 inline const G4String& G4VEmModel::GetName() c 802 inline const G4String& G4VEmModel::GetName() const 795 { 803 { 796 return name; 804 return name; 797 } 805 } 798 806 799 //....oooOO0OOooo........oooOO0OOooo........oo 807 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 800 808 801 inline std::vector<G4EmElementSelector*>* G4VE 809 inline std::vector<G4EmElementSelector*>* G4VEmModel::GetElementSelectors() 802 { 810 { 803 return elmSelectors; 811 return elmSelectors; 804 } 812 } 805 813 806 //....oooOO0OOooo........oooOO0OOooo........oo 814 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 807 815 808 inline void 816 inline void 809 G4VEmModel::SetElementSelectors(std::vector<G4 817 G4VEmModel::SetElementSelectors(std::vector<G4EmElementSelector*>* p) 810 { 818 { 811 if(p != elmSelectors) { << 819 elmSelectors = p; 812 elmSelectors = p; << 820 if(elmSelectors) { nSelectors = elmSelectors->size(); } 813 nSelectors = (nullptr != elmSelectors) ? G << 821 localElmSelectors = false; 814 localElmSelectors = false; << 815 } << 816 } 822 } 817 823 818 //....oooOO0OOooo........oooOO0OOooo........oo 824 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 819 825 820 inline G4ElementData* G4VEmModel::GetElementDa 826 inline G4ElementData* G4VEmModel::GetElementData() 821 { 827 { 822 return fElementData; 828 return fElementData; 823 } 829 } 824 830 825 //....oooOO0OOooo........oooOO0OOooo........oo 831 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 826 832 827 inline G4PhysicsTable* G4VEmModel::GetCrossSec 833 inline G4PhysicsTable* G4VEmModel::GetCrossSectionTable() 828 { 834 { 829 return xSectionTable; 835 return xSectionTable; 830 } 836 } 831 837 832 //....oooOO0OOooo........oooOO0OOooo........oo 838 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 833 839 834 inline G4bool G4VEmModel::IsLocked() const 840 inline G4bool G4VEmModel::IsLocked() const 835 { 841 { 836 return isLocked; 842 return isLocked; 837 } 843 } 838 844 839 //....oooOO0OOooo........oooOO0OOooo........oo 845 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 840 846 841 inline void G4VEmModel::SetLocked(G4bool val) 847 inline void G4VEmModel::SetLocked(G4bool val) 842 { 848 { 843 isLocked = val; 849 isLocked = val; 844 } 850 } 845 851 846 //....oooOO0OOooo........oooOO0OOooo........oo 852 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 847 853 848 #endif 854 #endif >> 855 849 856