Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4UrbanMscModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4UrbanMscModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4UrbanMscModel.cc (Version 9.4.p2)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // -------------------------------------------    
 27 //                                                
 28 // GEANT4 Class file                              
 29 //                                                
 30 //                                                
 31 // File name:   G4UrbanMscModel                   
 32 //                                                
 33 // Author:      Laszlo Urban                      
 34 //                                                
 35 // Creation date: 19.02.2013                      
 36 //                                                
 37 // Created from G4UrbanMscModel96                 
 38 //                                                
 39 // New parametrization for theta0                 
 40 // Correction for very small step length          
 41 //                                                
 42 // Class Description:                             
 43 //                                                
 44 // Implementation of the model of multiple sca    
 45 // H.W.Lewis Phys Rev 78 (1950) 526 and others    
 46                                                   
 47 // -------------------------------------------    
 48 // In its present form the model can be  used     
 49 //   of the e-/e+ multiple scattering             
 50                                                   
 51                                                   
 52 //....oooOO0OOooo........oooOO0OOooo........oo    
 53 //....oooOO0OOooo........oooOO0OOooo........oo    
 54                                                   
 55 #include "G4UrbanMscModel.hh"                     
 56 #include "G4PhysicalConstants.hh"                 
 57 #include "G4SystemOfUnits.hh"                     
 58 #include "Randomize.hh"                           
 59 #include "G4Positron.hh"                          
 60 #include "G4EmParameters.hh"                      
 61 #include "G4ParticleChangeForMSC.hh"              
 62 #include "G4ProductionCutsTable.hh"               
 63                                                   
 64 #include "G4Poisson.hh"                           
 65 #include "G4Pow.hh"                               
 66 #include "G4Log.hh"                               
 67 #include "G4Exp.hh"                               
 68 #include "G4AutoLock.hh"                          
 69                                                   
 70 //....oooOO0OOooo........oooOO0OOooo........oo    
 71                                                   
 72 std::vector<G4UrbanMscModel::mscData*> G4Urban    
 73                                                   
 74 namespace                                         
 75 {                                                 
 76   G4Mutex theUrbanMutex = G4MUTEX_INITIALIZER;    
 77 }                                                 
 78                                                   
 79 //....oooOO0OOooo........oooOO0OOooo........oo    
 80                                                   
 81 G4UrbanMscModel::G4UrbanMscModel(const G4Strin    
 82   : G4VMscModel(nam)                              
 83 {                                                 
 84   masslimite    = 0.6*CLHEP::MeV;                 
 85   fr            = 0.02;                           
 86   taubig        = 8.0;                            
 87   tausmall      = 1.e-16;                         
 88   taulim        = 1.e-6;                          
 89   currentTau    = taulim;                         
 90   tlimitminfix  = 0.01*CLHEP::nm;                 
 91   tlimitminfix2 = 1.*CLHEP::nm;                   
 92   stepmin       = tlimitminfix;                   
 93   smallstep     = 1.e10;                          
 94   currentRange  = 0.;                             
 95   rangeinit     = 0.;                             
 96   tlimit        = 1.e10*CLHEP::mm;                
 97   tlimitmin     = 10.*tlimitminfix;               
 98   tgeom         = 1.e50*CLHEP::mm;                
 99   geombig       = tgeom;                          
100   geommin       = 1.e-3*CLHEP::mm;                
101   geomlimit     = geombig;                        
102   presafety     = 0.;                             
103                                                   
104   positron      = G4Positron::Positron();         
105   rndmEngineMod = G4Random::getTheEngine();       
106                                                   
107   drr = 0.35;                                     
108   finalr = 10.*CLHEP::um;                         
109                                                   
110   tlow = 5.*CLHEP::keV;                           
111   invmev = 1.0/CLHEP::MeV;                        
112                                                   
113   skindepth = skin*stepmin;                       
114                                                   
115   mass = CLHEP::proton_mass_c2;                   
116   charge = chargeSquare = 1.0;                    
117   currentKinEnergy = currentRadLength = lambda    
118     = zPathLength = par1 = par2 = par3 = rndma    
119   currentLogKinEnergy = LOG_EKIN_MIN;             
120 }                                                 
121                                                   
122 //....oooOO0OOooo........oooOO0OOooo........oo    
123                                                   
124 G4UrbanMscModel::~G4UrbanMscModel()               
125 {                                                 
126   if(isFirstInstance) {                           
127     for(auto const & ptr : msc) { delete ptr;     
128     msc.clear();                                  
129   }                                               
130 }                                                 
131                                                   
132 //....oooOO0OOooo........oooOO0OOooo........oo    
133                                                   
134 void G4UrbanMscModel::Initialise(const G4Parti    
135                                  const G4DataV    
136 {                                                 
137   // set values of some data members              
138   SetParticle(p);                                 
139   fParticleChange = GetParticleChangeForMSC(p)    
140   InitialiseParameters(p);                        
141                                                   
142   latDisplasmentbackup = latDisplasment;          
143                                                   
144   // if model is locked parameters should be d    
145   if(!IsLocked()) {                               
146     dispAlg96 = G4EmParameters::Instance()->La    
147     fPosiCorrection = G4EmParameters::Instance    
148   }                                               
149                                                   
150   // initialise cache only once                   
151   if(0 == msc.size()) {                           
152     G4AutoLock l(&theUrbanMutex);                 
153     if(0 == msc.size()) {                         
154       isFirstInstance = true;                     
155       msc.resize(1, nullptr);                     
156     }                                             
157     l.unlock();                                   
158   }                                               
159   // initialise cache for each new run            
160   if(isFirstInstance) { InitialiseModelCache()    
161                                                   
162   /*                                              
163   G4cout << "### G4UrbanMscModel::Initialise d    
164    << p->GetParticleName() << " type= " << ste    
165   G4cout << "    RangeFact= " << facrange << "    
166    << " SafetyFact= " << facsafety << " Lambda    
167    << G4endl;                                     
168   */                                              
169 }                                                 
170                                                   
171 //....oooOO0OOooo........oooOO0OOooo........oo    
172                                                   
173 G4double G4UrbanMscModel::ComputeCrossSectionP    
174                              const G4ParticleD    
175                                    G4double ki    
176                                    G4double at    
177                                    G4double, G    
178 {                                                 
179   static const G4double epsmin = 1.e-4 , epsma    
180                                                   
181   static const G4double Zdat[15] = { 4.,  6.,     
182                                      50., 56.,    
183                                                   
184   // corr. factors for e-/e+ lambda for T <= T    
185   static const G4double celectron[15][22] =       
186           {{1.125,1.072,1.051,1.047,1.047,1.05    
187             1.054,1.057,1.062,1.069,1.075,1.09    
188             1.112,1.108,1.100,1.093,1.089,1.08    
189            {1.408,1.246,1.143,1.096,1.077,1.05    
190             1.052,1.053,1.058,1.065,1.072,1.08    
191             1.109,1.105,1.097,1.090,1.086,1.08    
192            {2.833,2.268,1.861,1.612,1.486,1.30    
193             1.136,1.114,1.106,1.106,1.109,1.11    
194             1.131,1.124,1.113,1.104,1.099,1.09    
195            {3.879,3.016,2.380,2.007,1.818,1.53    
196             1.190,1.133,1.107,1.099,1.098,1.10    
197             1.112,1.105,1.096,1.089,1.085,1.09    
198            {6.937,4.330,2.886,2.256,1.987,1.62    
199             1.203,1.122,1.080,1.065,1.061,1.06    
200             1.073,1.070,1.064,1.059,1.056,1.05    
201            {9.616,5.708,3.424,2.551,2.204,1.76    
202             1.256,1.155,1.099,1.077,1.070,1.06    
203             1.074,1.070,1.063,1.059,1.056,1.05    
204            {11.72,6.364,3.811,2.806,2.401,1.88    
205             1.300,1.180,1.112,1.082,1.073,1.06    
206             1.068,1.064,1.059,1.054,1.051,1.05    
207            {18.08,8.601,4.569,3.183,2.662,2.02    
208             1.339,1.195,1.108,1.068,1.053,1.04    
209             1.039,1.037,1.034,1.031,1.030,1.03    
210            {18.22,10.48,5.333,3.713,3.115,2.36    
211             1.498,1.301,1.171,1.105,1.077,1.04    
212             1.031,1.028,1.024,1.022,1.021,1.02    
213            {14.14,10.65,5.710,3.929,3.266,2.45    
214             1.528,1.319,1.178,1.106,1.075,1.04    
215             1.020,1.017,1.015,1.013,1.013,1.02    
216            {14.11,11.73,6.312,4.240,3.478,2.56    
217             1.569,1.342,1.186,1.102,1.065,1.02    
218             0.995,0.993,0.993,0.993,0.993,1.01    
219            {22.76,20.01,8.835,5.287,4.144,2.90    
220             1.677,1.410,1.224,1.121,1.073,1.01    
221             0.974,0.972,0.973,0.974,0.975,0.98    
222            {50.77,40.85,14.13,7.184,5.284,3.43    
223             1.837,1.512,1.283,1.153,1.091,1.01    
224             0.950,0.947,0.949,0.952,0.954,0.96    
225            {65.87,59.06,15.87,7.570,5.567,3.65    
226             1.939,1.579,1.325,1.178,1.108,1.01    
227             0.941,0.938,0.940,0.944,0.946,0.95    
228            {55.60,47.34,15.92,7.810,5.755,3.76    
229             1.985,1.609,1.343,1.188,1.113,1.01    
230             0.933,0.930,0.933,0.936,0.939,0.94    
231                                                   
232   static const G4double cpositron[15][22] = {     
233            {2.589,2.044,1.658,1.446,1.347,1.21    
234             1.097,1.083,1.080,1.086,1.092,1.10    
235             1.131,1.126,1.117,1.108,1.103,1.10    
236            {3.904,2.794,2.079,1.710,1.543,1.32    
237             1.122,1.096,1.089,1.092,1.098,1.11    
238             1.138,1.132,1.122,1.113,1.108,1.10    
239            {7.970,6.080,4.442,3.398,2.872,2.12    
240             1.357,1.246,1.194,1.179,1.178,1.18    
241             1.203,1.190,1.173,1.159,1.151,1.14    
242            {9.714,7.607,5.747,4.493,3.815,2.77    
243             1.553,1.353,1.253,1.219,1.211,1.21    
244             1.225,1.210,1.191,1.175,1.166,1.17    
245            {17.97,12.95,8.628,6.065,4.849,3.22    
246             1.624,1.382,1.259,1.214,1.202,1.20    
247             1.217,1.203,1.184,1.169,1.160,1.15    
248            {24.83,17.06,10.84,7.355,5.767,3.70    
249             1.759,1.465,1.311,1.252,1.234,1.22    
250             1.237,1.222,1.201,1.184,1.174,1.15    
251            {23.26,17.15,11.52,8.049,6.375,4.11    
252             1.880,1.535,1.353,1.281,1.258,1.24    
253             1.252,1.234,1.212,1.194,1.183,1.17    
254            {22.33,18.01,12.86,9.212,7.336,4.70    
255             2.015,1.602,1.385,1.297,1.268,1.25    
256             1.254,1.237,1.214,1.195,1.185,1.17    
257            {33.91,24.13,15.71,10.80,8.507,5.46    
258             2.407,1.873,1.564,1.425,1.374,1.33    
259             1.312,1.288,1.258,1.235,1.221,1.20    
260            {32.14,24.11,16.30,11.40,9.015,5.78    
261             2.490,1.925,1.596,1.447,1.391,1.34    
262             1.320,1.294,1.264,1.240,1.226,1.21    
263            {29.51,24.07,17.19,12.28,9.766,6.23    
264             2.602,1.995,1.641,1.477,1.414,1.35    
265             1.328,1.302,1.270,1.245,1.231,1.23    
266            {38.19,30.85,21.76,15.35,12.07,7.52    
267             2.926,2.188,1.763,1.563,1.484,1.40    
268             1.361,1.330,1.294,1.267,1.251,1.23    
269            {49.71,39.80,27.96,19.63,15.36,9.40    
270             3.417,2.478,1.944,1.692,1.589,1.48    
271             1.409,1.372,1.330,1.298,1.280,1.25    
272            {59.25,45.08,30.36,20.83,16.15,9.83    
273             3.641,2.648,2.064,1.779,1.661,1.53    
274             1.442,1.400,1.354,1.319,1.299,1.27    
275            {56.38,44.29,30.50,21.18,16.51,10.1    
276             3.752,2.724,2.116,1.817,1.692,1.55    
277             1.456,1.412,1.364,1.328,1.307,1.28    
278                                                   
279   //data/corrections for T > Tlim                 
280                                                   
281   static const G4double hecorr[15] = {            
282     120.70, 117.50, 105.00, 92.92, 79.23,  74.    
283     57.39,  41.97,  36.14, 24.53, 10.21,  -7.8    
284     -22.30};                                      
285                                                   
286   G4double sigma;                                 
287   SetParticle(part);                              
288                                                   
289   G4double Z23 = G4Pow::GetInstance()->Z23(G4l    
290                                                   
291   // correction if particle .ne. e-/e+            
292   // compute equivalent kinetic energy            
293   // lambda depends on p*beta ....                
294                                                   
295   G4double eKineticEnergy = kinEnergy;            
296                                                   
297   if(mass > CLHEP::electron_mass_c2)              
298   {                                               
299      G4double TAU = kinEnergy/mass ;              
300      G4double c = mass*TAU*(TAU+2.)/(CLHEP::el    
301      G4double w = c-2.;                           
302      G4double tau = 0.5*(w+std::sqrt(w*w+4.*c)    
303      eKineticEnergy = CLHEP::electron_mass_c2*    
304   }                                               
305                                                   
306   G4double eTotalEnergy = eKineticEnergy + CLH    
307   G4double beta2 = eKineticEnergy*(eTotalEnerg    
308                                  /(eTotalEnerg    
309   G4double bg2   = eKineticEnergy*(eTotalEnerg    
310                                  /(CLHEP::elec    
311                                                   
312   static const G4double epsfactor = 2.*CLHEP::    
313     CLHEP::electron_mass_c2*CLHEP::Bohr_radius    
314     /(CLHEP::hbarc*CLHEP::hbarc);                 
315   G4double eps = epsfactor*bg2/Z23;               
316                                                   
317   if     (eps<epsmin)  sigma = 2.*eps*eps;        
318   else if(eps<epsmax)  sigma = G4Log(1.+2.*eps    
319   else                 sigma = G4Log(2.*eps)-1    
320                                                   
321   sigma *= chargeSquare*atomicNumber*atomicNum    
322                                                   
323   // interpolate in AtomicNumber and beta2        
324   G4double c1,c2,cc1;                             
325                                                   
326   // get bin number in Z                          
327   G4int iZ = 14;                                  
328   // Loop checking, 03-Aug-2015, Vladimir Ivan    
329   while ((iZ>=0)&&(Zdat[iZ]>=atomicNumber)) {     
330                                                   
331   iZ = std::min(std::max(iZ, 0), 13);             
332                                                   
333   G4double ZZ1 = Zdat[iZ];                        
334   G4double ZZ2 = Zdat[iZ+1];                      
335   G4double ratZ = (atomicNumber-ZZ1)*(atomicNu    
336                   ((ZZ2-ZZ1)*(ZZ2+ZZ1));          
337                                                   
338   static const G4double Tlim = 10.*CLHEP::MeV;    
339   static const G4double sigmafactor =             
340     CLHEP::twopi*CLHEP::classic_electr_radius*    
341   static const G4double beta2lim = Tlim*(Tlim+    
342     ((Tlim+CLHEP::electron_mass_c2)*(Tlim+CLHE    
343   static const G4double bg2lim   = Tlim*(Tlim+    
344     (CLHEP::electron_mass_c2*CLHEP::electron_m    
345                                                   
346   static const G4double sig0[15] = {              
347     0.2672*CLHEP::barn,  0.5922*CLHEP::barn,      
348     11.69*CLHEP::barn  , 13.24*CLHEP::barn  ,     
349     35.13*CLHEP::barn  , 39.95*CLHEP::barn  ,     
350     91.15*CLHEP::barn  , 104.4*CLHEP::barn  ,     
351                                                   
352   static const G4double Tdat[22] = {              
353     100*CLHEP::eV,  200*CLHEP::eV,  400*CLHEP:    
354     1*CLHEP::keV,   2*CLHEP::keV,   4*CLHEP::k    
355     10*CLHEP::keV,  20*CLHEP::keV,  40*CLHEP::    
356     100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP:    
357     1*CLHEP::MeV,   2*CLHEP::MeV,   4*CLHEP::M    
358     10*CLHEP::MeV,  20*CLHEP::MeV};               
359                                                   
360   if(eKineticEnergy <= Tlim)                      
361   {                                               
362     // get bin number in T (beta2)                
363     G4int iT = 21;                                
364     // Loop checking, 03-Aug-2015, Vladimir Iv    
365     while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)    
366                                                   
367     iT = std::min(std::max(iT, 0), 20);           
368                                                   
369     //  calculate betasquare values               
370     G4double T = Tdat[iT];                        
371     G4double E = T + CLHEP::electron_mass_c2;     
372     G4double b2small = T*(E+CLHEP::electron_ma    
373                                                   
374     T = Tdat[iT+1];                               
375     E = T + CLHEP::electron_mass_c2;              
376     G4double b2big = T*(E+CLHEP::electron_mass    
377     G4double ratb2 = (beta2-b2small)/(b2big-b2    
378                                                   
379     if (charge < 0.)                              
380     {                                             
381        c1 = celectron[iZ][iT];                    
382        c2 = celectron[iZ+1][iT];                  
383        cc1 = c1+ratZ*(c2-c1);                     
384                                                   
385        c1 = celectron[iZ][iT+1];                  
386        c2 = celectron[iZ+1][iT+1];                
387     }                                             
388     else                                          
389     {                                             
390        c1 = cpositron[iZ][iT];                    
391        c2 = cpositron[iZ+1][iT];                  
392        cc1 = c1+ratZ*(c2-c1);                     
393                                                   
394        c1 = cpositron[iZ][iT+1];                  
395        c2 = cpositron[iZ+1][iT+1];                
396     }                                             
397     G4double cc2 = c1+ratZ*(c2-c1);               
398     sigma *= sigmafactor/(cc1+ratb2*(cc2-cc1))    
399   }                                               
400   else                                            
401   {                                               
402     c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2    
403     c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(b    
404     if((atomicNumber >= ZZ1) && (atomicNumber     
405       sigma = c1+ratZ*(c2-c1) ;                   
406     else if(atomicNumber < ZZ1)                   
407       sigma = atomicNumber*atomicNumber*c1/(ZZ    
408     else if(atomicNumber > ZZ2)                   
409       sigma = atomicNumber*atomicNumber*c2/(ZZ    
410   }                                               
411   // low energy correction based on theory        
412   sigma *= (1.+0.30/(1.+std::sqrt(1000.*eKinet    
413                                                   
414   return sigma;                                   
415 }                                                 
416                                                   
417 //....oooOO0OOooo........oooOO0OOooo........oo    
418                                                   
419 void G4UrbanMscModel::StartTracking(G4Track* t    
420 {                                                 
421   SetParticle(track->GetDynamicParticle()->Get    
422   firstStep = true;                               
423   insideskin = false;                             
424   fr = facrange;                                  
425   tlimit = tgeom = rangeinit = geombig;           
426   smallstep     = 1.e10;                          
427   stepmin       = tlimitminfix;                   
428   tlimitmin     = 10.*tlimitminfix;               
429   rndmEngineMod = G4Random::getTheEngine();       
430 }                                                 
431                                                   
432 //....oooOO0OOooo........oooOO0OOooo........oo    
433                                                   
434 G4double G4UrbanMscModel::ComputeTruePathLengt    
435                              const G4Track& tr    
436                              G4double& current    
437 {                                                 
438   tPathLength = currentMinimalStep;               
439   const G4DynamicParticle* dp = track.GetDynam    
440                                                   
441   G4StepPoint* sp = track.GetStep()->GetPreSte    
442   G4StepStatus stepStatus = sp->GetStepStatus(    
443   couple = track.GetMaterialCutsCouple();         
444   SetCurrentCouple(couple);                       
445   idx = couple->GetIndex();                       
446   currentKinEnergy = dp->GetKineticEnergy();      
447   currentLogKinEnergy = dp->GetLogKineticEnerg    
448   currentRange = GetRange(particle,currentKinE    
449   lambda0 = GetTransportMeanFreePath(particle,    
450                                                   
451   tPathLength = std::min(tPathLength,currentRa    
452   /*                                              
453   G4cout << "G4Urban::StepLimit tPathLength= "    
454   << " range= " <<currentRange<< " lambda= "<<    
455             <<G4endl;                             
456   */                                              
457   // extreme small step                           
458   if(tPathLength < tlimitminfix) {                
459     latDisplasment = false;                       
460     return ConvertTrueToGeom(tPathLength, curr    
461   }                                               
462                                                   
463   presafety = (stepStatus == fGeomBoundary) ?     
464               : ComputeSafety(sp->GetPosition(    
465                                                   
466   // stop here if small step or range is less     
467   if((tPathLength == currentRange && tPathLeng    
468      tPathLength < tlimitminfix) {                
469     latDisplasment = false;                       
470     return ConvertTrueToGeom(tPathLength, curr    
471   }                                               
472                                                   
473   // upper limit for the straight line distanc    
474   // for electrons and positrons                  
475   G4double distance = (mass < masslimite)         
476     ? currentRange*msc[idx]->doverra              
477     // for muons, hadrons                         
478     : currentRange*msc[idx]->doverrb;             
479                                                   
480   /*                                              
481   G4cout << "G4Urban::StepLimit tPathLength= "    
482             <<tPathLength<<" safety= " << pres    
483           << " range= " <<currentRange<< " lam    
484             << " Alg: " << steppingAlgorithm <    
485   */                                              
486   // far from geometry boundary                   
487   if(distance < presafety)                        
488     {                                             
489       latDisplasment = false;                     
490       return ConvertTrueToGeom(tPathLength, cu    
491     }                                             
492                                                   
493   latDisplasment = latDisplasmentbackup;          
494   // -----------------------------------------    
495   // distance to boundary                         
496   if (steppingAlgorithm == fUseDistanceToBound    
497     {                                             
498       //compute geomlimit and presafety           
499       geomlimit = ComputeGeomLimit(track, pres    
500       /*                                          
501         G4cout << "G4Urban::Distance to bounda    
502             <<geomlimit<<" safety= " << presaf    
503       */                                          
504                                                   
505       smallstep += 1.;                            
506       insideskin = false;                         
507       tgeom = geombig;                            
508                                                   
509       // initialisation at first step and at t    
510       if(firstStep || (stepStatus == fGeomBoun    
511         {                                         
512           rangeinit = currentRange;               
513           if(!firstStep) { smallstep = 1.; }      
514                                                   
515           //stepmin ~ lambda_elastic              
516           stepmin = ComputeStepmin();             
517           skindepth = skin*stepmin;               
518           tlimitmin = ComputeTlimitmin();         
519         /*                                        
520           G4cout << "rangeinit= " << rangeinit    
521                  << " tlimitmin= " << tlimitmi    
522                  << geomlimit <<G4endl;           
523         */                                        
524         }                                         
525       // constraint from the geometry             
526       if((geomlimit < geombig) && (geomlimit >    
527         {                                         
528           // geomlimit is a geometrical step l    
529           // transform it to true path length     
530           if(lambda0 > geomlimit) {               
531             geomlimit = -lambda0*G4Log(1.-geom    
532           }                                       
533           tgeom = (stepStatus == fGeomBoundary    
534       : facrange*rangeinit + stepmin;             
535         }                                         
536                                                   
537       //step limit                                
538       tlimit = (currentRange > presafety) ?       
539         std::max(facrange*rangeinit, facsafety    
540                                                   
541       //lower limit for tlimit                    
542       tlimit = std::min(std::max(tlimit,tlimit    
543       /*                                          
544       G4cout << "tgeom= " << tgeom << " geomli    
545             << " tlimit= " << tlimit << " pres    
546       */                                          
547       // shortcut                                 
548       if((tPathLength < tlimit) && (tPathLengt    
549          (smallstep > skin) && (tPathLength <     
550       {                                           
551         return ConvertTrueToGeom(tPathLength,     
552       }                                           
553                                                   
554       // step reduction near to boundary          
555       if(smallstep <= skin)                       
556         {                                         
557           tlimit = stepmin;                       
558           insideskin = true;                      
559         }                                         
560       else if(geomlimit < geombig)                
561         {                                         
562           if(geomlimit > skindepth)               
563             {                                     
564               tlimit = std::min(tlimit, geomli    
565             }                                     
566           else                                    
567             {                                     
568               insideskin = true;                  
569               tlimit = std::min(tlimit, stepmi    
570             }                                     
571         }                                         
572                                                   
573       tlimit = std::max(tlimit, stepmin);         
574                                                   
575       // randomise if not 'small' step and ste    
576       tPathLength = (tlimit < tPathLength && s    
577         ? std::min(tPathLength, Randomizetlimi    
578   : std::min(tPathLength, tlimit);                
579     }                                             
580   // -----------------------------------------    
581   // for simulation with or without magnetic f    
582   // there no small step/single scattering at     
583   else if(steppingAlgorithm == fUseSafety)        
584     {                                             
585       if(firstStep || (stepStatus == fGeomBoun    
586         rangeinit = currentRange;                 
587         fr = facrange;                            
588         // stepping for e+/e- only (not for mu    
589         if(mass < masslimite)                     
590           {                                       
591             rangeinit = std::max(rangeinit, la    
592             if(lambda0 > lambdalimit) {           
593               fr *= (0.75+0.25*lambda0/lambdal    
594             }                                     
595           }                                       
596         //lower limit for tlimit                  
597         stepmin = ComputeStepmin();               
598         tlimitmin = ComputeTlimitmin();           
599       }                                           
600                                                   
601       //step limit                                
602       tlimit = (currentRange > presafety) ?       
603         std::max(fr*rangeinit, facsafety*presa    
604                                                   
605       //lower limit for tlimit                    
606       tlimit = std::max(tlimit, tlimitmin);       
607                                                   
608       // randomise if step determined by msc      
609       tPathLength = (tlimit < tPathLength) ?      
610         std::min(tPathLength, Randomizetlimit(    
611     }                                             
612   // -----------------------------------------    
613   // for simulation with or without magnetic f    
614   // there is small step/single scattering at     
615   else if(steppingAlgorithm == fUseSafetyPlus)    
616     {                                             
617       if(firstStep || (stepStatus == fGeomBoun    
618         rangeinit = currentRange;                 
619         fr = facrange;                            
620         if(mass < masslimite)                     
621           {                                       
622             if(lambda0 > lambdalimit) {           
623               fr *= (0.84+0.16*lambda0/lambdal    
624             }                                     
625           }                                       
626         //lower limit for tlimit                  
627         stepmin = ComputeStepmin();               
628         tlimitmin = ComputeTlimitmin();           
629       }                                           
630       //step limit                                
631       tlimit = (currentRange > presafety) ?       
632   std::max(fr*rangeinit, facsafety*presafety)     
633                                                   
634       //lower limit for tlimit                    
635       tlimit = std::max(tlimit, tlimitmin);       
636                                                   
637       // condition for tPathLength from drr an    
638       if(currentRange > finalr) {                 
639         G4double tmax = drr*currentRange+         
640                         finalr*(1.-drr)*(2.-fi    
641         tPathLength = std::min(tPathLength,tma    
642       }                                           
643                                                   
644       // randomise if step determined by msc      
645       tPathLength = (tlimit < tPathLength) ?      
646         std::min(tPathLength, Randomizetlimit(    
647     }                                             
648                                                   
649   // -----------------------------------------    
650   // simple step limitation                       
651   else                                            
652     {                                             
653       if (stepStatus == fGeomBoundary)            
654         {                                         
655           tlimit = (currentRange > lambda0)       
656       ? facrange*currentRange : facrange*lambd    
657           tlimit = std::max(tlimit, tlimitmin)    
658         }                                         
659       // randomise if step determined by msc      
660       tPathLength = (tlimit < tPathLength) ?      
661         std::min(tPathLength, Randomizetlimit(    
662     }                                             
663                                                   
664   // -----------------------------------------    
665   firstStep = false;                              
666   return ConvertTrueToGeom(tPathLength, curren    
667 }                                                 
668                                                   
669 //....oooOO0OOooo........oooOO0OOooo........oo    
670                                                   
671 G4double G4UrbanMscModel::ComputeGeomPathLengt    
672 {                                                 
673   lambdaeff = lambda0;                            
674   par1 = -1. ;                                    
675   par2 = par3 = 0. ;                              
676                                                   
677   // this correction needed to run MSC with eI    
678   // and makes no harm for a normal run           
679   tPathLength = std::min(tPathLength,currentRa    
680                                                   
681   //  do the true -> geom transformation          
682   zPathLength = tPathLength;                      
683                                                   
684   // z = t for very small tPathLength             
685   if(tPathLength < tlimitminfix2) return zPath    
686                                                   
687   /*                                              
688   G4cout << "ComputeGeomPathLength: tpl= " <<     
689          << " R= " << currentRange << " L0= "     
690          << " E= " << currentKinEnergy << "  "    
691          << particle->GetParticleName() << G4e    
692   */                                              
693   G4double tau = tPathLength/lambda0 ;            
694                                                   
695   if ((tau <= tausmall) || insideskin) {          
696     zPathLength = std::min(tPathLength, lambda    
697                                                   
698   } else if (tPathLength < currentRange*dtrl)     
699     zPathLength = (tau < taulim) ? tPathLength    
700       : lambda0*(1.-G4Exp(-tau));                 
701                                                   
702   } else if(currentKinEnergy < mass || tPathLe    
703     par1 = 1./currentRange;                       
704     par2 = currentRange/lambda0;                  
705     par3 = 1.+par2;                               
706     if(tPathLength < currentRange) {              
707       zPathLength =                               
708         (1.-G4Exp(par3*G4Log(1.-tPathLength/cu    
709     } else {                                      
710       zPathLength = 1./(par1*par3);               
711     }                                             
712                                                   
713   } else {                                        
714     G4double rfin = std::max(currentRange-tPat    
715     G4double T1 = GetEnergy(particle,rfin,coup    
716     G4double lambda1 = GetTransportMeanFreePat    
717                                                   
718     par1 = (lambda0-lambda1)/(lambda0*tPathLen    
719     //G4cout << "par1= " << par1 << " L1= " <<    
720     par2 = 1./(par1*lambda0);                     
721     par3 = 1.+par2;                               
722     zPathLength = (1.-G4Exp(par3*G4Log(lambda1    
723   }                                               
724                                                   
725   zPathLength = std::min(zPathLength, lambda0)    
726   //G4cout<< "zPathLength= "<< zPathLength<< "    
727   return zPathLength;                             
728 }                                                 
729                                                   
730 //....oooOO0OOooo........oooOO0OOooo........oo    
731                                                   
732 G4double G4UrbanMscModel::ComputeTrueStepLengt    
733 {                                                 
734   // step defined other than transportation       
735   if(geomStepLength == zPathLength) {             
736     //G4cout << "Urban::ComputeTrueLength: tPa    
737     //           << " step= " << geomStepLengt    
738     return tPathLength;                           
739   }                                               
740                                                   
741   zPathLength = geomStepLength;                   
742                                                   
743   // t = z for very small step                    
744   if(geomStepLength < tlimitminfix2) {            
745     tPathLength = geomStepLength;                 
746                                                   
747   // recalculation                                
748   } else {                                        
749                                                   
750     G4double tlength = geomStepLength;            
751     if((geomStepLength > lambda0*tausmall) &&     
752                                                   
753       if(par1 <  0.) {                            
754         tlength = -lambda0*G4Log(1.-geomStepLe    
755       } else {                                    
756         const G4double par4 = par1*par3;          
757         if(par4*geomStepLength < 1.) {            
758           tlength = (1.-G4Exp(G4Log(1.-par4*ge    
759         } else {                                  
760           tlength = currentRange;                 
761         }                                         
762       }                                           
763                                                   
764       if(tlength < geomStepLength)   { tlength    
765       else if(tlength > tPathLength) { tlength    
766     }                                             
767     tPathLength = tlength;                        
768   }                                               
769   //G4cout << "Urban::ComputeTrueLength: tPath    
770   //         << " step= " << geomStepLength <<    
771                                                   
772   return tPathLength;                             
773 }                                                 
774                                                   
775 //....oooOO0OOooo........oooOO0OOooo........oo    
776                                                   
777 G4ThreeVector&                                    
778 G4UrbanMscModel::SampleScattering(const G4Thre    
779                                   G4double /*s    
780 {                                                 
781   fDisplacement.set(0.0,0.0,0.0);                 
782   if(tPathLength >= currentRange) { return fDi    
783                                                   
784   G4double kinEnergy = currentKinEnergy;          
785   if (tPathLength > currentRange*dtrl) {          
786     kinEnergy = GetEnergy(particle,currentRang    
787   } else if(tPathLength > currentRange*0.01) {    
788     kinEnergy -= tPathLength*GetDEDX(particle,    
789                                      currentLo    
790   }                                               
791                                                   
792   if((tPathLength <= tlimitminfix) || (tPathLe    
793      (kinEnergy <= CLHEP::eV)) { return fDispl    
794                                                   
795   G4double cth = SampleCosineTheta(tPathLength    
796                                                   
797   // protection against 'bad' cth values          
798   if(std::abs(cth) >= 1.0) { return fDisplacem    
799                                                   
800   G4double sth = std::sqrt((1.0 - cth)*(1.0 +     
801   G4double phi = CLHEP::twopi*rndmEngineMod->f    
802   G4ThreeVector newDirection(sth*std::cos(phi)    
803   newDirection.rotateUz(oldDirection);            
804                                                   
805   fParticleChange->ProposeMomentumDirection(ne    
806   /*                                              
807   G4cout << "G4UrbanMscModel::SampleSecondarie    
808          << " sinTheta= " << sth << " safety(m    
809          << " trueStep(mm)= " << tPathLength      
810          << " geomStep(mm)= " << zPathLength      
811          << G4endl;                               
812   */                                              
813                                                   
814   if (latDisplasment && currentTau >= tausmall    
815     if(dispAlg96) { SampleDisplacement(sth, ph    
816     else          { SampleDisplacementNew(cth,    
817     fDisplacement.rotateUz(oldDirection);         
818   }                                               
819   return fDisplacement;                           
820 }                                                 
821                                                   
822 //....oooOO0OOooo........oooOO0OOooo........oo    
823                                                   
824 G4double G4UrbanMscModel::SampleCosineTheta(G4    
825                                             G4    
826 {                                                 
827   G4double cth = 1.0;                             
828   G4double tau = trueStepLength/lambda0;          
829                                                   
830   // mean tau value                               
831   if(currentKinEnergy != kinEnergy) {             
832     G4double lambda1 = GetTransportMeanFreePat    
833     if(std::abs(lambda1 - lambda0) > lambda0*0    
834       tau = trueStepLength*G4Log(lambda0/lambd    
835     }                                             
836   }                                               
837                                                   
838   currentTau = tau;                               
839   lambdaeff = trueStepLength/currentTau;          
840   currentRadLength = couple->GetMaterial()->Ge    
841                                                   
842   if (tau >= taubig) { cth = -1.+2.*rndmEngine    
843   else if (tau >= tausmall) {                     
844     static const G4double numlim = 0.01;          
845     static const G4double onethird = 1./3.;       
846     if(tau < numlim) {                            
847       xmeanth = 1.0 - tau*(1.0 - 0.5*tau);        
848       x2meanth= 1.0 - tau*(5.0 - 6.25*tau)*one    
849     } else {                                      
850       xmeanth = G4Exp(-tau);                      
851       x2meanth = (1.+2.*G4Exp(-2.5*tau))*oneth    
852     }                                             
853                                                   
854     // too large step of low-energy particle      
855     G4double relloss = 1. - kinEnergy/currentK    
856     static const G4double rellossmax= 0.50;       
857     if(relloss > rellossmax) {                    
858       return SimpleScattering();                  
859     }                                             
860     // is step extreme small ?                    
861     G4bool extremesmallstep = false;              
862     G4double tsmall = std::min(tlimitmin,lambd    
863                                                   
864     G4double theta0;                              
865     if(trueStepLength > tsmall) {                 
866       theta0 = ComputeTheta0(trueStepLength,ki    
867     } else {                                      
868       theta0 = std::sqrt(trueStepLength/tsmall    
869   *ComputeTheta0(tsmall,kinEnergy);               
870       extremesmallstep = true;                    
871     }                                             
872                                                   
873     static const G4double onesixth = 1./6.;       
874     static const G4double one12th = 1./12.;       
875     static const G4double theta0max = CLHEP::p    
876                                                   
877     // protection for very small angles           
878     G4double theta2 = theta0*theta0;              
879                                                   
880     if(theta2 < tausmall) { return cth; }         
881     if(theta0 > theta0max) { return SimpleScat    
882                                                   
883     G4double x = theta2*(1.0 - theta2*one12th)    
884     if(theta2 > numlim) {                         
885       G4double sth = 2*std::sin(0.5*theta0);      
886       x = sth*sth;                                
887     }                                             
888                                                   
889     // parameter for tail                         
890     G4double ltau = G4Log(tau);                   
891     G4double u = !extremesmallstep ? G4Exp(lta    
892       : G4Exp(G4Log(tsmall/lambda0)*onesixth);    
893                                                   
894     G4double xx  = G4Log(lambdaeff/currentRadL    
895     G4double xsi = msc[idx]->coeffc1 +            
896       u*(msc[idx]->coeffc2+msc[idx]->coeffc3*u    
897                                                   
898     // tail should not be too big                 
899     xsi = std::max(xsi, 1.9);                     
900       /*                                          
901       if(KineticEnergy > 20*MeV && xsi < 1.6)     
902         G4cout << "G4UrbanMscModel::SampleCosi    
903                << KineticEnergy/GeV               
904                << " !!** c= " << xsi              
905                << " **!! length(mm)= " << true    
906                << " " << couple->GetMaterial()    
907                << " tau= " << tau << G4endl;      
908       }                                           
909       */                                          
910                                                   
911     G4double c = xsi;                             
912                                                   
913     if(std::abs(c-3.) < 0.001)      { c = 3.00    
914     else if(std::abs(c-2.) < 0.001) { c = 2.00    
915                                                   
916     G4double c1 = c-1.;                           
917     G4double ea = G4Exp(-xsi);                    
918     G4double eaa = 1.-ea ;                        
919     G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/ea    
920     G4double x0 = 1. - xsi*x;                     
921                                                   
922     // G4cout << " xmean1= " << xmean1 << "  x    
923                                                   
924     if(xmean1 <= 0.999*xmeanth) { return Simpl    
925                                                   
926     //from continuity of derivatives              
927     G4double b = 1.+(c-xsi)*x;                    
928                                                   
929     G4double b1 = b+1.;                           
930     G4double bx = c*x;                            
931                                                   
932     G4double eb1 = G4Exp(G4Log(b1)*c1);           
933     G4double ebx = G4Exp(G4Log(bx)*c1);           
934     G4double d = ebx/eb1;                         
935                                                   
936     G4double xmean2 = (x0 + d - (bx - b1*d)/(c    
937                                                   
938     G4double f1x0 = ea/eaa;                       
939     G4double f2x0 = c1/(c*(1. - d));              
940     G4double prob = f2x0/(f1x0+f2x0);             
941                                                   
942     G4double qprob = xmeanth/(prob*xmean1+(1.-    
943                                                   
944     // sampling of costheta                       
945     //G4cout << "c= " << c << " qprob= " << qp    
946     // << " c1= " << c1 << " b1= " << b1 << "     
947     //             << G4endl;                     
948     rndmEngineMod->flatArray(2, rndmarray);       
949     if(rndmarray[0] < qprob)                      
950     {                                             
951       G4double var = 0;                           
952       if(rndmarray[1] < prob) {                   
953         cth = 1.+G4Log(ea+rndmEngineMod->flat(    
954       } else {                                    
955         var = (1.0 - d)*rndmEngineMod->flat();    
956         if(var < numlim*d) {                      
957           var /= (d*c1);                          
958           cth = -1.0 + var*(1.0 - 0.5*var*c)*(    
959         } else {                                  
960           cth = 1. + x*(c - xsi - c*G4Exp(-G4L    
961         }                                         
962       }                                           
963     } else {                                      
964       cth = -1.+2.*rndmarray[1];                  
965     }                                             
966   }                                               
967   return cth;                                     
968 }                                                 
969                                                   
970 //....oooOO0OOooo........oooOO0OOooo........oo    
971                                                   
972 G4double G4UrbanMscModel::ComputeTheta0(G4doub    
973                                         G4doub    
974 {                                                 
975   // for all particles take the width of the c    
976   //  from a  parametrization similar to the H    
977   // ( Highland formula: Particle Physics Book    
978   G4double invbetacp = (kinEnergy+mass)/(kinEn    
979   if(currentKinEnergy != kinEnergy) {             
980     invbetacp = std::sqrt(invbetacp*(currentKi    
981         (currentKinEnergy*(currentKinEnergy+2.    
982   }                                               
983   G4double y = trueStepLength/currentRadLength    
984                                                   
985   if(fPosiCorrection && particle == positron)     
986   {                                               
987     static const G4double xl= 0.6;                
988     static const G4double xh= 0.9;                
989     static const G4double e = 113.0;              
990     G4double corr;                                
991                                                   
992     G4double tau = std::sqrt(currentKinEnergy*    
993     G4double x = std::sqrt(tau*(tau+2.)/((tau+    
994     G4double a = msc[idx]->posa;                  
995     G4double b = msc[idx]->posb;                  
996     G4double c = msc[idx]->posc;                  
997     G4double d = msc[idx]->posd;                  
998     if(x < xl) {                                  
999       corr = a*(1.-G4Exp(-b*x));                  
1000     } else if(x > xh) {                          
1001       corr = c+d*G4Exp(e*(x-1.));                
1002     } else {                                     
1003       G4double yl = a*(1.-G4Exp(-b*xl));         
1004       G4double yh = c+d*G4Exp(e*(xh-1.));        
1005       G4double y0 = (yh-yl)/(xh-xl);             
1006       G4double y1 = yl-y0*xl;                    
1007       corr = y0*x+y1;                            
1008     }                                            
1009     //=======================================    
1010     y *= corr*msc[idx]->pose;                    
1011   }                                              
1012                                                  
1013   static const G4double c_highland = 13.6*CLH    
1014   G4double theta0 = c_highland*std::abs(charg    
1015                                                  
1016   // correction factor from e- scattering dat    
1017   theta0 *= (msc[idx]->coeffth1+msc[idx]->coe    
1018   return theta0;                                 
1019 }                                                
1020                                                  
1021 //....oooOO0OOooo........oooOO0OOooo........o    
1022                                                  
1023 void G4UrbanMscModel::SampleDisplacement(G4do    
1024 {                                                
1025   // simple and fast sampling                    
1026   // based on single scattering results          
1027   // u = r/rmax : mean value                     
1028                                                  
1029   G4double rmax = std::sqrt((tPathLength-zPat    
1030   if(rmax > 0.)                                  
1031   {                                              
1032     G4double r = 0.73*rmax;                      
1033                                                  
1034     // simple distribution for v=Phi-phi=psi     
1035     // beta determined from the requirement t    
1036     // the same mean value than that obtained    
1037                                                  
1038     static const G4double cbeta  = 2.160;        
1039     static const G4double cbeta1 = 1. - G4Exp    
1040     rndmEngineMod->flatArray(2, rndmarray);      
1041     G4double psi = -G4Log(1. - rndmarray[0]*c    
1042     G4double Phi = (rndmarray[1] < 0.5) ? phi    
1043     fDisplacement.set(r*std::cos(Phi),r*std::    
1044   }                                              
1045 }                                                
1046                                                  
1047 //....oooOO0OOooo........oooOO0OOooo........o    
1048                                                  
1049 void G4UrbanMscModel::SampleDisplacementNew(G    
1050 {                                                
1051   // simple and fast sampling                    
1052   // based on single scattering results          
1053   // u = (r/rmax)**2 : distribution from ss s    
1054   const G4double eps = 1.e-3;                    
1055   const G4double rmax =                          
1056     std::sqrt((tPathLength-zPathLength)*(tPat    
1057                                                  
1058   if(rmax > 0.)                                  
1059   {                                              
1060     const G4double x0 = 0.73 ;                   
1061     const G4double alpha = G4Log(7.33)/x0 ;      
1062     const G4double a1 = 1.-x0 ;                  
1063     const G4double a2 = 1.-G4Exp(-alpha*x0) ;    
1064     const G4double a3 = G4Exp(alpha*x0)-1. ;     
1065     const G4double w1 = 2.*a2/(alpha*a1+2.*a2    
1066                                                  
1067     G4double r, sqx;                             
1068     if (rmax/currentRange < eps)                 
1069     {                                            
1070       r = 0.73*rmax ;                            
1071       sqx = 1.;                                  
1072     }                                            
1073     else                                         
1074     {                                            
1075       rndmEngineMod->flatArray(2,rndmarray);     
1076       const G4double x = (rndmarray[0] < w1)     
1077         1. - a1*std::sqrt(1.-rndmarray[1]);      
1078                                                  
1079       sqx = std::sqrt(x);                        
1080       r = sqx*rmax;                              
1081     }                                            
1082     // Gaussian distribution for Phi-phi=psi     
1083     const G4double sigma = 0.1+0.9*sqx;          
1084     const G4double psi = G4RandGauss::shoot(0    
1085     const G4double Phi = phi+psi;                
1086     fDisplacement.set(r*std::cos(Phi), r*std:    
1087   }                                              
1088 }                                                
1089                                                  
1090 //....oooOO0OOooo........oooOO0OOooo........o    
1091                                                  
1092 void G4UrbanMscModel::InitialiseModelCache()     
1093 {                                                
1094   // it is assumed, that for the second run o    
1095   // of a new G4MaterialCutsCouple is possibl    
1096   auto theCoupleTable = G4ProductionCutsTable    
1097   std::size_t numOfCouples = theCoupleTable->    
1098   if(numOfCouples != msc.size()) { msc.resize    
1099                                                  
1100   for(G4int j=0; j<(G4int)numOfCouples; ++j)     
1101     auto aCouple = theCoupleTable->GetMateria    
1102                                                  
1103     // new couple                                
1104     msc[j] = new mscData();                      
1105     G4double Zeff = aCouple->GetMaterial()->G    
1106     G4double sqrz = std::sqrt(Zeff);             
1107     msc[j]->sqrtZ = sqrz;                        
1108     // parameterisation of step limitation       
1109     msc[j]->factmin = dispAlg96 ? 0.001 : 0.0    
1110     G4double lnZ = G4Log(Zeff);                  
1111     // correction in theta0 formula              
1112     G4double w = G4Exp(lnZ/6.);                  
1113     G4double facz = 0.990395+w*(-0.168386+w*0    
1114     msc[j]->coeffth1 = facz*(1. - 8.7780e-2/Z    
1115     msc[j]->coeffth2 = facz*(4.0780e-2 + 1.73    
1116                                                  
1117     // tail parameters                           
1118     G4double Z13 = w*w;                          
1119     msc[j]->coeffc1 = 2.3785    - Z13*(4.1981    
1120     msc[j]->coeffc2 = 4.7526e-1 + Z13*(1.7694    
1121     msc[j]->coeffc3 = 2.3683e-1 - Z13*(1.8111    
1122     msc[j]->coeffc4 = 1.7888e-2 + Z13*(1.9659    
1123                                                  
1124     msc[j]->Z23 = Z13*Z13;                       
1125                                                  
1126     msc[j]->stepmina = 27.725/(1.+0.203*Zeff)    
1127     msc[j]->stepminb =  6.152/(1.+0.111*Zeff)    
1128                                                  
1129     // 21.07.2020                                
1130     msc[j]->doverra = 9.6280e-1 - 8.4848e-2*m    
1131                                                  
1132     // 06.10.2020                                
1133     // msc[j]->doverra = 7.7024e-1 - 6.7878e-    
1134     msc[j]->doverrb = 1.15 - 9.76e-4*Zeff;       
1135                                                  
1136     // corrections for e+                        
1137     msc[j]->posa = 0.994-4.08e-3*Zeff;           
1138     msc[j]->posb = 7.16+(52.6+365./Zeff)/Zeff    
1139     msc[j]->posc = 1.000-4.47e-3*Zeff;           
1140     msc[j]->posd = 1.21e-3*Zeff;                 
1141     msc[j]->pose = 1.+Zeff*(1.84035e-4*Zeff-1    
1142   }                                              
1143 }                                                
1144                                                  
1145 //....oooOO0OOooo........oooOO0OOooo........o    
1146