Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // ------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4eeToTwoGammaModel 33 // 34 // Author: Vladimir Ivanchenko on base 35 // 36 // Creation date: 02.08.2004 37 // 38 // Modifications: 39 // 08-04-05 Major optimisation of internal int 40 // 18-04-05 Compute CrossSectionPerVolume (V.I 41 // 06-02-06 ComputeCrossSectionPerElectron, Co 42 // 29-06-06 Fix problem for zero energy incide 43 // 20-10-06 Add theGamma as a member (V.Ivanch 44 // 18-01-20 Introduce thermal model of annihil 45 // 46 // 47 // Class Description: 48 // 49 // Implementation of e+ annihilation into 2 ga 50 // 51 // The secondaries Gamma energies are sampled 52 // 53 // A modified version of the random number tec 54 // is used (Nuc Phys 20(1960),15). 55 // 56 // GEANT4 internal units. 57 // 58 // Note 1: The initial electron is assumed fre 59 // is not defined 60 // 61 // Note 2: The annihilation processes producin 62 // ignored, as negligible compared to 63 64 // 65 // ------------------------------------------- 66 // 67 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oo 69 70 #include "G4eeToTwoGammaModel.hh" 71 #include "G4PhysicalConstants.hh" 72 #include "G4SystemOfUnits.hh" 73 #include "G4TrackStatus.hh" 74 #include "G4Electron.hh" 75 #include "G4Positron.hh" 76 #include "G4Gamma.hh" 77 #include "Randomize.hh" 78 #include "G4RandomDirection.hh" 79 #include "G4ParticleChangeForGamma.hh" 80 #include "G4EmParameters.hh" 81 #include "G4Log.hh" 82 #include "G4Exp.hh" 83 84 //....oooOO0OOooo........oooOO0OOooo........oo 85 86 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const 87 const 88 : G4VEmModel(nam), 89 pi_rcl2(CLHEP::pi*CLHEP::classic_electr_ra 90 { 91 theGamma = G4Gamma::Gamma(); 92 fParticleChange = nullptr; 93 } 94 95 //....oooOO0OOooo........oooOO0OOooo........oo 96 97 G4eeToTwoGammaModel::~G4eeToTwoGammaModel() = 98 99 //....oooOO0OOooo........oooOO0OOooo........oo 100 101 void G4eeToTwoGammaModel::Initialise(const G4P 102 const G4D 103 { 104 if (nullptr != fParticleChange) { return; } 105 fParticleChange = GetParticleChangeForGamma( 106 } 107 108 //....oooOO0OOooo........oooOO0OOooo........oo 109 110 G4double 111 G4eeToTwoGammaModel::ComputeCrossSectionPerEle 112 { 113 // Calculates the cross section per electron 114 // from the Heilter formula. 115 116 G4double ekin = std::max(CLHEP::eV, kinetic 117 118 G4double tau = ekin/CLHEP::electron_mass_c 119 G4double gam = tau + 1.0; 120 G4double gamma2= gam*gam; 121 G4double bg2 = tau * (tau+2.0); 122 G4double bg = std::sqrt(bg2); 123 124 G4double cross = pi_rcl2*((gamma2+4*gam+1.)* 125 / (bg2*(gam+1.)); 126 return cross; 127 } 128 129 //....oooOO0OOooo........oooOO0OOooo........oo 130 131 G4double G4eeToTwoGammaModel::ComputeCrossSect 132 const G4Pa 133 G4double k 134 G4double, G4double, G4double) 135 { 136 // Calculates the cross section per atom of 137 return Z*ComputeCrossSectionPerElectron(kine 138 } 139 140 //....oooOO0OOooo........oooOO0OOooo........oo 141 142 G4double G4eeToTwoGammaModel::CrossSectionPerV 143 const G4Material* material, 144 const G4ParticleDefinition*, 145 G4double kineticEnergy, 146 G4double, G4double) 147 { 148 // Calculates the cross section per volume o 149 return material->GetElectronDensity()*Comput 150 } 151 152 //....oooOO0OOooo........oooOO0OOooo........oo 153 154 // Polarisation of gamma according to M.H.L.Pr 155 // Nature 4065 (1947) 435. 156 157 void G4eeToTwoGammaModel::SampleSecondaries(st 158 const G4MaterialCutsCouple*, 159 const G4DynamicParticle* dp, 160 G4double, 161 G4double) 162 { 163 // kill primary positron 164 fParticleChange->SetProposedKineticEnergy(0. 165 fParticleChange->ProposeTrackStatus(fStopAnd 166 167 // Case at rest not considered anymore insid 168 G4LorentzVector lv(dp->GetMomentum(), 169 dp->GetKineticEnergy() + 2*CLHEP::ele 170 G4double eGammaCMS = 0.5 * lv.mag(); 171 172 G4ThreeVector dir1 = G4RandomDirection(); 173 G4double phi = CLHEP::twopi * G4UniformRand( 174 G4double cosphi = std::cos(phi); 175 G4double sinphi = std::sin(phi); 176 G4ThreeVector pol1(cosphi, sinphi, 0.0); 177 pol1.rotateUz(dir1); 178 G4LorentzVector lv1(eGammaCMS*dir1, eGammaCM 179 180 G4ThreeVector pol2(-sinphi, cosphi, 0.0); 181 pol2.rotateUz(dir1); 182 183 // transformation to lab system 184 lv1.boost(lv.boostVector()); 185 lv -= lv1; 186 187 //!!! boost of polarisation vector is not ye 188 189 // use constructors optimal for massless par 190 auto aGamma1 = new G4DynamicParticle(G4Gamma 191 aGamma1->SetPolarization(pol1); 192 auto aGamma2 = new G4DynamicParticle(G4Gamma 193 aGamma2->SetPolarization(pol2); 194 195 vdp->push_back(aGamma1); 196 vdp->push_back(aGamma2); 197 } 198 199 //....oooOO0OOooo........oooOO0OOooo........oo 200