Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4eeToTwoGammaModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4eeToTwoGammaModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4eeToTwoGammaModel.cc (Version 9.0.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4eeToTwoGammaModel.cc,v 1.14 2007/05/23 08:47:35 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-00-patch-01 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:   G4eeToTwoGammaModel                34 // File name:   G4eeToTwoGammaModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of Michel Maire code
 35 //                                                 37 //
 36 // Creation date: 02.08.2004                       38 // Creation date: 02.08.2004
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications:
 39 // 08-04-05 Major optimisation of internal int     41 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
 40 // 18-04-05 Compute CrossSectionPerVolume (V.I     42 // 18-04-05 Compute CrossSectionPerVolume (V.Ivanchenko)
 41 // 06-02-06 ComputeCrossSectionPerElectron, Co     43 // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma)
 42 // 29-06-06 Fix problem for zero energy incide     44 // 29-06-06 Fix problem for zero energy incident positron (V.Ivanchenko) 
 43 // 20-10-06 Add theGamma as a member (V.Ivanch     45 // 20-10-06 Add theGamma as a member (V.Ivanchenko)
 44 // 18-01-20 Introduce thermal model of annihil << 
 45 //                                                 46 //
 46 //                                                 47 //
 47 // Class Description:                              48 // Class Description:
 48 //                                                 49 //
 49 // Implementation of e+ annihilation into 2 ga     50 // Implementation of e+ annihilation into 2 gamma
 50 //                                                 51 //
 51 // The secondaries Gamma energies are sampled      52 // The secondaries Gamma energies are sampled using the Heitler cross section.
 52 //                                                 53 //
 53 // A modified version of the random number tec     54 // A modified version of the random number techniques of Butcher & Messel
 54 // is used (Nuc Phys 20(1960),15).                 55 // is used (Nuc Phys 20(1960),15).
 55 //                                                 56 //
 56 // GEANT4 internal units.                          57 // GEANT4 internal units.
 57 //                                                 58 //
 58 // Note 1: The initial electron is assumed fre <<  59 // Note 1: The initial electron is assumed free and at rest.
 59 //         is not defined                      << 
 60 //                                                 60 //
 61 // Note 2: The annihilation processes producin     61 // Note 2: The annihilation processes producing one or more than two photons are
 62 //         ignored, as negligible compared to      62 //         ignored, as negligible compared to the two photons process.
 63                                                    63 
                                                   >>  64 
                                                   >>  65 
 64 //                                                 66 //
 65 // -------------------------------------------     67 // -------------------------------------------------------------------
 66 //                                                 68 //
 67 //....oooOO0OOooo........oooOO0OOooo........oo     69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 68 //....oooOO0OOooo........oooOO0OOooo........oo     70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 69                                                    71 
 70 #include "G4eeToTwoGammaModel.hh"                  72 #include "G4eeToTwoGammaModel.hh"
 71 #include "G4PhysicalConstants.hh"              << 
 72 #include "G4SystemOfUnits.hh"                  << 
 73 #include "G4TrackStatus.hh"                        73 #include "G4TrackStatus.hh"
 74 #include "G4Electron.hh"                           74 #include "G4Electron.hh"
 75 #include "G4Positron.hh"                           75 #include "G4Positron.hh"
 76 #include "G4Gamma.hh"                              76 #include "G4Gamma.hh"
 77 #include "Randomize.hh"                            77 #include "Randomize.hh"
 78 #include "G4RandomDirection.hh"                << 
 79 #include "G4ParticleChangeForGamma.hh"             78 #include "G4ParticleChangeForGamma.hh"
 80 #include "G4EmParameters.hh"                   << 
 81 #include "G4Log.hh"                            << 
 82 #include "G4Exp.hh"                            << 
 83                                                    79 
 84 //....oooOO0OOooo........oooOO0OOooo........oo     80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 85                                                    81 
                                                   >>  82 using namespace std;
                                                   >>  83 
 86 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const     84 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const G4ParticleDefinition*,
 87                                          const     85                                          const G4String& nam)
 88   : G4VEmModel(nam),                               86   : G4VEmModel(nam),
 89     pi_rcl2(CLHEP::pi*CLHEP::classic_electr_ra <<  87     pi_rcl2(pi*classic_electr_radius*classic_electr_radius),
                                                   >>  88     isInitialised(false)
 90 {                                                  89 {
 91   theGamma = G4Gamma::Gamma();                     90   theGamma = G4Gamma::Gamma();
 92   fParticleChange = nullptr;                   << 
 93 }                                                  91 }
 94                                                    92 
 95 //....oooOO0OOooo........oooOO0OOooo........oo     93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 96                                                    94 
 97 G4eeToTwoGammaModel::~G4eeToTwoGammaModel() =  <<  95 G4eeToTwoGammaModel::~G4eeToTwoGammaModel()
                                                   >>  96 {}
 98                                                    97 
 99 //....oooOO0OOooo........oooOO0OOooo........oo     98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100                                                    99 
101 void G4eeToTwoGammaModel::Initialise(const G4P    100 void G4eeToTwoGammaModel::Initialise(const G4ParticleDefinition*,
102                                      const G4D    101                                      const G4DataVector&)
103 {                                                 102 {
104   if (nullptr != fParticleChange) { return; }  << 103   if(isInitialised) return;
105   fParticleChange = GetParticleChangeForGamma( << 104 
                                                   >> 105   if(pParticleChange)
                                                   >> 106     fParticleChange =
                                                   >> 107       reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
                                                   >> 108   else
                                                   >> 109     fParticleChange = new G4ParticleChangeForGamma();
                                                   >> 110 
                                                   >> 111   isInitialised = true;
106 }                                                 112 }
107                                                   113 
108 //....oooOO0OOooo........oooOO0OOooo........oo    114 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
109                                                   115 
110 G4double                                       << 116 G4double G4eeToTwoGammaModel::ComputeCrossSectionPerElectron(
111 G4eeToTwoGammaModel::ComputeCrossSectionPerEle << 117                                        const G4ParticleDefinition*,
                                                   >> 118                                        G4double kineticEnergy,
                                                   >> 119                G4double, G4double)
112 {                                                 120 {
113   // Calculates the cross section per electron    121   // Calculates the cross section per electron of annihilation into two photons
114   // from the Heilter formula.                    122   // from the Heilter formula.
115                                                << 123   
116   G4double ekin  = std::max(CLHEP::eV, kinetic << 124   G4double tau   = kineticEnergy/electron_mass_c2;
117                                                << 
118   G4double tau   = ekin/CLHEP::electron_mass_c << 
119   G4double gam   = tau + 1.0;                     125   G4double gam   = tau + 1.0;
120   G4double gamma2= gam*gam;                       126   G4double gamma2= gam*gam;
121   G4double bg2   = tau * (tau+2.0);               127   G4double bg2   = tau * (tau+2.0);
122   G4double bg    = std::sqrt(bg2);             << 128   G4double bg    = sqrt(bg2);
123                                                   129 
124   G4double cross = pi_rcl2*((gamma2+4*gam+1.)* << 130   G4double cross = pi_rcl2*((gamma2+4*gam+1.)*log(gam+bg) - (gam+3.)*bg)
125                  / (bg2*(gam+1.));                131                  / (bg2*(gam+1.));
126   return cross;                                   132   return cross;  
127 }                                                 133 }
128                                                   134 
129 //....oooOO0OOooo........oooOO0OOooo........oo    135 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
130                                                   136 
131 G4double G4eeToTwoGammaModel::ComputeCrossSect    137 G4double G4eeToTwoGammaModel::ComputeCrossSectionPerAtom(
132                                     const G4Pa << 138                                     const G4ParticleDefinition* p,
133                                     G4double k    139                                     G4double kineticEnergy, G4double Z,
134             G4double, G4double, G4double)         140             G4double, G4double, G4double)
135 {                                                 141 {
136   // Calculates the cross section per atom of     142   // Calculates the cross section per atom of annihilation into two photons
137   return Z*ComputeCrossSectionPerElectron(kine << 143   
                                                   >> 144   G4double cross = Z*ComputeCrossSectionPerElectron(p,kineticEnergy);
                                                   >> 145   return cross;  
138 }                                                 146 }
139                                                   147 
140 //....oooOO0OOooo........oooOO0OOooo........oo    148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
141                                                   149 
142 G4double G4eeToTwoGammaModel::CrossSectionPerV    150 G4double G4eeToTwoGammaModel::CrossSectionPerVolume(
143           const G4Material* material,             151           const G4Material* material,
144           const G4ParticleDefinition*,         << 152           const G4ParticleDefinition* p,
145                 G4double kineticEnergy,           153                 G4double kineticEnergy,
146                 G4double, G4double)               154                 G4double, G4double)
147 {                                                 155 {
148   // Calculates the cross section per volume o    156   // Calculates the cross section per volume of annihilation into two photons
149   return material->GetElectronDensity()*Comput << 157   
                                                   >> 158   G4double eDensity = material->GetElectronDensity();
                                                   >> 159   G4double cross = eDensity*ComputeCrossSectionPerElectron(p,kineticEnergy);
                                                   >> 160   return cross;
150 }                                                 161 }
151                                                   162 
152 //....oooOO0OOooo........oooOO0OOooo........oo    163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
153                                                   164 
154 // Polarisation of gamma according to M.H.L.Pr << 165 void G4eeToTwoGammaModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp,
155 // Nature 4065 (1947) 435.                     << 
156                                                << 
157 void G4eeToTwoGammaModel::SampleSecondaries(st << 
158               const G4MaterialCutsCouple*,        166               const G4MaterialCutsCouple*,
159               const G4DynamicParticle* dp,        167               const G4DynamicParticle* dp,
160               G4double,                           168               G4double,
161               G4double)                           169               G4double)
162 {                                                 170 {
163   // kill primary positron                     << 171   G4double PositKinEnergy = dp->GetKineticEnergy();
164   fParticleChange->SetProposedKineticEnergy(0. << 
165   fParticleChange->ProposeTrackStatus(fStopAnd << 
166                                                   172 
167   // Case at rest not considered anymore insid << 173   // Case at rest
168   G4LorentzVector lv(dp->GetMomentum(),        << 174   if(PositKinEnergy == 0.0) {
169          dp->GetKineticEnergy() + 2*CLHEP::ele << 175     G4double cost = 2.*G4UniformRand()-1.;
170   G4double eGammaCMS = 0.5 * lv.mag();         << 176     G4double sint = sqrt((1. - cost)*(1. + cost));
171                                                << 177     G4double phi  = twopi * G4UniformRand();
172   G4ThreeVector dir1 = G4RandomDirection();    << 178     G4ThreeVector dir (sint*cos(phi), sint*sin(phi), cost);
173   G4double phi = CLHEP::twopi * G4UniformRand( << 179     G4DynamicParticle* aGamma1 = new G4DynamicParticle(theGamma,
174   G4double cosphi = std::cos(phi);             << 180                    dir, electron_mass_c2);
175   G4double sinphi = std::sin(phi);             << 181     G4DynamicParticle* aGamma2 = new G4DynamicParticle(theGamma,
176   G4ThreeVector pol1(cosphi, sinphi, 0.0);     << 182                    -dir, electron_mass_c2);
177   pol1.rotateUz(dir1);                         << 183     vdp->push_back(aGamma1);
178   G4LorentzVector lv1(eGammaCMS*dir1, eGammaCM << 184     vdp->push_back(aGamma2);
179                                                << 185 
180   G4ThreeVector pol2(-sinphi, cosphi, 0.0);    << 186   } else {
181   pol2.rotateUz(dir1);                         << 187 
182                                                << 188     G4ThreeVector PositDirection = dp->GetMomentumDirection();
183   // transformation to lab system              << 189 
184   lv1.boost(lv.boostVector());                 << 190     G4double tau     = PositKinEnergy/electron_mass_c2;
185   lv -= lv1;                                   << 191     G4double gam     = tau + 1.0;
186                                                << 192     G4double tau2    = tau + 2.0;
187   //!!! boost of polarisation vector is not ye << 193     G4double sqgrate = sqrt(tau/tau2)*0.5;
188                                                << 194     G4double sqg2m1  = sqrt(tau*tau2);
189   // use constructors optimal for massless par << 195 
190   auto aGamma1 = new G4DynamicParticle(G4Gamma << 196     // limits of the energy sampling
191   aGamma1->SetPolarization(pol1);              << 197     G4double epsilmin = 0.5 - sqgrate;
192   auto aGamma2 = new G4DynamicParticle(G4Gamma << 198     G4double epsilmax = 0.5 + sqgrate;
193   aGamma2->SetPolarization(pol2);              << 199     G4double epsilqot = epsilmax/epsilmin;
194                                                << 200 
195   vdp->push_back(aGamma1);                     << 201     //
196   vdp->push_back(aGamma2);                     << 202     // sample the energy rate of the created gammas
                                                   >> 203     //
                                                   >> 204     G4double epsil, greject;
                                                   >> 205 
                                                   >> 206     do {
                                                   >> 207       epsil = epsilmin*pow(epsilqot,G4UniformRand());
                                                   >> 208       greject = 1. - epsil + (2.*gam*epsil-1.)/(epsil*tau2*tau2);
                                                   >> 209     } while( greject < G4UniformRand() );
                                                   >> 210 
                                                   >> 211     //
                                                   >> 212     // scattered Gamma angles. ( Z - axis along the parent positron)
                                                   >> 213     //
                                                   >> 214 
                                                   >> 215     G4double cost = (epsil*tau2-1.)/(epsil*sqg2m1);
                                                   >> 216     if(std::abs(cost) > 1.0) {
                                                   >> 217       G4cout << "### G4eeToTwoGammaModel WARNING cost= " << cost
                                                   >> 218        << " positron Ekin(MeV)= " << PositKinEnergy
                                                   >> 219        << " gamma epsil= " << epsil
                                                   >> 220        << G4endl;
                                                   >> 221       if(cost > 1.0) cost = 1.0;
                                                   >> 222       else cost = -1.0; 
                                                   >> 223     }
                                                   >> 224     G4double sint = sqrt((1.+cost)*(1.-cost));
                                                   >> 225     G4double phi  = twopi * G4UniformRand();
                                                   >> 226 
                                                   >> 227     G4double dirx = sint*cos(phi) , diry = sint*sin(phi) , dirz = cost;
                                                   >> 228 
                                                   >> 229     //
                                                   >> 230     // kinematic of the created pair
                                                   >> 231     //
                                                   >> 232 
                                                   >> 233     G4double TotalAvailableEnergy = PositKinEnergy + 2.0*electron_mass_c2;
                                                   >> 234     G4double Phot1Energy = epsil*TotalAvailableEnergy;
                                                   >> 235 
                                                   >> 236     G4ThreeVector Phot1Direction (dirx, diry, dirz);
                                                   >> 237     Phot1Direction.rotateUz(PositDirection);
                                                   >> 238     G4DynamicParticle* aGamma1 = 
                                                   >> 239       new G4DynamicParticle (theGamma,Phot1Direction, Phot1Energy);
                                                   >> 240     vdp->push_back(aGamma1);
                                                   >> 241 
                                                   >> 242     G4double Phot2Energy =(1.-epsil)*TotalAvailableEnergy;
                                                   >> 243     G4double PositP= sqrt(PositKinEnergy*(PositKinEnergy+2.*electron_mass_c2));
                                                   >> 244     G4ThreeVector dir = PositDirection*PositP - Phot1Direction*Phot1Energy;
                                                   >> 245     G4ThreeVector Phot2Direction = dir.unit();
                                                   >> 246 
                                                   >> 247     // create G4DynamicParticle object for the particle2
                                                   >> 248     G4DynamicParticle* aGamma2= 
                                                   >> 249       new G4DynamicParticle (theGamma,Phot2Direction, Phot2Energy);
                                                   >> 250     vdp->push_back(aGamma2);
                                                   >> 251     /*
                                                   >> 252       G4cout << "Annihilation in fly: e0= " << PositKinEnergy
                                                   >> 253       << " m= " << electron_mass_c2
                                                   >> 254       << " e1= " << Phot1Energy 
                                                   >> 255       << " e2= " << Phot2Energy << " dir= " <<  dir 
                                                   >> 256       << " -> " << Phot1Direction << " " 
                                                   >> 257       << Phot2Direction << G4endl;
                                                   >> 258     */
                                                   >> 259   }
                                                   >> 260   fParticleChange->SetProposedKineticEnergy(0.);
                                                   >> 261   fParticleChange->ProposeTrackStatus(fStopAndKill);
197 }                                                 262 }
198                                                   263 
199 //....oooOO0OOooo........oooOO0OOooo........oo    264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
200                                                   265