Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4UrbanMscModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4UrbanMscModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4UrbanMscModel.cc (Version 9.1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4UrbanMscModel.cc,v 1.77 2007/11/30 13:53:02 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-01 $
                                                   >>  28 //
 26 // -------------------------------------------     29 // -------------------------------------------------------------------
 27 //                                             <<  30 //
 28 // GEANT4 Class file                               31 // GEANT4 Class file
 29 //                                             <<  32 //
 30 //                                                 33 //
 31 // File name:   G4UrbanMscModel                    34 // File name:   G4UrbanMscModel
 32 //                                                 35 //
 33 // Author:      Laszlo Urban                       36 // Author:      Laszlo Urban
 34 //                                                 37 //
 35 // Creation date: 19.02.2013                   <<  38 // Creation date: 03.03.2001
                                                   >>  39 //
                                                   >>  40 // Modifications:
 36 //                                                 41 //
 37 // Created from G4UrbanMscModel96              <<  42 // 27-03-03 Move model part from G4MultipleScattering80 (V.Ivanchenko)
                                                   >>  43 // 23-05-03 important change in angle distribution for muons/hadrons
                                                   >>  44 //          the central part now is similar to the Highland parametrization +
                                                   >>  45 //          minor correction in angle sampling algorithm (for all particles)
                                                   >>  46 //          (L.Urban)
                                                   >>  47 // 30-05-03 misprint in SampleCosineTheta corrected(L.Urban)
                                                   >>  48 // 27-03-03 Rename (V.Ivanchenko)
                                                   >>  49 // 05-08-03 angle distribution has been modified (L.Urban)
                                                   >>  50 // 06-11-03 precision problems solved for high energy (PeV) particles
                                                   >>  51 //          change in the tail of the angular distribution
                                                   >>  52 //          highKinEnergy is set to 100 PeV (L.Urban) 
 38 //                                                 53 //
 39 // New parametrization for theta0              <<  54 // 10-11-03 highKinEnergy is set back to 100 TeV, some tail tuning +
 40 // Correction for very small step length       <<  55 //          cleaning (L.Urban) 
                                                   >>  56 // 26-11-03 correction in TrueStepLength : 
                                                   >>  57 //          trueLength <= currentRange (L.Urban) 
                                                   >>  58 // 01-03-04 signature changed in SampleCosineTheta,
                                                   >>  59 //          energy dependence calculations has been simplified,
                                                   >>  60 // 11-03-04 corrections in GeomPathLength,TrueStepLength,
                                                   >>  61 //          SampleCosineTheta
                                                   >>  62 // 23-04-04 true -> geom and geom -> true transformation has been
                                                   >>  63 //          rewritten, changes in the angular distribution (L.Urban)
                                                   >>  64 // 19-07-04 correction in SampleCosineTheta in order to avoid
                                                   >>  65 //          num. precision problems at high energy/small step(L.Urban) 
                                                   >>  66 // 17-08-04 changes in the angle distribution (slightly modified
                                                   >>  67 //          Highland formula for the width of the central part,
                                                   >>  68 //          changes in the numerical values of some other parameters)
                                                   >>  69 //          ---> approximately step independent distribution (L.Urban)
                                                   >>  70 // 21-09-04 change in the tail of the angular distribution (L.Urban)
 41 //                                                 71 //
                                                   >>  72 // 03-11-04 precision problem for very high energy ions and small stepsize
                                                   >>  73 //          solved in SampleCosineTheta (L.Urban).
                                                   >>  74 // 15-04-05 optimize internal interface 
                                                   >>  75 //          add SampleSecondaries method (V.Ivanchenko)
                                                   >>  76 // 11-08-05 computation of lateral correlation added (L.Urban)
                                                   >>  77 // 02-10-05 nuclear size correction computation removed, the correction
                                                   >>  78 //          included in the (theoretical) tabulated values (L.Urban)
                                                   >>  79 // 17-01-06 computation of tail changed in SampleCosineTheta (l.Urban)
                                                   >>  80 // 16-02-06 code cleaning + revised 'z' sampling (L.Urban)
                                                   >>  81 // 17-02-06 Save table of transport cross sections not mfp (V.Ivanchenko)
                                                   >>  82 // 07-03-06 Create G4UrbanMscModel and move there step limit
                                                   >>  83 //           calculation (V.Ivanchenko)
                                                   >>  84 // 23-03-06 Bugfix in SampleCosineTheta method (L.Urban)
                                                   >>  85 // 10-05-06 SetMscStepLimitation at initialisation (V.Ivantchenko)
                                                   >>  86 // 11-05-06 name of data member safety changed to presafety, some new data
                                                   >>  87 //          members added (frscaling1,frscaling2,tlimitminfix,nstepmax)
                                                   >>  88 //          changes in ComputeTruePathLengthLimit,SampleCosineTheta (L.Urban)
                                                   >>  89 // 17-05-06 parameters of theta0 in SampleCosineTheta changed
                                                   >>  90 //          c_highland  13.6*MeV ---> 13.26*MeV,
                                                   >>  91 //          corr_highland  0.555 ---> 0.54,
                                                   >>  92 //          value of data member geommin changed (5 nm -> 1 nm) (L.Urban)
                                                   >>  93 // 13-10-06 data member factail removed, data member tkinlimit changed
                                                   >>  94 //          to lambdalimit,
                                                   >>  95 //          new data members tgeom,tnow,skin,skindepth,Zeff,geomlimit
                                                   >>  96 //          G4double GeomLimit(const G4Track& track) changed to
                                                   >>  97 //              void GeomLimit(const G4Track& track) 
                                                   >>  98 //        - important changes in ComputeTruePathLengthLimit: 
                                                   >>  99 //          possibility to have very small step(s) with single scattering 
                                                   >> 100 //          before boundary crossing (with skin > 0)
                                                   >> 101 //        - changes in SampleCosineTheta :
                                                   >> 102 //          single scattering if step <= stepmin, parameter theta0 
                                                   >> 103 //          slightly modified, tail modified (L.Urban)
                                                   >> 104 // 20-10-06 parameter theta0 now computed in the (public)
                                                   >> 105 //          function ComputeTheta0,
                                                   >> 106 //          single scattering modified allowing not small
                                                   >> 107 //          angles as well (L.Urban)
                                                   >> 108 // 23-10-06 correction in SampleSecondaries, now safety update
                                                   >> 109 //          computed in a simpler/faster way (L.Urban)
                                                   >> 110 // 06-11-06 corrections in ComputeTruePathLengthLimit, results are
                                                   >> 111 //          more stable in calorimeters (L.Urban)
                                                   >> 112 // 07-11-06 fix in GeomPathLength and SampleCosineTheta (L.Urban)
                                                   >> 113 // 15-11-06 bugfix in SampleCosineTheta (L.Urban)
                                                   >> 114 // 20-11-06 bugfix in single scattering part of SampleCosineTheta,
                                                   >> 115 //          single scattering just before boundary crossing now (L.Urban)
                                                   >> 116 // 04-12-06 fix in ComputeTruePathLengthLimit (L.Urban)
                                                   >> 117 // 17-01-07 remove LocatePoint from GeomLimit method (V.Ivanchenko)
                                                   >> 118 // 19-01-07 fix of true < geom problem (L.Urban)
                                                   >> 119 // 25-01-07 add protections from NaN vaues and for zero geometry step (VI)
                                                   >> 120 // 31-01-07 correction in SampleCosineTheta: screening parameter 
                                                   >> 121 //          corrected in single/plural scattering +
                                                   >> 122 //          code cleaning (L.Urban)
                                                   >> 123 // 01-02-07 restore logic inside ComputeTrueStepLength (V.Ivanchenko)
                                                   >> 124 // 06-02-07 Move SetMscStepLimitation method into the source, add there 
                                                   >> 125 //          reinitialisation of some private members, add protection inside 
                                                   >> 126 //          SampleDisplacement(VI)
                                                   >> 127 // 07-02-07 fix single scattering for heavy particles, now skin=1 can be used
                                                   >> 128 //          for heavy particles as well (L.Urban)
                                                   >> 129 // 08-02-07 randomization of tlimit removed (L.Urban)
                                                   >> 130 // 11-02-07 modified stepping algorithm for skin=0
                                                   >> 131 // 15-02-07 new data member: smallstep, small steps with single scattering
                                                   >> 132 //          before + after boundary for skin > 1
                                                   >> 133 // 23-02-07 use tPathLength inside ComputeStep instead of geombig
                                                   >> 134 // 24-02-07 step reduction before boundary for 'small' geomlimit only 
                                                   >> 135 // 03-03-07 single scattering around boundaries only (L.Urban)
                                                   >> 136 // 07-03-07 bugfix in ComputeTruePathLengthLimit (for skin > 0.) (L.Urban)
                                                   >> 137 // 10-04-07 optimize logic of ComputeTruePathLengthLimit, remove
                                                   >> 138 //          unused members, use unique G4SafetyHelper (V.Ivanchenko)
                                                   >> 139 // 01-05-07 optimization for skin > 0 (L.Urban)
                                                   >> 140 // 05-07-07 modified model functions in SampleCosineTheta (L.Urban)
                                                   >> 141 // 06-07-07 theta0 is not the same for e-/e+ as for heavy particles (L.Urban)
                                                   >> 142 // 02-08-07 compare safety not with 0. but with tlimitminfix (V.Ivanchenko)
                                                   >> 143 // 09-08-07 tail of angular distribution has been modified (L.Urban)
                                                   >> 144 // 22-10-07 - corr. in ComputeGeomPathLength in order to get better low
                                                   >> 145 //          energy behaviour for heavy particles,
                                                   >> 146 //          - theta0 is slightly modified,
                                                   >> 147 //          - some old inconsistency/bug is cured in SampleCosineTheta,
                                                   >> 148 //          now 0 <= prob <= 1 in any case (L.Urban) 
                                                   >> 149 // 26-10-07 different correction parameters for e/mu/hadrons in ComputeTheta0
                                                   >> 150 // 30-11-07 fix in ComputeTheta0 (L.Urban)
                                                   >> 151 //
                                                   >> 152 
 42 // Class Description:                             153 // Class Description:
 43 //                                                154 //
 44 // Implementation of the model of multiple sca    155 // Implementation of the model of multiple scattering based on
 45 // H.W.Lewis Phys Rev 78 (1950) 526 and others    156 // H.W.Lewis Phys Rev 78 (1950) 526 and others
 46                                                   157 
 47 // -------------------------------------------    158 // -------------------------------------------------------------------
 48 // In its present form the model can be  used  << 159 //
 49 //   of the e-/e+ multiple scattering          << 
 50                                                   160 
 51                                                   161 
 52 //....oooOO0OOooo........oooOO0OOooo........oo    162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 53 //....oooOO0OOooo........oooOO0OOooo........oo    163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 54                                                   164 
 55 #include "G4UrbanMscModel.hh"                     165 #include "G4UrbanMscModel.hh"
 56 #include "G4PhysicalConstants.hh"              << 
 57 #include "G4SystemOfUnits.hh"                  << 
 58 #include "Randomize.hh"                           166 #include "Randomize.hh"
 59 #include "G4Positron.hh"                       << 167 #include "G4Electron.hh"
 60 #include "G4EmParameters.hh"                   << 168 #include "G4LossTableManager.hh"
 61 #include "G4ParticleChangeForMSC.hh"              169 #include "G4ParticleChangeForMSC.hh"
 62 #include "G4ProductionCutsTable.hh"            << 170 #include "G4TransportationManager.hh"
                                                   >> 171 #include "G4SafetyHelper.hh"
 63                                                   172 
 64 #include "G4Poisson.hh"                           173 #include "G4Poisson.hh"
 65 #include "G4Pow.hh"                            << 
 66 #include "G4Log.hh"                            << 
 67 #include "G4Exp.hh"                            << 
 68 #include "G4AutoLock.hh"                       << 
 69                                                   174 
 70 //....oooOO0OOooo........oooOO0OOooo........oo    175 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 71                                                   176 
 72 std::vector<G4UrbanMscModel::mscData*> G4Urban << 177 using namespace std;
 73                                                   178 
 74 namespace                                      << 179 G4UrbanMscModel::G4UrbanMscModel(G4double m_facrange, G4double m_dtrl, 
                                                   >> 180          G4double m_lambdalimit, 
                                                   >> 181          G4double m_facgeom,G4double m_skin, 
                                                   >> 182          G4bool m_samplez, G4MscStepLimitType m_stepAlg, 
                                                   >> 183          const G4String& nam)
                                                   >> 184   : G4VEmModel(nam),
                                                   >> 185     dtrl(m_dtrl),
                                                   >> 186     lambdalimit(m_lambdalimit),
                                                   >> 187     facrange(m_facrange),
                                                   >> 188     facgeom(m_facgeom),
                                                   >> 189     skin(m_skin),
                                                   >> 190     steppingAlgorithm(m_stepAlg),
                                                   >> 191     samplez(m_samplez),
                                                   >> 192     isInitialized(false)
 75 {                                                 193 {
 76   G4Mutex theUrbanMutex = G4MUTEX_INITIALIZER; << 194   masslimite  = 0.6*MeV;
 77 }                                              << 195   masslimitmu = 110.*MeV;
 78                                                << 
 79 //....oooOO0OOooo........oooOO0OOooo........oo << 
 80                                                   196 
 81 G4UrbanMscModel::G4UrbanMscModel(const G4Strin << 
 82   : G4VMscModel(nam)                           << 
 83 {                                              << 
 84   masslimite    = 0.6*CLHEP::MeV;              << 
 85   fr            = 0.02;                        << 
 86   taubig        = 8.0;                            197   taubig        = 8.0;
 87   tausmall      = 1.e-16;                         198   tausmall      = 1.e-16;
 88   taulim        = 1.e-6;                          199   taulim        = 1.e-6;
 89   currentTau    = taulim;                         200   currentTau    = taulim;
 90   tlimitminfix  = 0.01*CLHEP::nm;              << 201   tlimitminfix  = 1.e-6*mm;            
 91   tlimitminfix2 = 1.*CLHEP::nm;                << 
 92   stepmin       = tlimitminfix;                   202   stepmin       = tlimitminfix;
                                                   >> 203   skindepth     = skin*stepmin;
 93   smallstep     = 1.e10;                          204   smallstep     = 1.e10;
 94   currentRange  = 0.;                          << 205   currentRange  = 0. ;
 95   rangeinit     = 0.;                          << 206   frscaling2    = 0.25;
 96   tlimit        = 1.e10*CLHEP::mm;             << 207   frscaling1    = 1.-frscaling2;
                                                   >> 208   tlimit        = 1.e10*mm;
 97   tlimitmin     = 10.*tlimitminfix;               209   tlimitmin     = 10.*tlimitminfix;            
 98   tgeom         = 1.e50*CLHEP::mm;             << 210   nstepmax      = 25.;
 99   geombig       = tgeom;                       << 211   geombig       = 1.e50*mm;
100   geommin       = 1.e-3*CLHEP::mm;             << 212   geommin       = 1.e-3*mm;
101   geomlimit     = geombig;                        213   geomlimit     = geombig;
102   presafety     = 0.;                          << 214   presafety     = 0.*mm;
103                                                << 215   facsafety     = 0.25;
104   positron      = G4Positron::Positron();      << 216   Zeff          = 1.;
105   rndmEngineMod = G4Random::getTheEngine();    << 217   particle      = 0;
106                                                << 218   theManager    = G4LossTableManager::Instance(); 
107   drr = 0.35;                                  << 219   inside        = false;  
108   finalr = 10.*CLHEP::um;                      << 220   insideskin    = false;
109                                                << 
110   tlow = 5.*CLHEP::keV;                        << 
111   invmev = 1.0/CLHEP::MeV;                     << 
112                                                   221 
113   skindepth = skin*stepmin;                    << 
114                                                << 
115   mass = CLHEP::proton_mass_c2;                << 
116   charge = chargeSquare = 1.0;                 << 
117   currentKinEnergy = currentRadLength = lambda << 
118     = zPathLength = par1 = par2 = par3 = rndma << 
119   currentLogKinEnergy = LOG_EKIN_MIN;          << 
120 }                                                 222 }
121                                                   223 
122 //....oooOO0OOooo........oooOO0OOooo........oo    224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
123                                                   225 
124 G4UrbanMscModel::~G4UrbanMscModel()               226 G4UrbanMscModel::~G4UrbanMscModel()
125 {                                              << 227 {}
126   if(isFirstInstance) {                        << 
127     for(auto const & ptr : msc) { delete ptr;  << 
128     msc.clear();                               << 
129   }                                            << 
130 }                                              << 
131                                                   228 
132 //....oooOO0OOooo........oooOO0OOooo........oo    229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
133                                                   230 
134 void G4UrbanMscModel::Initialise(const G4Parti    231 void G4UrbanMscModel::Initialise(const G4ParticleDefinition* p,
135                                  const G4DataV << 232          const G4DataVector&)
136 {                                                 233 {
                                                   >> 234   if(isInitialized) return;
137   // set values of some data members              235   // set values of some data members
138   SetParticle(p);                                 236   SetParticle(p);
139   fParticleChange = GetParticleChangeForMSC(p) << 
140   InitialiseParameters(p);                     << 
141                                                << 
142   latDisplasmentbackup = latDisplasment;       << 
143                                                   237 
144   // if model is locked parameters should be d << 238   if (pParticleChange)
145   if(!IsLocked()) {                            << 239    fParticleChange = reinterpret_cast<G4ParticleChangeForMSC*>(pParticleChange);
146     dispAlg96 = G4EmParameters::Instance()->La << 240   else
147     fPosiCorrection = G4EmParameters::Instance << 241    fParticleChange = new G4ParticleChangeForMSC();
148   }                                            << 
149                                                << 
150   // initialise cache only once                << 
151   if(0 == msc.size()) {                        << 
152     G4AutoLock l(&theUrbanMutex);              << 
153     if(0 == msc.size()) {                      << 
154       isFirstInstance = true;                  << 
155       msc.resize(1, nullptr);                  << 
156     }                                          << 
157     l.unlock();                                << 
158   }                                            << 
159   // initialise cache for each new run         << 
160   if(isFirstInstance) { InitialiseModelCache() << 
161                                                   242 
162   /*                                           << 243   safetyHelper = G4TransportationManager::GetTransportationManager()
163   G4cout << "### G4UrbanMscModel::Initialise d << 244     ->GetSafetyHelper();
164    << p->GetParticleName() << " type= " << ste << 245   safetyHelper->InitialiseHelper();
165   G4cout << "    RangeFact= " << facrange << " << 
166    << " SafetyFact= " << facsafety << " Lambda << 
167    << G4endl;                                  << 
168   */                                           << 
169 }                                                 246 }
170                                                   247 
171 //....oooOO0OOooo........oooOO0OOooo........oo    248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
172                                                   249 
173 G4double G4UrbanMscModel::ComputeCrossSectionP    250 G4double G4UrbanMscModel::ComputeCrossSectionPerAtom( 
174                              const G4ParticleD    251                              const G4ParticleDefinition* part,
175                                    G4double ki << 252                                    G4double KineticEnergy,
176                                    G4double at << 253                                    G4double AtomicNumber,G4double,
177                                    G4double, G << 254            G4double, G4double)
178 {                                                 255 {
179   static const G4double epsmin = 1.e-4 , epsma << 256   const G4double sigmafactor = twopi*classic_electr_radius*classic_electr_radius;
180                                                << 257   const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
181   static const G4double Zdat[15] = { 4.,  6.,  << 258                             Bohr_radius*Bohr_radius/(hbarc*hbarc);
182                                      50., 56., << 259   const G4double epsmin = 1.e-4 , epsmax = 1.e10;
                                                   >> 260 
                                                   >> 261   const G4double Zdat[15] = { 4.,  6., 13., 20., 26., 29., 32., 38., 47.,
                                                   >> 262                              50., 56., 64., 74., 79., 82. };
                                                   >> 263 
                                                   >> 264   const G4double Tdat[22] = { 100*eV,  200*eV,  400*eV,  700*eV,
                                                   >> 265                                1*keV,   2*keV,   4*keV,   7*keV,
                                                   >> 266             10*keV,  20*keV,  40*keV,  70*keV,
                                                   >> 267                              100*keV, 200*keV, 400*keV, 700*keV,
                                                   >> 268                                1*MeV,   2*MeV,   4*MeV,   7*MeV,
                                                   >> 269             10*MeV,  20*MeV};
183                                                   270 
184   // corr. factors for e-/e+ lambda for T <= T    271   // corr. factors for e-/e+ lambda for T <= Tlim
185   static const G4double celectron[15][22] =    << 272           G4double celectron[15][22] =
186           {{1.125,1.072,1.051,1.047,1.047,1.05    273           {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
187             1.054,1.057,1.062,1.069,1.075,1.09    274             1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
188             1.112,1.108,1.100,1.093,1.089,1.08    275             1.112,1.108,1.100,1.093,1.089,1.087            },
189            {1.408,1.246,1.143,1.096,1.077,1.05    276            {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
190             1.052,1.053,1.058,1.065,1.072,1.08    277             1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
191             1.109,1.105,1.097,1.090,1.086,1.08    278             1.109,1.105,1.097,1.090,1.086,1.082            },
192            {2.833,2.268,1.861,1.612,1.486,1.30    279            {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
193             1.136,1.114,1.106,1.106,1.109,1.11    280             1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
194             1.131,1.124,1.113,1.104,1.099,1.09    281             1.131,1.124,1.113,1.104,1.099,1.098            },
195            {3.879,3.016,2.380,2.007,1.818,1.53    282            {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
196             1.190,1.133,1.107,1.099,1.098,1.10    283             1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
197             1.112,1.105,1.096,1.089,1.085,1.09    284             1.112,1.105,1.096,1.089,1.085,1.098            },
198            {6.937,4.330,2.886,2.256,1.987,1.62    285            {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
199             1.203,1.122,1.080,1.065,1.061,1.06    286             1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
200             1.073,1.070,1.064,1.059,1.056,1.05    287             1.073,1.070,1.064,1.059,1.056,1.056            },
201            {9.616,5.708,3.424,2.551,2.204,1.76    288            {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
202             1.256,1.155,1.099,1.077,1.070,1.06    289             1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
203             1.074,1.070,1.063,1.059,1.056,1.05    290             1.074,1.070,1.063,1.059,1.056,1.052            },
204            {11.72,6.364,3.811,2.806,2.401,1.88    291            {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
205             1.300,1.180,1.112,1.082,1.073,1.06    292             1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
206             1.068,1.064,1.059,1.054,1.051,1.05    293             1.068,1.064,1.059,1.054,1.051,1.050            },
207            {18.08,8.601,4.569,3.183,2.662,2.02    294            {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
208             1.339,1.195,1.108,1.068,1.053,1.04    295             1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
209             1.039,1.037,1.034,1.031,1.030,1.03    296             1.039,1.037,1.034,1.031,1.030,1.036            },
210            {18.22,10.48,5.333,3.713,3.115,2.36    297            {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
211             1.498,1.301,1.171,1.105,1.077,1.04    298             1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
212             1.031,1.028,1.024,1.022,1.021,1.02    299             1.031,1.028,1.024,1.022,1.021,1.024            },
213            {14.14,10.65,5.710,3.929,3.266,2.45    300            {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
214             1.528,1.319,1.178,1.106,1.075,1.04    301             1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
215             1.020,1.017,1.015,1.013,1.013,1.02    302             1.020,1.017,1.015,1.013,1.013,1.020            },
216            {14.11,11.73,6.312,4.240,3.478,2.56    303            {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
217             1.569,1.342,1.186,1.102,1.065,1.02    304             1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
218             0.995,0.993,0.993,0.993,0.993,1.01    305             0.995,0.993,0.993,0.993,0.993,1.011            },
219            {22.76,20.01,8.835,5.287,4.144,2.90    306            {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
220             1.677,1.410,1.224,1.121,1.073,1.01    307             1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
221             0.974,0.972,0.973,0.974,0.975,0.98    308             0.974,0.972,0.973,0.974,0.975,0.987            },
222            {50.77,40.85,14.13,7.184,5.284,3.43    309            {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
223             1.837,1.512,1.283,1.153,1.091,1.01    310             1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
224             0.950,0.947,0.949,0.952,0.954,0.96    311             0.950,0.947,0.949,0.952,0.954,0.963            },
225            {65.87,59.06,15.87,7.570,5.567,3.65    312            {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
226             1.939,1.579,1.325,1.178,1.108,1.01    313             1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
227             0.941,0.938,0.940,0.944,0.946,0.95    314             0.941,0.938,0.940,0.944,0.946,0.954            },
228            {55.60,47.34,15.92,7.810,5.755,3.76    315            {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
229             1.985,1.609,1.343,1.188,1.113,1.01    316             1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
230             0.933,0.930,0.933,0.936,0.939,0.94    317             0.933,0.930,0.933,0.936,0.939,0.949            }};
231                                                << 318       
232   static const G4double cpositron[15][22] = {  << 319            G4double cpositron[15][22] = {
233            {2.589,2.044,1.658,1.446,1.347,1.21    320            {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
234             1.097,1.083,1.080,1.086,1.092,1.10    321             1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
235             1.131,1.126,1.117,1.108,1.103,1.10    322             1.131,1.126,1.117,1.108,1.103,1.100            },
236            {3.904,2.794,2.079,1.710,1.543,1.32    323            {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
237             1.122,1.096,1.089,1.092,1.098,1.11    324             1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
238             1.138,1.132,1.122,1.113,1.108,1.10    325             1.138,1.132,1.122,1.113,1.108,1.102            },
239            {7.970,6.080,4.442,3.398,2.872,2.12    326            {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
240             1.357,1.246,1.194,1.179,1.178,1.18    327             1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
241             1.203,1.190,1.173,1.159,1.151,1.14    328             1.203,1.190,1.173,1.159,1.151,1.145            },
242            {9.714,7.607,5.747,4.493,3.815,2.77    329            {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
243             1.553,1.353,1.253,1.219,1.211,1.21    330             1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
244             1.225,1.210,1.191,1.175,1.166,1.17    331             1.225,1.210,1.191,1.175,1.166,1.174            },
245            {17.97,12.95,8.628,6.065,4.849,3.22    332            {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
246             1.624,1.382,1.259,1.214,1.202,1.20    333             1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
247             1.217,1.203,1.184,1.169,1.160,1.15    334             1.217,1.203,1.184,1.169,1.160,1.151            },
248            {24.83,17.06,10.84,7.355,5.767,3.70    335            {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
249             1.759,1.465,1.311,1.252,1.234,1.22    336             1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
250             1.237,1.222,1.201,1.184,1.174,1.15    337             1.237,1.222,1.201,1.184,1.174,1.159            },
251            {23.26,17.15,11.52,8.049,6.375,4.11    338            {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
252             1.880,1.535,1.353,1.281,1.258,1.24    339             1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
253             1.252,1.234,1.212,1.194,1.183,1.17    340             1.252,1.234,1.212,1.194,1.183,1.170            },
254            {22.33,18.01,12.86,9.212,7.336,4.70    341            {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
255             2.015,1.602,1.385,1.297,1.268,1.25    342             2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
256             1.254,1.237,1.214,1.195,1.185,1.17    343             1.254,1.237,1.214,1.195,1.185,1.179            },
257            {33.91,24.13,15.71,10.80,8.507,5.46    344            {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
258             2.407,1.873,1.564,1.425,1.374,1.33    345             2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
259             1.312,1.288,1.258,1.235,1.221,1.20    346             1.312,1.288,1.258,1.235,1.221,1.205            },
260            {32.14,24.11,16.30,11.40,9.015,5.78    347            {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
261             2.490,1.925,1.596,1.447,1.391,1.34    348             2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
262             1.320,1.294,1.264,1.240,1.226,1.21    349             1.320,1.294,1.264,1.240,1.226,1.214            },
263            {29.51,24.07,17.19,12.28,9.766,6.23    350            {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
264             2.602,1.995,1.641,1.477,1.414,1.35    351             2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
265             1.328,1.302,1.270,1.245,1.231,1.23    352             1.328,1.302,1.270,1.245,1.231,1.233            },
266            {38.19,30.85,21.76,15.35,12.07,7.52    353            {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
267             2.926,2.188,1.763,1.563,1.484,1.40    354             2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
268             1.361,1.330,1.294,1.267,1.251,1.23    355             1.361,1.330,1.294,1.267,1.251,1.239            },
269            {49.71,39.80,27.96,19.63,15.36,9.40    356            {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
270             3.417,2.478,1.944,1.692,1.589,1.48    357             3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
271             1.409,1.372,1.330,1.298,1.280,1.25    358             1.409,1.372,1.330,1.298,1.280,1.258            },
272            {59.25,45.08,30.36,20.83,16.15,9.83    359            {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
273             3.641,2.648,2.064,1.779,1.661,1.53    360             3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
274             1.442,1.400,1.354,1.319,1.299,1.27    361             1.442,1.400,1.354,1.319,1.299,1.272            },
275            {56.38,44.29,30.50,21.18,16.51,10.1    362            {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
276             3.752,2.724,2.116,1.817,1.692,1.55    363             3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
277             1.456,1.412,1.364,1.328,1.307,1.28    364             1.456,1.412,1.364,1.328,1.307,1.282            }};
278                                                   365 
279   //data/corrections for T > Tlim                 366   //data/corrections for T > Tlim  
280                                                << 367   G4double Tlim = 10.*MeV;
281   static const G4double hecorr[15] = {         << 368   G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
282     120.70, 117.50, 105.00, 92.92, 79.23,  74. << 369                       ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
283     57.39,  41.97,  36.14, 24.53, 10.21,  -7.8 << 370   G4double bg2lim   = Tlim*(Tlim+2.*electron_mass_c2)/
284     -22.30};                                   << 371                       (electron_mass_c2*electron_mass_c2);
                                                   >> 372 
                                                   >> 373   G4double sig0[15] = {0.2672*barn,  0.5922*barn, 2.653*barn,  6.235*barn,
                                                   >> 374                       11.69*barn  , 13.24*barn  , 16.12*barn, 23.00*barn ,
                                                   >> 375           35.13*barn  , 39.95*barn  , 50.85*barn, 67.19*barn ,
                                                   >> 376                       91.15*barn  , 104.4*barn  , 113.1*barn};
                                                   >> 377                      
                                                   >> 378   G4double hecorr[15] = {120.70, 117.50, 105.00, 92.92, 79.23,  74.510,  68.29,
                                                   >> 379                           57.39,  41.97,  36.14, 24.53, 10.21,  -7.855, -16.84,
                                                   >> 380        -22.30};
285                                                   381 
286   G4double sigma;                                 382   G4double sigma;
287   SetParticle(part);                              383   SetParticle(part);
288                                                   384 
289   G4double Z23 = G4Pow::GetInstance()->Z23(G4l << 385   G4double Z23 = 2.*log(AtomicNumber)/3.; Z23 = exp(Z23);
290                                                   386 
291   // correction if particle .ne. e-/e+            387   // correction if particle .ne. e-/e+
292   // compute equivalent kinetic energy            388   // compute equivalent kinetic energy
293   // lambda depends on p*beta ....                389   // lambda depends on p*beta ....
294                                                   390 
295   G4double eKineticEnergy = kinEnergy;         << 391   G4double eKineticEnergy = KineticEnergy;
296                                                   392 
297   if(mass > CLHEP::electron_mass_c2)           << 393   if((particle->GetParticleName() != "e-") &&
                                                   >> 394      (particle->GetParticleName() != "e+") )
298   {                                               395   {
299      G4double TAU = kinEnergy/mass ;           << 396      G4double TAU = KineticEnergy/mass ;
300      G4double c = mass*TAU*(TAU+2.)/(CLHEP::el << 397      G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
301      G4double w = c-2.;                        << 398      G4double w = c-2. ;
302      G4double tau = 0.5*(w+std::sqrt(w*w+4.*c) << 399      G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
303      eKineticEnergy = CLHEP::electron_mass_c2* << 400      eKineticEnergy = electron_mass_c2*tau ;
304   }                                               401   }
305                                                   402 
306   G4double eTotalEnergy = eKineticEnergy + CLH << 403   G4double ChargeSquare = charge*charge;
307   G4double beta2 = eKineticEnergy*(eTotalEnerg << 404 
                                                   >> 405   G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
                                                   >> 406   G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
308                                  /(eTotalEnerg    407                                  /(eTotalEnergy*eTotalEnergy);
309   G4double bg2   = eKineticEnergy*(eTotalEnerg << 408   G4double bg2   = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
310                                  /(CLHEP::elec << 409                                  /(electron_mass_c2*electron_mass_c2);
311                                                   410 
312   static const G4double epsfactor = 2.*CLHEP:: << 
313     CLHEP::electron_mass_c2*CLHEP::Bohr_radius << 
314     /(CLHEP::hbarc*CLHEP::hbarc);              << 
315   G4double eps = epsfactor*bg2/Z23;               411   G4double eps = epsfactor*bg2/Z23;
316                                                   412 
317   if     (eps<epsmin)  sigma = 2.*eps*eps;        413   if     (eps<epsmin)  sigma = 2.*eps*eps;
318   else if(eps<epsmax)  sigma = G4Log(1.+2.*eps << 414   else if(eps<epsmax)  sigma = log(1.+2.*eps)-2.*eps/(1.+2.*eps);
319   else                 sigma = G4Log(2.*eps)-1 << 415   else                 sigma = log(2.*eps)-1.+1./eps;
320                                                   416 
321   sigma *= chargeSquare*atomicNumber*atomicNum << 417   sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
322                                                   418 
323   // interpolate in AtomicNumber and beta2        419   // interpolate in AtomicNumber and beta2 
324   G4double c1,c2,cc1;                          << 420   G4double c1,c2,cc1,cc2,corr;
325                                                   421 
326   // get bin number in Z                          422   // get bin number in Z
327   G4int iZ = 14;                                  423   G4int iZ = 14;
328   // Loop checking, 03-Aug-2015, Vladimir Ivan << 424   while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
329   while ((iZ>=0)&&(Zdat[iZ]>=atomicNumber)) {  << 425   if (iZ==14)                               iZ = 13;
330                                                << 426   if (iZ==-1)                               iZ = 0 ;
331   iZ = std::min(std::max(iZ, 0), 13);          << 427 
332                                                << 428   G4double Z1 = Zdat[iZ];
333   G4double ZZ1 = Zdat[iZ];                     << 429   G4double Z2 = Zdat[iZ+1];
334   G4double ZZ2 = Zdat[iZ+1];                   << 430   G4double ratZ = (AtomicNumber-Z1)*(AtomicNumber+Z1)/
335   G4double ratZ = (atomicNumber-ZZ1)*(atomicNu << 431                   ((Z2-Z1)*(Z2+Z1));
336                   ((ZZ2-ZZ1)*(ZZ2+ZZ1));       << 
337                                                << 
338   static const G4double Tlim = 10.*CLHEP::MeV; << 
339   static const G4double sigmafactor =          << 
340     CLHEP::twopi*CLHEP::classic_electr_radius* << 
341   static const G4double beta2lim = Tlim*(Tlim+ << 
342     ((Tlim+CLHEP::electron_mass_c2)*(Tlim+CLHE << 
343   static const G4double bg2lim   = Tlim*(Tlim+ << 
344     (CLHEP::electron_mass_c2*CLHEP::electron_m << 
345                                                << 
346   static const G4double sig0[15] = {           << 
347     0.2672*CLHEP::barn,  0.5922*CLHEP::barn,   << 
348     11.69*CLHEP::barn  , 13.24*CLHEP::barn  ,  << 
349     35.13*CLHEP::barn  , 39.95*CLHEP::barn  ,  << 
350     91.15*CLHEP::barn  , 104.4*CLHEP::barn  ,  << 
351                                                << 
352   static const G4double Tdat[22] = {           << 
353     100*CLHEP::eV,  200*CLHEP::eV,  400*CLHEP: << 
354     1*CLHEP::keV,   2*CLHEP::keV,   4*CLHEP::k << 
355     10*CLHEP::keV,  20*CLHEP::keV,  40*CLHEP:: << 
356     100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP: << 
357     1*CLHEP::MeV,   2*CLHEP::MeV,   4*CLHEP::M << 
358     10*CLHEP::MeV,  20*CLHEP::MeV};            << 
359                                                   432 
360   if(eKineticEnergy <= Tlim)                      433   if(eKineticEnergy <= Tlim) 
361   {                                               434   {
362     // get bin number in T (beta2)                435     // get bin number in T (beta2)
363     G4int iT = 21;                                436     G4int iT = 21;
364     // Loop checking, 03-Aug-2015, Vladimir Iv << 
365     while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)    437     while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
366                                                << 438     if(iT==21)                                  iT = 20;
367     iT = std::min(std::max(iT, 0), 20);        << 439     if(iT==-1)                                  iT = 0 ;
368                                                   440 
369     //  calculate betasquare values               441     //  calculate betasquare values
370     G4double T = Tdat[iT];                     << 442     G4double T = Tdat[iT],   E = T + electron_mass_c2;
371     G4double E = T + CLHEP::electron_mass_c2;  << 443     G4double b2small = T*(E+electron_mass_c2)/(E*E);
372     G4double b2small = T*(E+CLHEP::electron_ma << 444 
373                                                << 445     T = Tdat[iT+1]; E = T + electron_mass_c2;
374     T = Tdat[iT+1];                            << 446     G4double b2big = T*(E+electron_mass_c2)/(E*E);
375     E = T + CLHEP::electron_mass_c2;           << 
376     G4double b2big = T*(E+CLHEP::electron_mass << 
377     G4double ratb2 = (beta2-b2small)/(b2big-b2    447     G4double ratb2 = (beta2-b2small)/(b2big-b2small);
378                                                   448 
379     if (charge < 0.)                              449     if (charge < 0.)
380     {                                             450     {
381        c1 = celectron[iZ][iT];                    451        c1 = celectron[iZ][iT];
382        c2 = celectron[iZ+1][iT];                  452        c2 = celectron[iZ+1][iT];
383        cc1 = c1+ratZ*(c2-c1);                     453        cc1 = c1+ratZ*(c2-c1);
384                                                   454 
385        c1 = celectron[iZ][iT+1];                  455        c1 = celectron[iZ][iT+1];
386        c2 = celectron[iZ+1][iT+1];                456        c2 = celectron[iZ+1][iT+1];
                                                   >> 457        cc2 = c1+ratZ*(c2-c1);
                                                   >> 458 
                                                   >> 459        corr = cc1+ratb2*(cc2-cc1);
                                                   >> 460 
                                                   >> 461        sigma *= sigmafactor/corr;
387     }                                             462     }
388     else                                          463     else              
389     {                                             464     {
390        c1 = cpositron[iZ][iT];                    465        c1 = cpositron[iZ][iT];
391        c2 = cpositron[iZ+1][iT];                  466        c2 = cpositron[iZ+1][iT];
392        cc1 = c1+ratZ*(c2-c1);                     467        cc1 = c1+ratZ*(c2-c1);
393                                                   468 
394        c1 = cpositron[iZ][iT+1];                  469        c1 = cpositron[iZ][iT+1];
395        c2 = cpositron[iZ+1][iT+1];                470        c2 = cpositron[iZ+1][iT+1];
                                                   >> 471        cc2 = c1+ratZ*(c2-c1);
                                                   >> 472 
                                                   >> 473        corr = cc1+ratb2*(cc2-cc1);
                                                   >> 474 
                                                   >> 475        sigma *= sigmafactor/corr;
396     }                                             476     }
397     G4double cc2 = c1+ratZ*(c2-c1);            << 
398     sigma *= sigmafactor/(cc1+ratb2*(cc2-cc1)) << 
399   }                                               477   }
400   else                                            478   else
401   {                                               479   {
402     c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2    480     c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
403     c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(b    481     c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
404     if((atomicNumber >= ZZ1) && (atomicNumber  << 482     if((AtomicNumber >= Z1) && (AtomicNumber <= Z2))
405       sigma = c1+ratZ*(c2-c1) ;                   483       sigma = c1+ratZ*(c2-c1) ;
406     else if(atomicNumber < ZZ1)                << 484     else if(AtomicNumber < Z1)
407       sigma = atomicNumber*atomicNumber*c1/(ZZ << 485       sigma = AtomicNumber*AtomicNumber*c1/(Z1*Z1);
408     else if(atomicNumber > ZZ2)                << 486     else if(AtomicNumber > Z2)
409       sigma = atomicNumber*atomicNumber*c2/(ZZ << 487       sigma = AtomicNumber*AtomicNumber*c2/(Z2*Z2);
410   }                                               488   }
411   // low energy correction based on theory     << 
412   sigma *= (1.+0.30/(1.+std::sqrt(1000.*eKinet << 
413                                                << 
414   return sigma;                                   489   return sigma;
415 }                                              << 
416                                                << 
417 //....oooOO0OOooo........oooOO0OOooo........oo << 
418                                                   490 
419 void G4UrbanMscModel::StartTracking(G4Track* t << 
420 {                                              << 
421   SetParticle(track->GetDynamicParticle()->Get << 
422   firstStep = true;                            << 
423   insideskin = false;                          << 
424   fr = facrange;                               << 
425   tlimit = tgeom = rangeinit = geombig;        << 
426   smallstep     = 1.e10;                       << 
427   stepmin       = tlimitminfix;                << 
428   tlimitmin     = 10.*tlimitminfix;            << 
429   rndmEngineMod = G4Random::getTheEngine();    << 
430 }                                                 491 }
431                                                   492 
432 //....oooOO0OOooo........oooOO0OOooo........oo    493 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
433                                                   494 
434 G4double G4UrbanMscModel::ComputeTruePathLengt    495 G4double G4UrbanMscModel::ComputeTruePathLengthLimit(
435                              const G4Track& tr    496                              const G4Track& track,
436                              G4double& current << 497            G4PhysicsTable* theTable,
                                                   >> 498            G4double currentMinimalStep)
437 {                                                 499 {
438   tPathLength = currentMinimalStep;               500   tPathLength = currentMinimalStep;
                                                   >> 501   G4int stepNumber = track.GetCurrentStepNumber();
439   const G4DynamicParticle* dp = track.GetDynam    502   const G4DynamicParticle* dp = track.GetDynamicParticle();
440                                                << 503 
441   G4StepPoint* sp = track.GetStep()->GetPreSte << 504   if(stepNumber == 1) {
442   G4StepStatus stepStatus = sp->GetStepStatus( << 505     inside = false;
                                                   >> 506     insideskin = false;
                                                   >> 507     tlimit = geombig;
                                                   >> 508     SetParticle( dp->GetDefinition() );
                                                   >> 509   }
                                                   >> 510 
                                                   >> 511   theLambdaTable = theTable;
443   couple = track.GetMaterialCutsCouple();         512   couple = track.GetMaterialCutsCouple();
444   SetCurrentCouple(couple);                    << 513   currentMaterialIndex = couple->GetIndex();
445   idx = couple->GetIndex();                    << 
446   currentKinEnergy = dp->GetKineticEnergy();      514   currentKinEnergy = dp->GetKineticEnergy();
447   currentLogKinEnergy = dp->GetLogKineticEnerg << 515   currentRange = 
448   currentRange = GetRange(particle,currentKinE << 516     theManager->GetRangeFromRestricteDEDX(particle,currentKinEnergy,couple);
449   lambda0 = GetTransportMeanFreePath(particle, << 517   lambda0 = GetLambda(currentKinEnergy);
450                                                << 
451   tPathLength = std::min(tPathLength,currentRa << 
452   /*                                           << 
453   G4cout << "G4Urban::StepLimit tPathLength= " << 
454   << " range= " <<currentRange<< " lambda= "<< << 
455             <<G4endl;                          << 
456   */                                           << 
457   // extreme small step                        << 
458   if(tPathLength < tlimitminfix) {             << 
459     latDisplasment = false;                    << 
460     return ConvertTrueToGeom(tPathLength, curr << 
461   }                                            << 
462                                                   518 
463   presafety = (stepStatus == fGeomBoundary) ?  << 519   // stop here if small range particle
464               : ComputeSafety(sp->GetPosition( << 520   if(inside) return tPathLength;            
465                                                   521   
466   // stop here if small step or range is less  << 522   if(tPathLength > currentRange) tPathLength = currentRange;
467   if((tPathLength == currentRange && tPathLeng << 523 
468      tPathLength < tlimitminfix) {             << 524   G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
469     latDisplasment = false;                    << 525   presafety = sp->GetSafety();
470     return ConvertTrueToGeom(tPathLength, curr << 526 
471   }                                            << 527   //  G4cout << "G4UrbanMscModel::ComputeTruePathLengthLimit tPathLength= " 
                                                   >> 528   //   <<tPathLength<<" safety= " << presafety
                                                   >> 529   //     << " range= " <<currentRange<<G4endl;
472                                                   530 
473   // upper limit for the straight line distanc << 
474   // for electrons and positrons               << 
475   G4double distance = (mass < masslimite)      << 
476     ? currentRange*msc[idx]->doverra           << 
477     // for muons, hadrons                      << 
478     : currentRange*msc[idx]->doverrb;          << 
479                                                << 
480   /*                                           << 
481   G4cout << "G4Urban::StepLimit tPathLength= " << 
482             <<tPathLength<<" safety= " << pres << 
483           << " range= " <<currentRange<< " lam << 
484             << " Alg: " << steppingAlgorithm < << 
485   */                                           << 
486   // far from geometry boundary                   531   // far from geometry boundary
487   if(distance < presafety)                     << 532   if(currentRange < presafety)
488     {                                             533     {
489       latDisplasment = false;                  << 534       inside = true;
490       return ConvertTrueToGeom(tPathLength, cu << 535       return tPathLength;  
491     }                                             536     }
492                                                   537 
493   latDisplasment = latDisplasmentbackup;       << 538   G4StepStatus stepStatus = sp->GetStepStatus();
494   // ----------------------------------------- << 539 
495   // distance to boundary                      << 540   // standard  version
                                                   >> 541   //
496   if (steppingAlgorithm == fUseDistanceToBound    542   if (steppingAlgorithm == fUseDistanceToBoundary)
497     {                                             543     {
498       //compute geomlimit and presafety           544       //compute geomlimit and presafety 
499       geomlimit = ComputeGeomLimit(track, pres << 545       GeomLimit(track);
500       /*                                       << 546 
501         G4cout << "G4Urban::Distance to bounda << 547       // is far from boundary
502             <<geomlimit<<" safety= " << presaf << 548       if(currentRange <= presafety)
503       */                                       << 549   {
                                                   >> 550     inside = true;
                                                   >> 551     return tPathLength;   
                                                   >> 552   }
504                                                   553 
505       smallstep += 1.;                            554       smallstep += 1.;
506       insideskin = false;                         555       insideskin = false;
507       tgeom = geombig;                         << 
508                                                   556 
509       // initialisation at first step and at t << 557       if((stepStatus == fGeomBoundary) || (stepNumber == 1))
510       if(firstStep || (stepStatus == fGeomBoun << 558   {
511         {                                      << 559     if(stepNumber == 1) smallstep = 1.e10;
512           rangeinit = currentRange;            << 560     else  smallstep = 1.;
513           if(!firstStep) { smallstep = 1.; }   << 561 
                                                   >> 562     // facrange scaling in lambda 
                                                   >> 563     // not so strong step restriction above lambdalimit
                                                   >> 564     G4double facr = facrange;
                                                   >> 565     if(lambda0 > lambdalimit)
                                                   >> 566       facr *= frscaling1+frscaling2*lambda0/lambdalimit;
                                                   >> 567 
                                                   >> 568     // constraint from the physics
                                                   >> 569     if (currentRange > lambda0) tlimit = facr*currentRange;
                                                   >> 570     else                        tlimit = facr*lambda0;
                                                   >> 571 
                                                   >> 572           if(tlimit > currentRange) tlimit = currentRange;
                                                   >> 573 
                                                   >> 574     //define stepmin here (it depends on lambda!)
                                                   >> 575     //rough estimation of lambda_elastic/lambda_transport
                                                   >> 576     G4double rat = currentKinEnergy/MeV ;
                                                   >> 577     rat = 1.e-3/(rat*(10.+rat)) ;
                                                   >> 578     //stepmin ~ lambda_elastic
                                                   >> 579     stepmin = rat*lambda0;
                                                   >> 580     skindepth = skin*stepmin;
                                                   >> 581 
                                                   >> 582     //define tlimitmin
                                                   >> 583           tlimitmin = 10.*stepmin;
                                                   >> 584     if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
                                                   >> 585 
                                                   >> 586     //lower limit for tlimit
                                                   >> 587     if(tlimit < tlimitmin) tlimit = tlimitmin;
                                                   >> 588 
                                                   >> 589     // constraint from the geometry (if tlimit above is too big)
                                                   >> 590     G4double tgeom = geombig; 
                                                   >> 591 
                                                   >> 592     if((geomlimit < geombig) && (geomlimit > geommin))
                                                   >> 593       {
                                                   >> 594         if(stepStatus == fGeomBoundary)  
                                                   >> 595           tgeom = geomlimit/facgeom;
                                                   >> 596         else
                                                   >> 597           tgeom = 2.*geomlimit/facgeom;
                                                   >> 598 
                                                   >> 599         if(tlimit > tgeom) tlimit = tgeom;
                                                   >> 600       }
                                                   >> 601   }
514                                                   602 
515           //stepmin ~ lambda_elastic           << 603       //if track starts far from boundaries increase tlimit!
516           stepmin = ComputeStepmin();          << 604       if(tlimit < facsafety*presafety) tlimit = facsafety*presafety ;
517           skindepth = skin*stepmin;            << 605 
518           tlimitmin = ComputeTlimitmin();      << 606       //  G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit  
519         /*                                     << 607       //     << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
520           G4cout << "rangeinit= " << rangeinit << 
521                  << " tlimitmin= " << tlimitmi << 
522                  << geomlimit <<G4endl;        << 
523         */                                     << 
524         }                                      << 
525       // constraint from the geometry          << 
526       if((geomlimit < geombig) && (geomlimit > << 
527         {                                      << 
528           // geomlimit is a geometrical step l << 
529           // transform it to true path length  << 
530           if(lambda0 > geomlimit) {            << 
531             geomlimit = -lambda0*G4Log(1.-geom << 
532           }                                    << 
533           tgeom = (stepStatus == fGeomBoundary << 
534       : facrange*rangeinit + stepmin;          << 
535         }                                      << 
536                                                   608 
537       //step limit                             << 
538       tlimit = (currentRange > presafety) ?    << 
539         std::max(facrange*rangeinit, facsafety << 
540                                                << 
541       //lower limit for tlimit                 << 
542       tlimit = std::min(std::max(tlimit,tlimit << 
543       /*                                       << 
544       G4cout << "tgeom= " << tgeom << " geomli << 
545             << " tlimit= " << tlimit << " pres << 
546       */                                       << 
547       // shortcut                                 609       // shortcut
548       if((tPathLength < tlimit) && (tPathLengt << 610       if((tPathLength < tlimit) && (tPathLength < presafety))
549          (smallstep > skin) && (tPathLength <  << 611   return tPathLength;   
550       {                                        << 612 
551         return ConvertTrueToGeom(tPathLength,  << 613       G4double tnow = tlimit;
552       }                                        << 614       // optimization ...
                                                   >> 615       if(geomlimit < geombig) tnow = max(tlimit,facsafety*geomlimit);
553                                                   616 
554       // step reduction near to boundary          617       // step reduction near to boundary
555       if(smallstep <= skin)                    << 618       if(smallstep < skin)
556         {                                      << 619   {
557           tlimit = stepmin;                    << 620     tnow = stepmin;
558           insideskin = true;                   << 621     insideskin = true;
559         }                                      << 622   }
560       else if(geomlimit < geombig)                623       else if(geomlimit < geombig)
561         {                                      << 624   {
562           if(geomlimit > skindepth)            << 625     if(geomlimit > skindepth)
563             {                                  << 626       {
564               tlimit = std::min(tlimit, geomli << 627         if(tnow > geomlimit-0.999*skindepth)
565             }                                  << 628     tnow = geomlimit-0.999*skindepth;
566           else                                 << 629       }
567             {                                  << 630     else
568               insideskin = true;               << 631       {
569               tlimit = std::min(tlimit, stepmi << 632         insideskin = true;
570             }                                  << 633         if(tnow > stepmin) tnow = stepmin;
571         }                                      << 634       }
                                                   >> 635   }
572                                                   636 
573       tlimit = std::max(tlimit, stepmin);      << 637       if(tnow < stepmin) tnow = stepmin;
574                                                   638 
575       // randomise if not 'small' step and ste << 639       if(tPathLength > tnow) tPathLength = tnow ; 
576       tPathLength = (tlimit < tPathLength && s << 
577         ? std::min(tPathLength, Randomizetlimi << 
578   : std::min(tPathLength, tlimit);             << 
579     }                                             640     }
580   // ----------------------------------------- << 641     // for 'normal' simulation with or without magnetic field 
581   // for simulation with or without magnetic f << 642     //  there no small step/single scattering at boundaries
582   // there no small step/single scattering at  << 
583   else if(steppingAlgorithm == fUseSafety)        643   else if(steppingAlgorithm == fUseSafety)
584     {                                             644     {
585       if(firstStep || (stepStatus == fGeomBoun << 645       // compute presafety again if presafety <= 0 and no boundary
586         rangeinit = currentRange;              << 646       // i.e. when it is needed for optimization purposes
587         fr = facrange;                         << 647       if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix)) 
588         // stepping for e+/e- only (not for mu << 648         presafety = safetyHelper->ComputeSafety(sp->GetPosition()); 
589         if(mass < masslimite)                  << 
590           {                                    << 
591             rangeinit = std::max(rangeinit, la << 
592             if(lambda0 > lambdalimit) {        << 
593               fr *= (0.75+0.25*lambda0/lambdal << 
594             }                                  << 
595           }                                    << 
596         //lower limit for tlimit               << 
597         stepmin = ComputeStepmin();            << 
598         tlimitmin = ComputeTlimitmin();        << 
599       }                                        << 
600                                                   649 
601       //step limit                             << 650       // is far from boundary
602       tlimit = (currentRange > presafety) ?    << 651       if(currentRange < presafety)
603         std::max(fr*rangeinit, facsafety*presa << 652         {
604                                                << 653           inside = true;
605       //lower limit for tlimit                 << 654           return tPathLength;  
606       tlimit = std::max(tlimit, tlimitmin);    << 655         }
607                                                << 
608       // randomise if step determined by msc   << 
609       tPathLength = (tlimit < tPathLength) ?   << 
610         std::min(tPathLength, Randomizetlimit( << 
611     }                                          << 
612   // ----------------------------------------- << 
613   // for simulation with or without magnetic f << 
614   // there is small step/single scattering at  << 
615   else if(steppingAlgorithm == fUseSafetyPlus) << 
616     {                                          << 
617       if(firstStep || (stepStatus == fGeomBoun << 
618         rangeinit = currentRange;              << 
619         fr = facrange;                         << 
620         if(mass < masslimite)                  << 
621           {                                    << 
622             if(lambda0 > lambdalimit) {        << 
623               fr *= (0.84+0.16*lambda0/lambdal << 
624             }                                  << 
625           }                                    << 
626         //lower limit for tlimit               << 
627         stepmin = ComputeStepmin();            << 
628         tlimitmin = ComputeTlimitmin();        << 
629       }                                        << 
630       //step limit                             << 
631       tlimit = (currentRange > presafety) ?    << 
632   std::max(fr*rangeinit, facsafety*presafety)  << 
633                                                << 
634       //lower limit for tlimit                 << 
635       tlimit = std::max(tlimit, tlimitmin);    << 
636                                                << 
637       // condition for tPathLength from drr an << 
638       if(currentRange > finalr) {              << 
639         G4double tmax = drr*currentRange+      << 
640                         finalr*(1.-drr)*(2.-fi << 
641         tPathLength = std::min(tPathLength,tma << 
642       }                                        << 
643                                                   656 
644       // randomise if step determined by msc   << 657       if((stepStatus == fGeomBoundary) || (stepNumber == 1))
645       tPathLength = (tlimit < tPathLength) ?   << 658   { 
646         std::min(tPathLength, Randomizetlimit( << 659     // facrange scaling in lambda 
647     }                                          << 660     // not so strong step restriction above lambdalimit
                                                   >> 661     G4double facr = facrange;
                                                   >> 662     if(lambda0 > lambdalimit)
                                                   >> 663       facr *= frscaling1+frscaling2*lambda0/lambdalimit;
                                                   >> 664 
                                                   >> 665     // constraint from the physics
                                                   >> 666     if (currentRange > lambda0) tlimit = facr*currentRange;
                                                   >> 667     else                        tlimit = facr*lambda0;
                                                   >> 668 
                                                   >> 669     //lower limit for tlimit
                                                   >> 670     tlimitmin = std::max(tlimitminfix,lambda0/nstepmax);
                                                   >> 671     if(tlimit < tlimitmin) tlimit = tlimitmin;
                                                   >> 672   }
648                                                   673 
649   // ----------------------------------------- << 674       //if track starts far from boundaries increase tlimit!
650   // simple step limitation                    << 675       if(tlimit < facsafety*presafety) tlimit = facsafety*presafety ;
                                                   >> 676 
                                                   >> 677       if(tPathLength > tlimit) tPathLength = tlimit;
                                                   >> 678     }
                                                   >> 679   
                                                   >> 680   // version similar to 7.1 (needed for some experiments)
651   else                                            681   else
652     {                                             682     {
653       if (stepStatus == fGeomBoundary)            683       if (stepStatus == fGeomBoundary)
654         {                                      << 684   {
655           tlimit = (currentRange > lambda0)    << 685     if (currentRange > lambda0) tlimit = facrange*currentRange;
656       ? facrange*currentRange : facrange*lambd << 686     else                        tlimit = facrange*lambda0;
657           tlimit = std::max(tlimit, tlimitmin) << 687 
658         }                                      << 688     if(tlimit < tlimitmin) tlimit = tlimitmin;
659       // randomise if step determined by msc   << 689     if(tPathLength > tlimit) tPathLength = tlimit;
660       tPathLength = (tlimit < tPathLength) ?   << 690   }
661         std::min(tPathLength, Randomizetlimit( << 
662     }                                             691     }
                                                   >> 692   //  G4cout << "tPathLength= " << tPathLength << "  geomlimit= " << geomlimit 
                                                   >> 693   //   << " currentMinimalStep= " << currentMinimalStep << G4endl;
663                                                   694 
664   // ----------------------------------------- << 695   return tPathLength ;
665   firstStep = false;                           << 696 }
666   return ConvertTrueToGeom(tPathLength, curren << 697 
                                                   >> 698 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 699 
                                                   >> 700 void G4UrbanMscModel::GeomLimit(const G4Track&  track)
                                                   >> 701 {
                                                   >> 702   geomlimit = geombig;
                                                   >> 703 
                                                   >> 704   // no geomlimit for the World volume
                                                   >> 705   if((track.GetVolume() != 0) &&
                                                   >> 706      (track.GetVolume() != safetyHelper->GetWorldVolume()))  
                                                   >> 707   {
                                                   >> 708     G4double cstep = currentRange;
                                                   >> 709 
                                                   >> 710     geomlimit = safetyHelper->CheckNextStep(
                                                   >> 711                   track.GetStep()->GetPreStepPoint()->GetPosition(),
                                                   >> 712                   track.GetMomentumDirection(),
                                                   >> 713                   cstep,
                                                   >> 714                   presafety);
                                                   >> 715     //    G4cout << "!!!G4UrbanMscModel::GeomLimit presafety= " << presafety
                                                   >> 716     //     << " limit= " << geomlimit << G4endl;
                                                   >> 717   }  
667 }                                                 718 }
668                                                   719 
669 //....oooOO0OOooo........oooOO0OOooo........oo    720 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
670                                                   721 
671 G4double G4UrbanMscModel::ComputeGeomPathLengt    722 G4double G4UrbanMscModel::ComputeGeomPathLength(G4double)
672 {                                                 723 {
673   lambdaeff = lambda0;                            724   lambdaeff = lambda0;
674   par1 = -1. ;                                    725   par1 = -1. ;  
675   par2 = par3 = 0. ;                              726   par2 = par3 = 0. ;  
676                                                   727 
677   // this correction needed to run MSC with eI << 
678   // and makes no harm for a normal run        << 
679   tPathLength = std::min(tPathLength,currentRa << 
680                                                << 
681   //  do the true -> geom transformation          728   //  do the true -> geom transformation
682   zPathLength = tPathLength;                      729   zPathLength = tPathLength;
683                                                   730 
684   // z = t for very small tPathLength             731   // z = t for very small tPathLength
685   if(tPathLength < tlimitminfix2) return zPath << 732   if(tPathLength < tlimitminfix) return zPathLength;
686                                                   733 
687   /*                                           << 734   // this correction needed to run MSC with eIoni and eBrem inactivated
688   G4cout << "ComputeGeomPathLength: tpl= " <<  << 735   // and makes no harm for a normal run
689          << " R= " << currentRange << " L0= "  << 736   if(tPathLength > currentRange)
690          << " E= " << currentKinEnergy << "  " << 737     tPathLength = currentRange ;
691          << particle->GetParticleName() << G4e << 
692   */                                           << 
693   G4double tau = tPathLength/lambda0 ;         << 
694                                                   738 
695   if ((tau <= tausmall) || insideskin) {       << 739   G4double tau   = tPathLength/lambda0 ;
696     zPathLength = std::min(tPathLength, lambda << 
697                                                   740 
698   } else if (tPathLength < currentRange*dtrl)  << 741   if ((tau <= tausmall) || insideskin) {
699     zPathLength = (tau < taulim) ? tPathLength << 742     zPathLength  = tPathLength;
700       : lambda0*(1.-G4Exp(-tau));              << 743     if(zPathLength > lambda0) zPathLength = lambda0;
701                                                << 744     return zPathLength;
702   } else if(currentKinEnergy < mass || tPathLe << 745   }
703     par1 = 1./currentRange;                    << 
704     par2 = currentRange/lambda0;               << 
705     par3 = 1.+par2;                            << 
706     if(tPathLength < currentRange) {           << 
707       zPathLength =                            << 
708         (1.-G4Exp(par3*G4Log(1.-tPathLength/cu << 
709     } else {                                   << 
710       zPathLength = 1./(par1*par3);            << 
711     }                                          << 
712                                                   746 
                                                   >> 747   G4double zmean = tPathLength;
                                                   >> 748   if (tPathLength < currentRange*dtrl) {
                                                   >> 749     if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
                                                   >> 750     else             zmean = lambda0*(1.-exp(-tau));
                                                   >> 751   } else if(currentKinEnergy < mass)  {
                                                   >> 752     par1 = 1./currentRange ;
                                                   >> 753     par2 = 1./(par1*lambda0) ;
                                                   >> 754     par3 = 1.+par2 ;
                                                   >> 755     if(tPathLength < currentRange)
                                                   >> 756       zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ;
                                                   >> 757     else
                                                   >> 758       zmean = 1./(par1*par3) ;
713   } else {                                        759   } else {
714     G4double rfin = std::max(currentRange-tPat << 760     G4double T1 = theManager->GetEnergy(particle,currentRange-tPathLength,couple);
715     G4double T1 = GetEnergy(particle,rfin,coup << 761     G4double lambda1 = GetLambda(T1);
716     G4double lambda1 = GetTransportMeanFreePat << 762 
717                                                << 763     par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
718     par1 = (lambda0-lambda1)/(lambda0*tPathLen << 764     par2 = 1./(par1*lambda0) ;
719     //G4cout << "par1= " << par1 << " L1= " << << 765     par3 = 1.+par2 ;
720     par2 = 1./(par1*lambda0);                  << 766     zmean = (1.-exp(par3*log(lambda1/lambda0)))/(par1*par3) ;
721     par3 = 1.+par2;                            << 767   }
722     zPathLength = (1.-G4Exp(par3*G4Log(lambda1 << 768 
                                                   >> 769   zPathLength = zmean ;
                                                   >> 770 
                                                   >> 771   //  sample z
                                                   >> 772   if(samplez)
                                                   >> 773   {
                                                   >> 774     const G4double  ztmax = 0.99, onethird = 1./3. ;
                                                   >> 775     G4double zt = zmean/tPathLength ;
                                                   >> 776 
                                                   >> 777     if (tPathLength > stepmin && zt < ztmax)              
                                                   >> 778     {
                                                   >> 779       G4double u,cz1;
                                                   >> 780       if(zt >= onethird)
                                                   >> 781       {
                                                   >> 782         G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
                                                   >> 783         cz1 = 1.+cz ;
                                                   >> 784         G4double u0 = cz/cz1 ;
                                                   >> 785         G4double grej ;
                                                   >> 786         do {
                                                   >> 787             u = exp(log(G4UniformRand())/cz1) ;
                                                   >> 788             grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ;
                                                   >> 789            } while (grej < G4UniformRand()) ;
                                                   >> 790       }
                                                   >> 791       else
                                                   >> 792       {
                                                   >> 793         cz1 = 1./zt-1.;
                                                   >> 794         u = 1.-exp(log(G4UniformRand())/cz1) ;
                                                   >> 795       }
                                                   >> 796       zPathLength = tPathLength*u ;
                                                   >> 797     }
723   }                                               798   }
724                                                   799 
725   zPathLength = std::min(zPathLength, lambda0) << 800   if(zPathLength > lambda0) zPathLength = lambda0;
726   //G4cout<< "zPathLength= "<< zPathLength<< " << 801 
727   return zPathLength;                             802   return zPathLength;
728 }                                                 803 }
729                                                   804 
730 //....oooOO0OOooo........oooOO0OOooo........oo    805 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
731                                                   806 
732 G4double G4UrbanMscModel::ComputeTrueStepLengt    807 G4double G4UrbanMscModel::ComputeTrueStepLength(G4double geomStepLength)
733 {                                                 808 {
734   // step defined other than transportation       809   // step defined other than transportation 
735   if(geomStepLength == zPathLength) {          << 810   if(geomStepLength == zPathLength && tPathLength <= currentRange)
736     //G4cout << "Urban::ComputeTrueLength: tPa << 811     return tPathLength;
737     //           << " step= " << geomStepLengt << 
738     return tPathLength;                        << 
739   }                                            << 
740                                                << 
741   zPathLength = geomStepLength;                << 
742                                                   812 
743   // t = z for very small step                    813   // t = z for very small step
744   if(geomStepLength < tlimitminfix2) {         << 814   zPathLength = geomStepLength;
745     tPathLength = geomStepLength;              << 815   tPathLength = geomStepLength;
                                                   >> 816   if(geomStepLength < tlimitminfix) return tPathLength;
746                                                   817   
747   // recalculation                                818   // recalculation
748   } else {                                     << 819   if((geomStepLength > lambda0*tausmall) && !insideskin)
749                                                << 820   {
750     G4double tlength = geomStepLength;         << 821     if(par1 <  0.)
751     if((geomStepLength > lambda0*tausmall) &&  << 822       tPathLength = -lambda0*log(1.-geomStepLength/lambda0) ;
752                                                << 823     else 
753       if(par1 <  0.) {                         << 824     {
754         tlength = -lambda0*G4Log(1.-geomStepLe << 825       if(par1*par3*geomStepLength < 1.)
755       } else {                                 << 826         tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ;
756         const G4double par4 = par1*par3;       << 827       else 
757         if(par4*geomStepLength < 1.) {         << 828         tPathLength = currentRange;
758           tlength = (1.-G4Exp(G4Log(1.-par4*ge << 
759         } else {                               << 
760           tlength = currentRange;              << 
761         }                                      << 
762       }                                        << 
763                                                << 
764       if(tlength < geomStepLength)   { tlength << 
765       else if(tlength > tPathLength) { tlength << 
766     }                                             829     }  
767     tPathLength = tlength;                     << 
768   }                                               830   }
769   //G4cout << "Urban::ComputeTrueLength: tPath << 831   if(tPathLength < geomStepLength) tPathLength = geomStepLength;
770   //         << " step= " << geomStepLength << << 
771                                                   832 
772   return tPathLength;                             833   return tPathLength;
773 }                                                 834 }
774                                                   835 
775 //....oooOO0OOooo........oooOO0OOooo........oo    836 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
776                                                   837 
777 G4ThreeVector&                                 << 838 G4double G4UrbanMscModel::ComputeTheta0(G4double trueStepLength,
778 G4UrbanMscModel::SampleScattering(const G4Thre << 839                                         G4double KineticEnergy)
779                                   G4double /*s << 
780 {                                                 840 {
781   fDisplacement.set(0.0,0.0,0.0);              << 841   // for all particles take the width of the central part
782   if(tPathLength >= currentRange) { return fDi << 842   //  from a  parametrization similar to the Highland formula
783                                                << 843   // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
784   G4double kinEnergy = currentKinEnergy;       << 844   const G4double c_highland = 13.6*MeV ;
785   if (tPathLength > currentRange*dtrl) {       << 845   G4double betacp = sqrt(currentKinEnergy*(currentKinEnergy+2.*mass)*
786     kinEnergy = GetEnergy(particle,currentRang << 846                          KineticEnergy*(KineticEnergy+2.*mass)/
787   } else if(tPathLength > currentRange*0.01) { << 847                       ((currentKinEnergy+mass)*(KineticEnergy+mass)));
788     kinEnergy -= tPathLength*GetDEDX(particle, << 848   G4double y = trueStepLength/currentRadLength;
789                                      currentLo << 849   G4double theta0 = c_highland*std::abs(charge)*sqrt(y)/betacp;
790   }                                            << 850   y = log(y);
                                                   >> 851   if(mass < masslimite)                 
                                                   >> 852     theta0 *= (1.+0.051*y);
                                                   >> 853   else if(mass < masslimitmu)
                                                   >> 854     theta0 *= (1.+0.044*y);
                                                   >> 855   else
                                                   >> 856     theta0 *= (1.+0.038*y);
                                                   >> 857     
                                                   >> 858   return theta0;
                                                   >> 859 }
791                                                   860 
792   if((tPathLength <= tlimitminfix) || (tPathLe << 861 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
793      (kinEnergy <= CLHEP::eV)) { return fDispl << 
794                                                   862 
795   G4double cth = SampleCosineTheta(tPathLength << 863 void G4UrbanMscModel::SampleScattering(const G4DynamicParticle* dynParticle,
                                                   >> 864                G4double safety)
                                                   >> 865 {
                                                   >> 866   G4double kineticEnergy = dynParticle->GetKineticEnergy();
                                                   >> 867   if((kineticEnergy <= 0.0) || (tPathLength <= tlimitminfix)) return;
796                                                   868 
                                                   >> 869   G4double cth  = SampleCosineTheta(tPathLength,kineticEnergy);
797   // protection against 'bad' cth values          870   // protection against 'bad' cth values
798   if(std::abs(cth) >= 1.0) { return fDisplacem << 871   if(cth > 1.)  cth =  1.;
                                                   >> 872   if(cth < -1.) cth = -1.;
                                                   >> 873   G4double sth  = sqrt((1.0 - cth)*(1.0 + cth));
                                                   >> 874   G4double phi  = twopi*G4UniformRand();
                                                   >> 875   G4double dirx = sth*cos(phi);
                                                   >> 876   G4double diry = sth*sin(phi);
799                                                   877 
800   G4double sth = std::sqrt((1.0 - cth)*(1.0 +  << 878   G4ThreeVector oldDirection = dynParticle->GetMomentumDirection();
801   G4double phi = CLHEP::twopi*rndmEngineMod->f << 879   G4ThreeVector newDirection(dirx,diry,cth);
802   G4ThreeVector newDirection(sth*std::cos(phi) << 
803   newDirection.rotateUz(oldDirection);            880   newDirection.rotateUz(oldDirection);
804                                                << 
805   fParticleChange->ProposeMomentumDirection(ne    881   fParticleChange->ProposeMomentumDirection(newDirection);
806   /*                                           << 882 
807   G4cout << "G4UrbanMscModel::SampleSecondarie << 883   if (latDisplasment && safety > tlimitminfix) {
808          << " sinTheta= " << sth << " safety(m << 884 
809          << " trueStep(mm)= " << tPathLength   << 885     G4double r = SampleDisplacement();
810          << " geomStep(mm)= " << zPathLength   << 886 /*
811          << G4endl;                            << 887     G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
812   */                                           << 888      << " sinTheta= " << sth << " r(mm)= " << r
813                                                << 889            << " trueStep(mm)= " << tPathLength
814   if (latDisplasment && currentTau >= tausmall << 890            << " geomStep(mm)= " << zPathLength
815     if(dispAlg96) { SampleDisplacement(sth, ph << 891            << G4endl;
816     else          { SampleDisplacementNew(cth, << 892 */
817     fDisplacement.rotateUz(oldDirection);      << 893     if(r > 0.)
                                                   >> 894       {
                                                   >> 895         G4double latcorr = LatCorrelation();
                                                   >> 896         if(latcorr > r) latcorr = r;
                                                   >> 897 
                                                   >> 898         // sample direction of lateral displacement
                                                   >> 899         // compute it from the lateral correlation
                                                   >> 900         G4double Phi = 0.;
                                                   >> 901         if(std::abs(r*sth) < latcorr)
                                                   >> 902           Phi  = twopi*G4UniformRand();
                                                   >> 903         else
                                                   >> 904           Phi = phi-std::acos(latcorr/(r*sth));
                                                   >> 905         if(Phi < 0.) Phi += twopi;
                                                   >> 906 
                                                   >> 907         dirx = std::cos(Phi);
                                                   >> 908         diry = std::sin(Phi);
                                                   >> 909 
                                                   >> 910         G4ThreeVector latDirection(dirx,diry,0.0);
                                                   >> 911         latDirection.rotateUz(oldDirection);
                                                   >> 912 
                                                   >> 913         G4ThreeVector Position = *(fParticleChange->GetProposedPosition());
                                                   >> 914         G4double fac = 1.;
                                                   >> 915         if(r >  safety) {
                                                   >> 916           //  ******* so safety is computed at boundary too ************
                                                   >> 917     G4double newsafety = safetyHelper->ComputeSafety(Position);
                                                   >> 918           if(r > newsafety)
                                                   >> 919             fac = newsafety/r ;
                                                   >> 920         }  
                                                   >> 921 
                                                   >> 922         if(fac > 0.)
                                                   >> 923         {
                                                   >> 924           // compute new endpoint of the Step
                                                   >> 925           G4ThreeVector newPosition = Position+fac*r*latDirection;
                                                   >> 926 
                                                   >> 927     // definitely not on boundary
                                                   >> 928     if(1. == fac) {
                                                   >> 929       safetyHelper->ReLocateWithinVolume(newPosition);
                                                   >> 930       
                                                   >> 931     } else {
                                                   >> 932             // check safety after displacement
                                                   >> 933       G4double postsafety = safetyHelper->ComputeSafety(newPosition);
                                                   >> 934 
                                                   >> 935       // displacement to boundary
                                                   >> 936       // if(postsafety < tlimitminfix) {
                                                   >> 937             if(postsafety <= 0.0) {
                                                   >> 938         safetyHelper->Locate(newPosition, newDirection);
                                                   >> 939 
                                                   >> 940       // not on the boundary
                                                   >> 941             } else { 
                                                   >> 942         safetyHelper->ReLocateWithinVolume(newPosition);
                                                   >> 943       }
                                                   >> 944     }
                                                   >> 945           fParticleChange->ProposePosition(newPosition);
                                                   >> 946         } 
                                                   >> 947      }
818   }                                               948   }
819   return fDisplacement;                        << 
820 }                                                 949 }
821                                                   950 
822 //....oooOO0OOooo........oooOO0OOooo........oo    951 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
823                                                   952 
824 G4double G4UrbanMscModel::SampleCosineTheta(G4    953 G4double G4UrbanMscModel::SampleCosineTheta(G4double trueStepLength,
825                                             G4 << 954               G4double KineticEnergy)
826 {                                                 955 {
827   G4double cth = 1.0;                          << 956   G4double cth = 1. ;
828   G4double tau = trueStepLength/lambda0;       << 957   G4double tau = trueStepLength/lambda0 ;
829                                                   958 
830   // mean tau value                            << 959   Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
831   if(currentKinEnergy != kinEnergy) {          << 960          couple->GetMaterial()->GetTotNbOfAtomsPerVolume() ;
832     G4double lambda1 = GetTransportMeanFreePat << 
833     if(std::abs(lambda1 - lambda0) > lambda0*0 << 
834       tau = trueStepLength*G4Log(lambda0/lambd << 
835     }                                          << 
836   }                                            << 
837                                                   961 
838   currentTau = tau;                            << 962   if(insideskin)
839   lambdaeff = trueStepLength/currentTau;       << 963   {
840   currentRadLength = couple->GetMaterial()->Ge << 964     //no scattering, single or plural scattering
841                                                << 965     G4double mean = trueStepLength/stepmin ;
842   if (tau >= taubig) { cth = -1.+2.*rndmEngine << 
843   else if (tau >= tausmall) {                  << 
844     static const G4double numlim = 0.01;       << 
845     static const G4double onethird = 1./3.;    << 
846     if(tau < numlim) {                         << 
847       xmeanth = 1.0 - tau*(1.0 - 0.5*tau);     << 
848       x2meanth= 1.0 - tau*(5.0 - 6.25*tau)*one << 
849     } else {                                   << 
850       xmeanth = G4Exp(-tau);                   << 
851       x2meanth = (1.+2.*G4Exp(-2.5*tau))*oneth << 
852     }                                          << 
853                                                   966 
854     // too large step of low-energy particle   << 967     G4int n = G4Poisson(mean);
855     G4double relloss = 1. - kinEnergy/currentK << 968     if(n > 0)
856     static const G4double rellossmax= 0.50;    << 969     {
857     if(relloss > rellossmax) {                 << 970       G4double tm = KineticEnergy/electron_mass_c2;
858       return SimpleScattering();               << 971       // ascr - screening parameter
859     }                                          << 972       G4double ascr = exp(log(Zeff)/3.)/(137.*sqrt(tm*(tm+2.)));
860     // is step extreme small ?                 << 973       G4double ascr1 = 1.+0.5*ascr*ascr;
861     G4bool extremesmallstep = false;           << 974       G4double bp1=ascr1+1.;
862     G4double tsmall = std::min(tlimitmin,lambd << 975       G4double bm1=ascr1-1.;
863                                                << 976       // single scattering from screened Rutherford x-section
864     G4double theta0;                           << 977       G4double ct,st,phi;
865     if(trueStepLength > tsmall) {              << 978       G4double sx=0.,sy=0.,sz=0.;
866       theta0 = ComputeTheta0(trueStepLength,ki << 979       for(G4int i=1; i<=n; i++)
867     } else {                                   << 980       {
868       theta0 = std::sqrt(trueStepLength/tsmall << 981         ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
869   *ComputeTheta0(tsmall,kinEnergy);            << 982         if(ct < -1.) ct = -1.;
870       extremesmallstep = true;                 << 983         if(ct >  1.) ct =  1.; 
                                                   >> 984         st = sqrt(1.-ct*ct);
                                                   >> 985         phi = twopi*G4UniformRand();
                                                   >> 986         sx += st*cos(phi);
                                                   >> 987         sy += st*sin(phi);
                                                   >> 988         sz += ct;
                                                   >> 989       }
                                                   >> 990       cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
871     }                                             991     }
872                                                << 992   }
873     static const G4double onesixth = 1./6.;    << 993   else
874     static const G4double one12th = 1./12.;    << 994   {
875     static const G4double theta0max = CLHEP::p << 995     if(trueStepLength >= currentRange*dtrl) 
876                                                << 996     {
877     // protection for very small angles        << 997       if(par1*trueStepLength < 1.)
878     G4double theta2 = theta0*theta0;           << 998   tau = -par2*log(1.-par1*trueStepLength) ;
879                                                << 999       // for the case if ioni/brems are inactivated
880     if(theta2 < tausmall) { return cth; }      << 1000       // see the corresponding condition in ComputeGeomPathLength 
881     if(theta0 > theta0max) { return SimpleScat << 1001       else if(1.-KineticEnergy/currentKinEnergy > taulim)
882                                                << 1002   tau = taubig ;
883     G4double x = theta2*(1.0 - theta2*one12th) << 
884     if(theta2 > numlim) {                      << 
885       G4double sth = 2*std::sin(0.5*theta0);   << 
886       x = sth*sth;                             << 
887     }                                             1003     }
                                                   >> 1004     currentTau = tau ;
                                                   >> 1005     lambdaeff = trueStepLength/currentTau;
                                                   >> 1006     currentRadLength = couple->GetMaterial()->GetRadlen();
888                                                   1007 
889     // parameter for tail                      << 1008     if (tau >= taubig) cth = -1.+2.*G4UniformRand();
890     G4double ltau = G4Log(tau);                << 1009     else if (tau >= tausmall)
891     G4double u = !extremesmallstep ? G4Exp(lta << 1010     {
892       : G4Exp(G4Log(tsmall/lambda0)*onesixth); << 1011       G4double b=2.,bp1=3.,bm1=1.;
893                                                << 1012       G4double prob = 0. ;
894     G4double xx  = G4Log(lambdaeff/currentRadL << 1013       G4double a = 1., ea = 0., eaa = 1.;
895     G4double xsi = msc[idx]->coeffc1 +         << 1014       G4double xmean1 = 1., xmean2 = 0.;
896       u*(msc[idx]->coeffc2+msc[idx]->coeffc3*u << 1015                                                       
897                                                << 1016       G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
898     // tail should not be too big              << 1017 
899     xsi = std::max(xsi, 1.9);                  << 1018       // protexction for very small angles
900       /*                                       << 1019       if(theta0 < tausmall) return cth;
901       if(KineticEnergy > 20*MeV && xsi < 1.6)  << 1020 
902         G4cout << "G4UrbanMscModel::SampleCosi << 1021       G4double sth = sin(0.5*theta0);
903                << KineticEnergy/GeV            << 1022       a = 0.25/(sth*sth);
904                << " !!** c= " << xsi           << 1023 
905                << " **!! length(mm)= " << true << 1024       ea = exp(-2.*a);
906                << " " << couple->GetMaterial() << 1025       eaa = 1.-ea ; 
907                << " tau= " << tau << G4endl;   << 1026       xmean1 = (1.+ea)/eaa-1./a;
                                                   >> 1027 
                                                   >> 1028       G4double xmeanth = exp(-tau);
                                                   >> 1029       b = 1./xmeanth ;                               
                                                   >> 1030       bp1 = b+1.;
                                                   >> 1031       bm1 = b-1.;
                                                   >> 1032       // protection 
                                                   >> 1033       if(bm1 > 0.)
                                                   >> 1034         xmean2 = b-0.5*bp1*bm1*log(bp1/bm1);
                                                   >> 1035       else
                                                   >> 1036       {
                                                   >> 1037         b = 1.+tau;
                                                   >> 1038         bp1 = 2.+tau;
                                                   >> 1039         bm1 = tau;
                                                   >> 1040         xmean2 = 1.+tau*(1.-log(2./tau));
908       }                                           1041       }
909       */                                       << 
910                                                << 
911     G4double c = xsi;                          << 
912                                                << 
913     if(std::abs(c-3.) < 0.001)      { c = 3.00 << 
914     else if(std::abs(c-2.) < 0.001) { c = 2.00 << 
915                                                << 
916     G4double c1 = c-1.;                        << 
917     G4double ea = G4Exp(-xsi);                 << 
918     G4double eaa = 1.-ea ;                     << 
919     G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/ea << 
920     G4double x0 = 1. - xsi*x;                  << 
921                                                << 
922     // G4cout << " xmean1= " << xmean1 << "  x << 
923                                                << 
924     if(xmean1 <= 0.999*xmeanth) { return Simpl << 
925                                                << 
926     //from continuity of derivatives           << 
927     G4double b = 1.+(c-xsi)*x;                 << 
928                                                << 
929     G4double b1 = b+1.;                        << 
930     G4double bx = c*x;                         << 
931                                                << 
932     G4double eb1 = G4Exp(G4Log(b1)*c1);        << 
933     G4double ebx = G4Exp(G4Log(bx)*c1);        << 
934     G4double d = ebx/eb1;                      << 
935                                                << 
936     G4double xmean2 = (x0 + d - (bx - b1*d)/(c << 
937                                                << 
938     G4double f1x0 = ea/eaa;                    << 
939     G4double f2x0 = c1/(c*(1. - d));           << 
940     G4double prob = f2x0/(f1x0+f2x0);          << 
941                                                << 
942     G4double qprob = xmeanth/(prob*xmean1+(1.- << 
943                                                   1042 
944     // sampling of costheta                    << 1043       if((xmean1 >= xmeanth) && (xmean2 <= xmeanth))
945     //G4cout << "c= " << c << " qprob= " << qp << 1044       {
946     // << " c1= " << c1 << " b1= " << b1 << "  << 1045         //normal case
947     //             << G4endl;                  << 1046         prob = (xmeanth-xmean2)/(xmean1-xmean2);
948     rndmEngineMod->flatArray(2, rndmarray);    << 1047       }
949     if(rndmarray[0] < qprob)                   << 1048       else
950     {                                          << 1049       {
951       G4double var = 0;                        << 1050         // x1 < xth ( x2 < xth automatically if b = 1/xth)
952       if(rndmarray[1] < prob) {                << 1051         // correct a (xmean1)
953         cth = 1.+G4Log(ea+rndmEngineMod->flat( << 1052         if((xmeanth-xmean1)/xmeanth < 1.e-5)
954       } else {                                 << 1053         {   
955         var = (1.0 - d)*rndmEngineMod->flat(); << 1054           // xmean1 is small probably due to precision problems
956         if(var < numlim*d) {                   << 1055           xmean1 = 0.50*(1.+xmeanth);
957           var /= (d*c1);                       << 1056           prob = (xmeanth-xmean2)/(xmean1-xmean2);
958           cth = -1.0 + var*(1.0 - 0.5*var*c)*( << 
959         } else {                               << 
960           cth = 1. + x*(c - xsi - c*G4Exp(-G4L << 
961         }                                         1057         }
962       }                                        << 1058         else
963     } else {                                   << 1059         {
964       cth = -1.+2.*rndmarray[1];               << 1060           //  correct a in order to have x1=xth
                                                   >> 1061           G4int i=0, imax=10;
                                                   >> 1062           do
                                                   >> 1063           {
                                                   >> 1064             a = 1./(1.-xmeanth+2.*ea/eaa);
                                                   >> 1065             ea = exp(-2.*a);
                                                   >> 1066             eaa = 1.-ea;
                                                   >> 1067             xmean1 = (1.+ea)/eaa-1./a;
                                                   >> 1068             i += 1;
                                                   >> 1069           } while ((std::abs((xmeanth-xmean1)/xmeanth) > 0.05) && (i < imax));
                                                   >> 1070     prob = 1.;          
                                                   >> 1071         }
                                                   >> 1072       }
                                                   >> 1073 
                                                   >> 1074       // sampling of costheta
                                                   >> 1075       if (G4UniformRand() < prob)
                                                   >> 1076          cth = 1.+log(ea+G4UniformRand()*eaa)/a ;
                                                   >> 1077       else
                                                   >> 1078          cth = b-bp1*bm1/(bm1+2.*G4UniformRand()) ;
965     }                                             1079     }
966   }                                            << 1080   }  
967   return cth;                                  << 1081   return cth ;
968 }                                                 1082 }
969                                                   1083 
970 //....oooOO0OOooo........oooOO0OOooo........oo    1084 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
971                                                   1085 
972 G4double G4UrbanMscModel::ComputeTheta0(G4doub << 1086 G4double G4UrbanMscModel::SampleDisplacement()
973                                         G4doub << 
974 {                                                 1087 {
975   // for all particles take the width of the c << 1088   const G4double kappa = 2.5;
976   //  from a  parametrization similar to the H << 1089   const G4double kappapl1 = kappa+1.;
977   // ( Highland formula: Particle Physics Book << 1090   const G4double kappami1 = kappa-1.;
978   G4double invbetacp = (kinEnergy+mass)/(kinEn << 1091   G4double rmean = 0.0;
979   if(currentKinEnergy != kinEnergy) {          << 1092   if ((currentTau >= tausmall) && !insideskin) {
980     invbetacp = std::sqrt(invbetacp*(currentKi << 1093     if (currentTau < taulim) {
981         (currentKinEnergy*(currentKinEnergy+2. << 1094       rmean = kappa*currentTau*currentTau*currentTau*
982   }                                            << 1095              (1.-kappapl1*currentTau*0.25)/6. ;
983   G4double y = trueStepLength/currentRadLength << 
984                                                   1096 
985   if(fPosiCorrection && particle == positron)  << 
986   {                                            << 
987     static const G4double xl= 0.6;             << 
988     static const G4double xh= 0.9;             << 
989     static const G4double e = 113.0;           << 
990     G4double corr;                             << 
991                                                << 
992     G4double tau = std::sqrt(currentKinEnergy* << 
993     G4double x = std::sqrt(tau*(tau+2.)/((tau+ << 
994     G4double a = msc[idx]->posa;               << 
995     G4double b = msc[idx]->posb;               << 
996     G4double c = msc[idx]->posc;               << 
997     G4double d = msc[idx]->posd;               << 
998     if(x < xl) {                               << 
999       corr = a*(1.-G4Exp(-b*x));               << 
1000     } else if(x > xh) {                       << 
1001       corr = c+d*G4Exp(e*(x-1.));             << 
1002     } else {                                     1097     } else {
1003       G4double yl = a*(1.-G4Exp(-b*xl));      << 1098       G4double etau = 0.0;
1004       G4double yh = c+d*G4Exp(e*(xh-1.));     << 1099       if (currentTau<taubig) etau = exp(-currentTau);
1005       G4double y0 = (yh-yl)/(xh-xl);          << 1100       rmean = -kappa*currentTau;
1006       G4double y1 = yl-y0*xl;                 << 1101       rmean = -exp(rmean)/(kappa*kappami1);
1007       corr = y0*x+y1;                         << 1102       rmean += currentTau-kappapl1/kappa+kappa*etau/kappami1;
1008     }                                            1103     }
1009     //======================================= << 1104     if (rmean>0.) rmean = 2.*lambdaeff*sqrt(rmean/3.0);
1010     y *= corr*msc[idx]->pose;                 << 1105     else          rmean = 0.;
1011   }                                              1106   }
1012                                                  1107 
1013   static const G4double c_highland = 13.6*CLH << 1108   // protection against z > t ...........................
1014   G4double theta0 = c_highland*std::abs(charg << 1109   if(rmean > 0.) {
1015                                               << 1110     G4double zt = (tPathLength-zPathLength)*(tPathLength+zPathLength);
1016   // correction factor from e- scattering dat << 1111     if(zt <= 0.)
1017   theta0 *= (msc[idx]->coeffth1+msc[idx]->coe << 1112       rmean = 0.;
1018   return theta0;                              << 1113     else if(rmean*rmean > zt)
1019 }                                             << 1114       rmean = sqrt(zt);
1020                                               << 
1021 //....oooOO0OOooo........oooOO0OOooo........o << 
1022                                               << 
1023 void G4UrbanMscModel::SampleDisplacement(G4do << 
1024 {                                             << 
1025   // simple and fast sampling                 << 
1026   // based on single scattering results       << 
1027   // u = r/rmax : mean value                  << 
1028                                               << 
1029   G4double rmax = std::sqrt((tPathLength-zPat << 
1030   if(rmax > 0.)                               << 
1031   {                                           << 
1032     G4double r = 0.73*rmax;                   << 
1033                                               << 
1034     // simple distribution for v=Phi-phi=psi  << 
1035     // beta determined from the requirement t << 
1036     // the same mean value than that obtained << 
1037                                               << 
1038     static const G4double cbeta  = 2.160;     << 
1039     static const G4double cbeta1 = 1. - G4Exp << 
1040     rndmEngineMod->flatArray(2, rndmarray);   << 
1041     G4double psi = -G4Log(1. - rndmarray[0]*c << 
1042     G4double Phi = (rndmarray[1] < 0.5) ? phi << 
1043     fDisplacement.set(r*std::cos(Phi),r*std:: << 
1044   }                                              1115   }
                                                   >> 1116   return rmean;
1045 }                                                1117 }
1046                                                  1118 
1047 //....oooOO0OOooo........oooOO0OOooo........o    1119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1048                                               << 1120 
1049 void G4UrbanMscModel::SampleDisplacementNew(G << 1121 G4double G4UrbanMscModel::LatCorrelation()
1050 {                                                1122 {
1051   // simple and fast sampling                 << 1123   const G4double kappa = 2.5;
1052   // based on single scattering results       << 1124   const G4double kappami1 = kappa-1.;
1053   // u = (r/rmax)**2 : distribution from ss s << 
1054   const G4double eps = 1.e-3;                 << 
1055   const G4double rmax =                       << 
1056     std::sqrt((tPathLength-zPathLength)*(tPat << 
1057                                               << 
1058   if(rmax > 0.)                               << 
1059   {                                           << 
1060     const G4double x0 = 0.73 ;                << 
1061     const G4double alpha = G4Log(7.33)/x0 ;   << 
1062     const G4double a1 = 1.-x0 ;               << 
1063     const G4double a2 = 1.-G4Exp(-alpha*x0) ; << 
1064     const G4double a3 = G4Exp(alpha*x0)-1. ;  << 
1065     const G4double w1 = 2.*a2/(alpha*a1+2.*a2 << 
1066                                                  1125 
1067     G4double r, sqx;                          << 1126   G4double latcorr = 0.;
1068     if (rmax/currentRange < eps)              << 1127   if((currentTau >= tausmall) && !insideskin)
1069     {                                         << 1128   {
1070       r = 0.73*rmax ;                         << 1129     if(currentTau < taulim)
1071       sqx = 1.;                               << 1130       latcorr = lambdaeff*kappa*currentTau*currentTau*
1072     }                                         << 1131                 (1.-(kappa+1.)*currentTau/3.)/3.;
1073     else                                         1132     else
1074     {                                            1133     {
1075       rndmEngineMod->flatArray(2,rndmarray);  << 1134       G4double etau = 0.;
1076       const G4double x = (rndmarray[0] < w1)  << 1135       if(currentTau < taubig) etau = exp(-currentTau);
1077         1. - a1*std::sqrt(1.-rndmarray[1]);   << 1136       latcorr = -kappa*currentTau;
1078                                               << 1137       latcorr = exp(latcorr)/kappami1;
1079       sqx = std::sqrt(x);                     << 1138       latcorr += 1.-kappa*etau/kappami1 ;
1080       r = sqx*rmax;                           << 1139       latcorr *= 2.*lambdaeff/3. ;
1081     }                                            1140     }
1082     // Gaussian distribution for Phi-phi=psi  << 
1083     const G4double sigma = 0.1+0.9*sqx;       << 
1084     const G4double psi = G4RandGauss::shoot(0 << 
1085     const G4double Phi = phi+psi;             << 
1086     fDisplacement.set(r*std::cos(Phi), r*std: << 
1087   }                                              1141   }
                                                   >> 1142 
                                                   >> 1143   return latcorr;
1088 }                                                1144 }
1089                                                  1145 
1090 //....oooOO0OOooo........oooOO0OOooo........o    1146 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1091                                                  1147 
1092 void G4UrbanMscModel::InitialiseModelCache()  << 1148 void G4UrbanMscModel::SampleSecondaries(std::vector<G4DynamicParticle*>*,
1093 {                                             << 1149           const G4MaterialCutsCouple*,
1094   // it is assumed, that for the second run o << 1150           const G4DynamicParticle*,
1095   // of a new G4MaterialCutsCouple is possibl << 1151           G4double,
1096   auto theCoupleTable = G4ProductionCutsTable << 1152           G4double)
1097   std::size_t numOfCouples = theCoupleTable-> << 1153 {}
1098   if(numOfCouples != msc.size()) { msc.resize << 
1099                                               << 
1100   for(G4int j=0; j<(G4int)numOfCouples; ++j)  << 
1101     auto aCouple = theCoupleTable->GetMateria << 
1102                                               << 
1103     // new couple                             << 
1104     msc[j] = new mscData();                   << 
1105     G4double Zeff = aCouple->GetMaterial()->G << 
1106     G4double sqrz = std::sqrt(Zeff);          << 
1107     msc[j]->sqrtZ = sqrz;                     << 
1108     // parameterisation of step limitation    << 
1109     msc[j]->factmin = dispAlg96 ? 0.001 : 0.0 << 
1110     G4double lnZ = G4Log(Zeff);               << 
1111     // correction in theta0 formula           << 
1112     G4double w = G4Exp(lnZ/6.);               << 
1113     G4double facz = 0.990395+w*(-0.168386+w*0 << 
1114     msc[j]->coeffth1 = facz*(1. - 8.7780e-2/Z << 
1115     msc[j]->coeffth2 = facz*(4.0780e-2 + 1.73 << 
1116                                               << 
1117     // tail parameters                        << 
1118     G4double Z13 = w*w;                       << 
1119     msc[j]->coeffc1 = 2.3785    - Z13*(4.1981 << 
1120     msc[j]->coeffc2 = 4.7526e-1 + Z13*(1.7694 << 
1121     msc[j]->coeffc3 = 2.3683e-1 - Z13*(1.8111 << 
1122     msc[j]->coeffc4 = 1.7888e-2 + Z13*(1.9659 << 
1123                                               << 
1124     msc[j]->Z23 = Z13*Z13;                    << 
1125                                               << 
1126     msc[j]->stepmina = 27.725/(1.+0.203*Zeff) << 
1127     msc[j]->stepminb =  6.152/(1.+0.111*Zeff) << 
1128                                               << 
1129     // 21.07.2020                             << 
1130     msc[j]->doverra = 9.6280e-1 - 8.4848e-2*m << 
1131                                               << 
1132     // 06.10.2020                             << 
1133     // msc[j]->doverra = 7.7024e-1 - 6.7878e- << 
1134     msc[j]->doverrb = 1.15 - 9.76e-4*Zeff;    << 
1135                                               << 
1136     // corrections for e+                     << 
1137     msc[j]->posa = 0.994-4.08e-3*Zeff;        << 
1138     msc[j]->posb = 7.16+(52.6+365./Zeff)/Zeff << 
1139     msc[j]->posc = 1.000-4.47e-3*Zeff;        << 
1140     msc[j]->posd = 1.21e-3*Zeff;              << 
1141     msc[j]->pose = 1.+Zeff*(1.84035e-4*Zeff-1 << 
1142   }                                           << 
1143 }                                             << 
1144                                                  1154 
1145 //....oooOO0OOooo........oooOO0OOooo........o    1155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1146                                                  1156