Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class file 29 // GEANT4 Class file 30 // 30 // 31 // 31 // 32 // File name: G4eeToTwoGammaModel 32 // File name: G4eeToTwoGammaModel 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Michel Maire code 35 // 35 // 36 // Creation date: 02.08.2004 36 // Creation date: 02.08.2004 37 // 37 // 38 // Modifications: 38 // Modifications: 39 // 08-04-05 Major optimisation of internal int 39 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) 40 // 18-04-05 Compute CrossSectionPerVolume (V.I 40 // 18-04-05 Compute CrossSectionPerVolume (V.Ivanchenko) 41 // 06-02-06 ComputeCrossSectionPerElectron, Co 41 // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 42 // 29-06-06 Fix problem for zero energy incide 42 // 29-06-06 Fix problem for zero energy incident positron (V.Ivanchenko) 43 // 20-10-06 Add theGamma as a member (V.Ivanch 43 // 20-10-06 Add theGamma as a member (V.Ivanchenko) 44 // 18-01-20 Introduce thermal model of annihil 44 // 18-01-20 Introduce thermal model of annihilation at rest (J.Allison) 45 // 45 // 46 // 46 // 47 // Class Description: 47 // Class Description: 48 // 48 // 49 // Implementation of e+ annihilation into 2 ga 49 // Implementation of e+ annihilation into 2 gamma 50 // 50 // 51 // The secondaries Gamma energies are sampled 51 // The secondaries Gamma energies are sampled using the Heitler cross section. 52 // 52 // 53 // A modified version of the random number tec 53 // A modified version of the random number techniques of Butcher & Messel 54 // is used (Nuc Phys 20(1960),15). 54 // is used (Nuc Phys 20(1960),15). 55 // 55 // 56 // GEANT4 internal units. 56 // GEANT4 internal units. 57 // 57 // 58 // Note 1: The initial electron is assumed fre 58 // Note 1: The initial electron is assumed free and at rest if atomic PDF 59 // is not defined 59 // is not defined 60 // 60 // 61 // Note 2: The annihilation processes producin 61 // Note 2: The annihilation processes producing one or more than two photons are 62 // ignored, as negligible compared to 62 // ignored, as negligible compared to the two photons process. 63 63 64 // 64 // 65 // ------------------------------------------- 65 // ------------------------------------------------------------------- 66 // 66 // 67 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 68 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 69 69 70 #include "G4eeToTwoGammaModel.hh" 70 #include "G4eeToTwoGammaModel.hh" 71 #include "G4PhysicalConstants.hh" 71 #include "G4PhysicalConstants.hh" 72 #include "G4SystemOfUnits.hh" 72 #include "G4SystemOfUnits.hh" 73 #include "G4TrackStatus.hh" 73 #include "G4TrackStatus.hh" 74 #include "G4Electron.hh" 74 #include "G4Electron.hh" 75 #include "G4Positron.hh" 75 #include "G4Positron.hh" 76 #include "G4Gamma.hh" 76 #include "G4Gamma.hh" 77 #include "Randomize.hh" 77 #include "Randomize.hh" 78 #include "G4RandomDirection.hh" 78 #include "G4RandomDirection.hh" 79 #include "G4ParticleChangeForGamma.hh" 79 #include "G4ParticleChangeForGamma.hh" 80 #include "G4EmParameters.hh" 80 #include "G4EmParameters.hh" 81 #include "G4Log.hh" 81 #include "G4Log.hh" 82 #include "G4Exp.hh" 82 #include "G4Exp.hh" 83 83 84 //....oooOO0OOooo........oooOO0OOooo........oo 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 85 >> 86 using namespace std; >> 87 >> 88 G4bool G4eeToTwoGammaModel::fSampleAtomicPDF = false; >> 89 86 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const 90 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const G4ParticleDefinition*, 87 const 91 const G4String& nam) 88 : G4VEmModel(nam), 92 : G4VEmModel(nam), 89 pi_rcl2(CLHEP::pi*CLHEP::classic_electr_ra << 93 pi_rcl2(pi*classic_electr_radius*classic_electr_radius) 90 { 94 { 91 theGamma = G4Gamma::Gamma(); 95 theGamma = G4Gamma::Gamma(); 92 fParticleChange = nullptr; 96 fParticleChange = nullptr; 93 } 97 } 94 98 95 //....oooOO0OOooo........oooOO0OOooo........oo 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 96 100 97 G4eeToTwoGammaModel::~G4eeToTwoGammaModel() = 101 G4eeToTwoGammaModel::~G4eeToTwoGammaModel() = default; 98 102 99 //....oooOO0OOooo........oooOO0OOooo........oo 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 100 104 101 void G4eeToTwoGammaModel::Initialise(const G4P 105 void G4eeToTwoGammaModel::Initialise(const G4ParticleDefinition*, 102 const G4D 106 const G4DataVector&) 103 { 107 { 104 if (nullptr != fParticleChange) { return; } << 108 if(IsMaster()) { >> 109 G4int verbose = G4EmParameters::Instance()->Verbose(); >> 110 // redo initialisation for each new run >> 111 fSampleAtomicPDF = false; >> 112 const auto& materialTable = G4Material::GetMaterialTable(); >> 113 for (const auto& material: *materialTable) { >> 114 const G4double meanEnergyPerIonPair = material->GetIonisation()->GetMeanEnergyPerIonPair(); >> 115 if (meanEnergyPerIonPair > 0.) { >> 116 fSampleAtomicPDF = true; >> 117 if(verbose > 0) { >> 118 G4cout << "### G4eeToTwoGammaModel: for " << material->GetName() << " mean energy per ion pair is " >> 119 << meanEnergyPerIonPair/CLHEP::eV << " eV" << G4endl; >> 120 } >> 121 } >> 122 } >> 123 } >> 124 // If no materials have meanEnergyPerIonPair set. This is probably the usual >> 125 // case, since most applications are not senstive to the slight >> 126 // non-collinearity of gammas in eeToTwoGamma. Do not issue any warning. >> 127 >> 128 if(fParticleChange) { return; } 105 fParticleChange = GetParticleChangeForGamma( 129 fParticleChange = GetParticleChangeForGamma(); 106 } 130 } 107 131 108 //....oooOO0OOooo........oooOO0OOooo........oo 132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 109 133 110 G4double 134 G4double 111 G4eeToTwoGammaModel::ComputeCrossSectionPerEle 135 G4eeToTwoGammaModel::ComputeCrossSectionPerElectron(G4double kineticEnergy) 112 { 136 { 113 // Calculates the cross section per electron 137 // Calculates the cross section per electron of annihilation into two photons 114 // from the Heilter formula. 138 // from the Heilter formula. 115 139 116 G4double ekin = std::max(CLHEP::eV, kinetic << 140 G4double ekin = std::max(eV,kineticEnergy); 117 141 118 G4double tau = ekin/CLHEP::electron_mass_c << 142 G4double tau = ekin/electron_mass_c2; 119 G4double gam = tau + 1.0; 143 G4double gam = tau + 1.0; 120 G4double gamma2= gam*gam; 144 G4double gamma2= gam*gam; 121 G4double bg2 = tau * (tau+2.0); 145 G4double bg2 = tau * (tau+2.0); 122 G4double bg = std::sqrt(bg2); << 146 G4double bg = sqrt(bg2); 123 147 124 G4double cross = pi_rcl2*((gamma2+4*gam+1.)* 148 G4double cross = pi_rcl2*((gamma2+4*gam+1.)*G4Log(gam+bg) - (gam+3.)*bg) 125 / (bg2*(gam+1.)); 149 / (bg2*(gam+1.)); 126 return cross; 150 return cross; 127 } 151 } 128 152 129 //....oooOO0OOooo........oooOO0OOooo........oo 153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 130 154 131 G4double G4eeToTwoGammaModel::ComputeCrossSect 155 G4double G4eeToTwoGammaModel::ComputeCrossSectionPerAtom( 132 const G4Pa 156 const G4ParticleDefinition*, 133 G4double k 157 G4double kineticEnergy, G4double Z, 134 G4double, G4double, G4double) 158 G4double, G4double, G4double) 135 { 159 { 136 // Calculates the cross section per atom of 160 // Calculates the cross section per atom of annihilation into two photons 137 return Z*ComputeCrossSectionPerElectron(kine 161 return Z*ComputeCrossSectionPerElectron(kineticEnergy); 138 } 162 } 139 163 140 //....oooOO0OOooo........oooOO0OOooo........oo 164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 141 165 142 G4double G4eeToTwoGammaModel::CrossSectionPerV 166 G4double G4eeToTwoGammaModel::CrossSectionPerVolume( 143 const G4Material* material, 167 const G4Material* material, 144 const G4ParticleDefinition*, 168 const G4ParticleDefinition*, 145 G4double kineticEnergy, 169 G4double kineticEnergy, 146 G4double, G4double) 170 G4double, G4double) 147 { 171 { 148 // Calculates the cross section per volume o 172 // Calculates the cross section per volume of annihilation into two photons 149 return material->GetElectronDensity()*Comput 173 return material->GetElectronDensity()*ComputeCrossSectionPerElectron(kineticEnergy); 150 } 174 } 151 175 152 //....oooOO0OOooo........oooOO0OOooo........oo 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 153 177 154 // Polarisation of gamma according to M.H.L.Pr 178 // Polarisation of gamma according to M.H.L.Pryce and J.C.Ward, 155 // Nature 4065 (1947) 435. 179 // Nature 4065 (1947) 435. 156 180 157 void G4eeToTwoGammaModel::SampleSecondaries(st << 181 void G4eeToTwoGammaModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp, 158 const G4MaterialCutsCouple*, << 182 const G4MaterialCutsCouple* pCutsCouple, 159 const G4DynamicParticle* dp, 183 const G4DynamicParticle* dp, 160 G4double, 184 G4double, 161 G4double) 185 G4double) 162 { 186 { 163 // kill primary positron << 187 G4double posiKinEnergy = dp->GetKineticEnergy(); 164 fParticleChange->SetProposedKineticEnergy(0. << 188 G4DynamicParticle *aGamma1, *aGamma2; 165 fParticleChange->ProposeTrackStatus(fStopAnd << 166 189 167 // Case at rest not considered anymore insid << 190 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine(); 168 G4LorentzVector lv(dp->GetMomentum(), << 191 169 dp->GetKineticEnergy() + 2*CLHEP::ele << 192 // Case at rest 170 G4double eGammaCMS = 0.5 * lv.mag(); << 193 if(posiKinEnergy == 0.0) { 171 << 194 172 G4ThreeVector dir1 = G4RandomDirection(); << 195 const G4double eGamma = electron_mass_c2; 173 G4double phi = CLHEP::twopi * G4UniformRand( << 196 174 G4double cosphi = std::cos(phi); << 197 // In rest frame of positronium gammas are back to back 175 G4double sinphi = std::sin(phi); << 198 const G4ThreeVector& dir1 = G4RandomDirection(); 176 G4ThreeVector pol1(cosphi, sinphi, 0.0); << 199 const G4ThreeVector& dir2 = -dir1; 177 pol1.rotateUz(dir1); << 200 aGamma1 = new G4DynamicParticle(G4Gamma::Gamma(),dir1,eGamma); 178 G4LorentzVector lv1(eGammaCMS*dir1, eGammaCM << 201 aGamma2 = new G4DynamicParticle(G4Gamma::Gamma(),dir2,eGamma); 179 << 202 180 G4ThreeVector pol2(-sinphi, cosphi, 0.0); << 203 // In rest frame the gammas are polarised perpendicular to each other - see 181 pol2.rotateUz(dir1); << 204 // Pryce and Ward, Nature No 4065 (1947) p.435. 182 << 205 // Snyder et al, Physical Review 73 (1948) p.440. 183 // transformation to lab system << 206 G4ThreeVector pol1 = (G4RandomDirection().cross(dir1)).unit(); 184 lv1.boost(lv.boostVector()); << 207 G4ThreeVector pol2 = (pol1.cross(dir2)).unit(); 185 lv -= lv1; << 208 186 << 209 // But the positronium is moving... 187 //!!! boost of polarisation vector is not ye << 210 // A positron in matter slows down and combines with an atomic electron to 188 << 211 // make a neutral “atom” called positronium, about half the size of a normal 189 // use constructors optimal for massless par << 212 // atom. I expect that when the energy of the positron is small enough, 190 auto aGamma1 = new G4DynamicParticle(G4Gamma << 213 // less than the binding energy of positronium (6.8 eV), it is 191 aGamma1->SetPolarization(pol1); << 214 // energetically favourable for an electron from the outer orbitals of a 192 auto aGamma2 = new G4DynamicParticle(G4Gamma << 215 // nearby atom or molecule to transfer and bind to the positron, as in an 193 aGamma2->SetPolarization(pol2); << 216 // ionic bond, leaving behind a mildly ionised nearby atom/molecule. I >> 217 // would expect the positronium to come away with a kinetic energy of a >> 218 // few eV on average. In its para (spin 0) state it annihilates into two >> 219 // photons, which in the rest frame of the positronium are collinear >> 220 // (back-to-back) due to momentum conservation. Because of the motion of the >> 221 // positronium, photons will be not quite back-to-back in the laboratory. >> 222 >> 223 // The positroniuim acquires an energy of order its binding energy and >> 224 // doesn't have time to thermalise. Nevertheless, here we approximate its >> 225 // energy distribution by a Maxwell-Boltzman with mean energy <KE>. In terms >> 226 // of a more familiar concept of temperature, and the law of equipartition >> 227 // of energy of translational motion, <KE>=3kT/2. Each component of velocity >> 228 // has a distribution exp(-mv^2/2kT), which is a Gaussian of mean zero >> 229 // and variance kT/m=2<KE>/3m, where m is the positronium mass. >> 230 >> 231 // We take <KE> = material->GetIonisation()->GetMeanEnergyPerIonPair(). >> 232 >> 233 if(fSampleAtomicPDF) { >> 234 const G4Material* material = pCutsCouple->GetMaterial(); >> 235 const G4double meanEnergyPerIonPair = material->GetIonisation()->GetMeanEnergyPerIonPair(); >> 236 const G4double& meanKE = meanEnergyPerIonPair; // Just an alias >> 237 if (meanKE > 0.) { // Positronium haas motion >> 238 // Mass of positronium >> 239 const G4double mass = 2.*electron_mass_c2; >> 240 // Mean <KE>=3kT/2, as described above >> 241 // const G4double T = 2.*meanKE/(3.*k_Boltzmann); >> 242 // Component velocities: Gaussian, variance kT/m=2<KE>/3m. >> 243 const G4double sigmav = std::sqrt(2.*meanKE/(3.*mass)); >> 244 // This is in units where c=1 >> 245 const G4double vx = G4RandGauss::shoot(0.,sigmav); >> 246 const G4double vy = G4RandGauss::shoot(0.,sigmav); >> 247 const G4double vz = G4RandGauss::shoot(0.,sigmav); >> 248 const G4ThreeVector v(vx,vy,vz); // In unit where c=1 >> 249 const G4ThreeVector& beta = v; // so beta=v/c=v >> 250 >> 251 aGamma1->Set4Momentum(aGamma1->Get4Momentum().boost(beta)); >> 252 aGamma2->Set4Momentum(aGamma2->Get4Momentum().boost(beta)); >> 253 >> 254 // Rotate polarisation vectors >> 255 const G4ThreeVector& newDir1 = aGamma1->GetMomentumDirection(); >> 256 const G4ThreeVector& newDir2 = aGamma2->GetMomentumDirection(); >> 257 const G4ThreeVector& axis1 = dir1.cross(newDir1); // No need to be unit >> 258 const G4ThreeVector& axis2 = dir2.cross(newDir2); // No need to be unit >> 259 const G4double& angle1 = std::acos(dir1*newDir1); >> 260 const G4double& angle2 = std::acos(dir2*newDir2); >> 261 if (axis1 != G4ThreeVector()) pol1.rotate(axis1,angle1); >> 262 if (axis2 != G4ThreeVector()) pol2.rotate(axis2,angle2); >> 263 } >> 264 } >> 265 aGamma1->SetPolarization(pol1.x(),pol1.y(),pol1.z()); >> 266 aGamma2->SetPolarization(pol2.x(),pol2.y(),pol2.z()); >> 267 >> 268 } else { // Positron interacts in flight >> 269 >> 270 G4ThreeVector posiDirection = dp->GetMomentumDirection(); >> 271 >> 272 G4double tau = posiKinEnergy/electron_mass_c2; >> 273 G4double gam = tau + 1.0; >> 274 G4double tau2 = tau + 2.0; >> 275 G4double sqgrate = sqrt(tau/tau2)*0.5; >> 276 G4double sqg2m1 = sqrt(tau*tau2); >> 277 >> 278 // limits of the energy sampling >> 279 G4double epsilmin = 0.5 - sqgrate; >> 280 G4double epsilmax = 0.5 + sqgrate; >> 281 G4double epsilqot = epsilmax/epsilmin; >> 282 >> 283 // >> 284 // sample the energy rate of the created gammas >> 285 // >> 286 G4double epsil, greject; >> 287 >> 288 do { >> 289 epsil = epsilmin*G4Exp(G4Log(epsilqot)*rndmEngine->flat()); >> 290 greject = 1. - epsil + (2.*gam*epsil-1.)/(epsil*tau2*tau2); >> 291 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko >> 292 } while( greject < rndmEngine->flat()); >> 293 >> 294 // >> 295 // scattered Gamma angles. ( Z - axis along the parent positron) >> 296 // >> 297 >> 298 G4double cost = (epsil*tau2-1.)/(epsil*sqg2m1); >> 299 if(std::abs(cost) > 1.0) { >> 300 G4cout << "### G4eeToTwoGammaModel WARNING cost= " << cost >> 301 << " positron Ekin(MeV)= " << posiKinEnergy >> 302 << " gamma epsil= " << epsil >> 303 << G4endl; >> 304 if(cost > 1.0) cost = 1.0; >> 305 else cost = -1.0; >> 306 } >> 307 G4double sint = sqrt((1.+cost)*(1.-cost)); >> 308 G4double phi = twopi * rndmEngine->flat(); >> 309 >> 310 // >> 311 // kinematic of the created pair >> 312 // >> 313 >> 314 G4double totalEnergy = posiKinEnergy + 2.0*electron_mass_c2; >> 315 G4double phot1Energy = epsil*totalEnergy; >> 316 >> 317 G4ThreeVector phot1Direction(sint*cos(phi), sint*sin(phi), cost); >> 318 phot1Direction.rotateUz(posiDirection); >> 319 aGamma1 = new G4DynamicParticle (theGamma,phot1Direction, phot1Energy); >> 320 phi = twopi * rndmEngine->flat(); >> 321 G4double cosphi = cos(phi); >> 322 G4double sinphi = sin(phi); >> 323 G4ThreeVector pol(cosphi, sinphi, 0.0); >> 324 pol.rotateUz(phot1Direction); >> 325 aGamma1->SetPolarization(pol.x(),pol.y(),pol.z()); >> 326 >> 327 G4double phot2Energy =(1.-epsil)*totalEnergy; >> 328 G4double posiP= sqrt(posiKinEnergy*(posiKinEnergy+2.*electron_mass_c2)); >> 329 G4ThreeVector dir = posiDirection*posiP - phot1Direction*phot1Energy; >> 330 G4ThreeVector phot2Direction = dir.unit(); >> 331 >> 332 // create G4DynamicParticle object for the particle2 >> 333 aGamma2 = new G4DynamicParticle (theGamma, phot2Direction, phot2Energy); >> 334 >> 335 //!!! likely problematic direction to be checked >> 336 pol.set(-sinphi, cosphi, 0.0); >> 337 pol.rotateUz(phot1Direction); >> 338 cost = pol*phot2Direction; >> 339 pol -= cost*phot2Direction; >> 340 pol = pol.unit(); >> 341 aGamma2->SetPolarization(pol.x(),pol.y(),pol.z()); >> 342 /* >> 343 G4cout << "Annihilation on fly: e0= " << posiKinEnergy >> 344 << " m= " << electron_mass_c2 >> 345 << " e1= " << phot1Energy >> 346 << " e2= " << phot2Energy << " dir= " << dir >> 347 << " -> " << phot1Direction << " " >> 348 << phot2Direction << G4endl; >> 349 */ >> 350 } 194 351 195 vdp->push_back(aGamma1); 352 vdp->push_back(aGamma1); 196 vdp->push_back(aGamma2); 353 vdp->push_back(aGamma2); >> 354 >> 355 // kill primary positron >> 356 fParticleChange->SetProposedKineticEnergy(0.0); >> 357 fParticleChange->ProposeTrackStatus(fStopAndKill); 197 } 358 } 198 359 199 //....oooOO0OOooo........oooOO0OOooo........oo 360 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 200 361