Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4eeToTwoGammaModel.cc,v 1.8 2005/04/29 18:02:35 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-08-00-patch-01 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class file 28 // GEANT4 Class file 30 // 29 // 31 // 30 // 32 // File name: G4eeToTwoGammaModel 31 // File name: G4eeToTwoGammaModel 33 // 32 // 34 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Michel Maire code 35 // 34 // 36 // Creation date: 02.08.2004 35 // Creation date: 02.08.2004 37 // 36 // 38 // Modifications: 37 // Modifications: 39 // 08-04-05 Major optimisation of internal int << 38 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 40 // 18-04-05 Compute CrossSectionPerVolume (V.I << 39 // 18-04-05 Compute CrossSectionPerVolume (V.Ivantchenko) 41 // 06-02-06 ComputeCrossSectionPerElectron, Co << 42 // 29-06-06 Fix problem for zero energy incide << 43 // 20-10-06 Add theGamma as a member (V.Ivanch << 44 // 18-01-20 Introduce thermal model of annihil << 45 // 40 // 46 // 41 // 47 // Class Description: 42 // Class Description: 48 // 43 // 49 // Implementation of e+ annihilation into 2 ga 44 // Implementation of e+ annihilation into 2 gamma 50 // 45 // 51 // The secondaries Gamma energies are sampled 46 // The secondaries Gamma energies are sampled using the Heitler cross section. 52 // 47 // 53 // A modified version of the random number tec 48 // A modified version of the random number techniques of Butcher & Messel 54 // is used (Nuc Phys 20(1960),15). 49 // is used (Nuc Phys 20(1960),15). 55 // 50 // 56 // GEANT4 internal units. 51 // GEANT4 internal units. 57 // 52 // 58 // Note 1: The initial electron is assumed fre << 53 // Note 1: The initial electron is assumed free and at rest. 59 // is not defined << 60 // 54 // 61 // Note 2: The annihilation processes producin 55 // Note 2: The annihilation processes producing one or more than two photons are 62 // ignored, as negligible compared to 56 // ignored, as negligible compared to the two photons process. 63 57 >> 58 >> 59 64 // 60 // 65 // ------------------------------------------- 61 // ------------------------------------------------------------------- 66 // 62 // 67 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 68 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 69 65 70 #include "G4eeToTwoGammaModel.hh" 66 #include "G4eeToTwoGammaModel.hh" 71 #include "G4PhysicalConstants.hh" << 72 #include "G4SystemOfUnits.hh" << 73 #include "G4TrackStatus.hh" << 74 #include "G4Electron.hh" 67 #include "G4Electron.hh" 75 #include "G4Positron.hh" 68 #include "G4Positron.hh" 76 #include "G4Gamma.hh" 69 #include "G4Gamma.hh" 77 #include "Randomize.hh" 70 #include "Randomize.hh" 78 #include "G4RandomDirection.hh" << 79 #include "G4ParticleChangeForGamma.hh" << 80 #include "G4EmParameters.hh" << 81 #include "G4Log.hh" << 82 #include "G4Exp.hh" << 83 71 84 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 73 >> 74 using namespace std; >> 75 86 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const 76 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const G4ParticleDefinition*, 87 const 77 const G4String& nam) 88 : G4VEmModel(nam), 78 : G4VEmModel(nam), 89 pi_rcl2(CLHEP::pi*CLHEP::classic_electr_ra << 79 pi_rcl2(pi*classic_electr_radius*classic_electr_radius) 90 { 80 { 91 theGamma = G4Gamma::Gamma(); << 92 fParticleChange = nullptr; << 93 } 81 } 94 82 95 //....oooOO0OOooo........oooOO0OOooo........oo 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 96 84 97 G4eeToTwoGammaModel::~G4eeToTwoGammaModel() = << 85 G4eeToTwoGammaModel::~G4eeToTwoGammaModel() >> 86 {} 98 87 99 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 100 89 101 void G4eeToTwoGammaModel::Initialise(const G4P 90 void G4eeToTwoGammaModel::Initialise(const G4ParticleDefinition*, 102 const G4D 91 const G4DataVector&) 103 { << 92 {} 104 if (nullptr != fParticleChange) { return; } << 105 fParticleChange = GetParticleChangeForGamma( << 106 } << 107 93 108 //....oooOO0OOooo........oooOO0OOooo........oo << 94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 109 95 110 G4double << 96 G4double G4eeToTwoGammaModel::CrossSectionPerVolume(const G4Material* material, 111 G4eeToTwoGammaModel::ComputeCrossSectionPerEle << 97 const G4ParticleDefinition*, >> 98 G4double kineticEnergy, >> 99 G4double, >> 100 G4double) 112 { 101 { 113 // Calculates the cross section per electron << 102 // Calculates the cross section per atom of annihilation into two photons 114 // from the Heilter formula. 103 // from the Heilter formula. >> 104 G4double eDensity = material->GetElectronDensity(); 115 105 116 G4double ekin = std::max(CLHEP::eV, kinetic << 106 G4double tau = kineticEnergy/electron_mass_c2; 117 << 118 G4double tau = ekin/CLHEP::electron_mass_c << 119 G4double gam = tau + 1.0; 107 G4double gam = tau + 1.0; 120 G4double gamma2= gam*gam; 108 G4double gamma2= gam*gam; 121 G4double bg2 = tau * (tau+2.0); 109 G4double bg2 = tau * (tau+2.0); 122 G4double bg = std::sqrt(bg2); << 110 G4double bg = sqrt(bg2); 123 111 124 G4double cross = pi_rcl2*((gamma2+4*gam+1.)* << 112 G4double cross = pi_rcl2*eDensity*((gamma2+4*gam+1.)*log(gam+bg) - (gam+3.)*bg) 125 / (bg2*(gam+1.)); 113 / (bg2*(gam+1.)); 126 return cross; << 114 return cross; 127 } << 128 << 129 //....oooOO0OOooo........oooOO0OOooo........oo << 130 << 131 G4double G4eeToTwoGammaModel::ComputeCrossSect << 132 const G4Pa << 133 G4double k << 134 G4double, G4double, G4double) << 135 { << 136 // Calculates the cross section per atom of << 137 return Z*ComputeCrossSectionPerElectron(kine << 138 } << 139 << 140 //....oooOO0OOooo........oooOO0OOooo........oo << 141 << 142 G4double G4eeToTwoGammaModel::CrossSectionPerV << 143 const G4Material* material, << 144 const G4ParticleDefinition*, << 145 G4double kineticEnergy, << 146 G4double, G4double) << 147 { << 148 // Calculates the cross section per volume o << 149 return material->GetElectronDensity()*Comput << 150 } 115 } 151 116 152 //....oooOO0OOooo........oooOO0OOooo........oo << 117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 153 << 154 // Polarisation of gamma according to M.H.L.Pr << 155 // Nature 4065 (1947) 435. << 156 118 157 void G4eeToTwoGammaModel::SampleSecondaries(st << 119 vector<G4DynamicParticle*>* G4eeToTwoGammaModel::SampleSecondaries( 158 const G4MaterialCutsCouple*, << 120 const G4MaterialCutsCouple*, 159 const G4DynamicParticle* dp, << 121 const G4DynamicParticle* dp, 160 G4double, << 122 G4double, 161 G4double) << 123 G4double) 162 { << 124 { 163 // kill primary positron << 125 G4double PositKinEnergy = dp->GetKineticEnergy(); 164 fParticleChange->SetProposedKineticEnergy(0. << 126 G4ThreeVector PositDirection = dp->GetMomentumDirection(); 165 fParticleChange->ProposeTrackStatus(fStopAnd << 127 166 << 128 G4double tau = PositKinEnergy/electron_mass_c2; 167 // Case at rest not considered anymore insid << 129 G4double gam = tau + 1.0; 168 G4LorentzVector lv(dp->GetMomentum(), << 130 G4double tau2 = tau + 2.0; 169 dp->GetKineticEnergy() + 2*CLHEP::ele << 131 G4double sqgrate = sqrt(tau/tau2)*0.5; 170 G4double eGammaCMS = 0.5 * lv.mag(); << 132 G4double sqg2m1 = sqrt(tau*tau2); 171 << 133 172 G4ThreeVector dir1 = G4RandomDirection(); << 134 // limits of the energy sampling 173 G4double phi = CLHEP::twopi * G4UniformRand( << 135 G4double epsilmin = 0.5 - sqgrate; 174 G4double cosphi = std::cos(phi); << 136 G4double epsilmax = 0.5 + sqgrate; 175 G4double sinphi = std::sin(phi); << 137 G4double epsilqot = epsilmax/epsilmin; 176 G4ThreeVector pol1(cosphi, sinphi, 0.0); << 138 177 pol1.rotateUz(dir1); << 139 // 178 G4LorentzVector lv1(eGammaCMS*dir1, eGammaCM << 140 // sample the energy rate of the created gammas 179 << 141 // 180 G4ThreeVector pol2(-sinphi, cosphi, 0.0); << 142 G4double epsil, greject; 181 pol2.rotateUz(dir1); << 143 182 << 144 do { 183 // transformation to lab system << 145 epsil = epsilmin*pow(epsilqot,G4UniformRand()); 184 lv1.boost(lv.boostVector()); << 146 greject = 1. - epsil + (2.*gam*epsil-1.)/(epsil*tau2*tau2); 185 lv -= lv1; << 147 } while( greject < G4UniformRand() ); 186 << 148 187 //!!! boost of polarisation vector is not ye << 149 // 188 << 150 // scattered Gamma angles. ( Z - axis along the parent positron) 189 // use constructors optimal for massless par << 151 // 190 auto aGamma1 = new G4DynamicParticle(G4Gamma << 152 191 aGamma1->SetPolarization(pol1); << 153 G4double cost = (epsil*tau2-1.)/(epsil*sqg2m1); 192 auto aGamma2 = new G4DynamicParticle(G4Gamma << 154 G4double sint = sqrt((1.+cost)*(1.-cost)); 193 aGamma2->SetPolarization(pol2); << 155 G4double phi = twopi * G4UniformRand(); 194 << 156 195 vdp->push_back(aGamma1); << 157 G4double dirx = sint*cos(phi) , diry = sint*sin(phi) , dirz = cost; 196 vdp->push_back(aGamma2); << 158 >> 159 // >> 160 // kinematic of the created pair >> 161 // >> 162 >> 163 G4double TotalAvailableEnergy = PositKinEnergy + 2.0*electron_mass_c2; >> 164 G4double Phot1Energy = epsil*TotalAvailableEnergy; >> 165 >> 166 vector<G4DynamicParticle*>* vdp = new vector<G4DynamicParticle*>; >> 167 >> 168 G4ThreeVector Phot1Direction (dirx, diry, dirz); >> 169 Phot1Direction.rotateUz(PositDirection); >> 170 G4DynamicParticle* aParticle1 = new G4DynamicParticle (G4Gamma::Gamma(), >> 171 Phot1Direction, Phot1Energy); >> 172 vdp->push_back(aParticle1); >> 173 >> 174 G4double Phot2Energy =(1.-epsil)*TotalAvailableEnergy; >> 175 G4double Eratio= Phot1Energy/Phot2Energy; >> 176 G4double PositP= sqrt(PositKinEnergy*(PositKinEnergy+2.*electron_mass_c2)); >> 177 G4ThreeVector Phot2Direction (-dirx*Eratio, -diry*Eratio, >> 178 (PositP-dirz*Phot1Energy)/Phot2Energy); >> 179 Phot2Direction.unit(); >> 180 Phot2Direction.rotateUz(PositDirection); >> 181 // create G4DynamicParticle object for the particle2 >> 182 G4DynamicParticle* aParticle2= new G4DynamicParticle (G4Gamma::Gamma(), >> 183 Phot2Direction, Phot2Energy); >> 184 vdp->push_back(aParticle2); >> 185 return vdp; 197 } 186 } 198 187 199 //....oooOO0OOooo........oooOO0OOooo........oo 188 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 200 189