Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4UrbanMscModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4UrbanMscModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4UrbanMscModel.cc (Version 10.4.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id:   $
                                                   >>  27 // GEANT4 tag $Name:  $
                                                   >>  28 //
 26 // -------------------------------------------     29 // -------------------------------------------------------------------
 27 //                                                 30 //   
 28 // GEANT4 Class file                               31 // GEANT4 Class file
 29 //                                                 32 //    
 30 //                                                 33 //
 31 // File name:   G4UrbanMscModel                    34 // File name:   G4UrbanMscModel
 32 //                                                 35 //
 33 // Author:      Laszlo Urban                       36 // Author:      Laszlo Urban
 34 //                                                 37 //
 35 // Creation date: 19.02.2013                       38 // Creation date: 19.02.2013
 36 //                                                 39 //
 37 // Created from G4UrbanMscModel96                  40 // Created from G4UrbanMscModel96
 38 //                                                 41 //
 39 // New parametrization for theta0                  42 // New parametrization for theta0
 40 // Correction for very small step length           43 // Correction for very small step length
 41 //                                                 44 //
 42 // Class Description:                              45 // Class Description:
 43 //                                                 46 //
 44 // Implementation of the model of multiple sca     47 // Implementation of the model of multiple scattering based on
 45 // H.W.Lewis Phys Rev 78 (1950) 526 and others     48 // H.W.Lewis Phys Rev 78 (1950) 526 and others
 46                                                    49 
 47 // -------------------------------------------     50 // -------------------------------------------------------------------
 48 // In its present form the model can be  used      51 // In its present form the model can be  used for simulation 
 49 //   of the e-/e+ multiple scattering              52 //   of the e-/e+ multiple scattering
                                                   >>  53 //
 50                                                    54 
 51                                                    55 
 52 //....oooOO0OOooo........oooOO0OOooo........oo     56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 53 //....oooOO0OOooo........oooOO0OOooo........oo     57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 54                                                    58 
 55 #include "G4UrbanMscModel.hh"                      59 #include "G4UrbanMscModel.hh"
 56 #include "G4PhysicalConstants.hh"                  60 #include "G4PhysicalConstants.hh"
 57 #include "G4SystemOfUnits.hh"                      61 #include "G4SystemOfUnits.hh"
 58 #include "Randomize.hh"                            62 #include "Randomize.hh"
                                                   >>  63 #include "G4Electron.hh"
 59 #include "G4Positron.hh"                           64 #include "G4Positron.hh"
                                                   >>  65 #include "G4LossTableManager.hh"
 60 #include "G4EmParameters.hh"                       66 #include "G4EmParameters.hh"
 61 #include "G4ParticleChangeForMSC.hh"               67 #include "G4ParticleChangeForMSC.hh"
 62 #include "G4ProductionCutsTable.hh"            << 
 63                                                    68 
 64 #include "G4Poisson.hh"                            69 #include "G4Poisson.hh"
 65 #include "G4Pow.hh"                                70 #include "G4Pow.hh"
                                                   >>  71 #include "globals.hh"
 66 #include "G4Log.hh"                                72 #include "G4Log.hh"
 67 #include "G4Exp.hh"                                73 #include "G4Exp.hh"
 68 #include "G4AutoLock.hh"                       << 
 69                                                    74 
 70 //....oooOO0OOooo........oooOO0OOooo........oo     75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 71                                                    76 
 72 std::vector<G4UrbanMscModel::mscData*> G4Urban <<  77 using namespace std;
 73                                                << 
 74 namespace                                      << 
 75 {                                              << 
 76   G4Mutex theUrbanMutex = G4MUTEX_INITIALIZER; << 
 77 }                                              << 
 78                                                    78 
 79 //....oooOO0OOooo........oooOO0OOooo........oo     79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 80                                                    80 
 81 G4UrbanMscModel::G4UrbanMscModel(const G4Strin     81 G4UrbanMscModel::G4UrbanMscModel(const G4String& nam)
 82   : G4VMscModel(nam)                               82   : G4VMscModel(nam)
 83 {                                                  83 {
 84   masslimite    = 0.6*CLHEP::MeV;              <<  84   masslimite    = 0.6*MeV;
                                                   >>  85   lambdalimit   = 1.*mm;
 85   fr            = 0.02;                            86   fr            = 0.02;
 86   taubig        = 8.0;                             87   taubig        = 8.0;
 87   tausmall      = 1.e-16;                          88   tausmall      = 1.e-16;
 88   taulim        = 1.e-6;                           89   taulim        = 1.e-6;
 89   currentTau    = taulim;                          90   currentTau    = taulim;
 90   tlimitminfix  = 0.01*CLHEP::nm;              <<  91   tlimitminfix  = 0.01*nm;             
 91   tlimitminfix2 = 1.*CLHEP::nm;                <<  92   tlimitminfix2 =   1.*nm;             
 92   stepmin       = tlimitminfix;                    93   stepmin       = tlimitminfix;
 93   smallstep     = 1.e10;                           94   smallstep     = 1.e10;
 94   currentRange  = 0.;                          <<  95   currentRange  = 0. ;
 95   rangeinit     = 0.;                              96   rangeinit     = 0.;
 96   tlimit        = 1.e10*CLHEP::mm;             <<  97   tlimit        = 1.e10*mm;
 97   tlimitmin     = 10.*tlimitminfix;                98   tlimitmin     = 10.*tlimitminfix;            
 98   tgeom         = 1.e50*CLHEP::mm;             <<  99   tgeom         = 1.e50*mm;
 99   geombig       = tgeom;                       << 100   geombig       = 1.e50*mm;
100   geommin       = 1.e-3*CLHEP::mm;             << 101   geommin       = 1.e-3*mm;
101   geomlimit     = geombig;                        102   geomlimit     = geombig;
102   presafety     = 0.;                          << 103   presafety     = 0.*mm;
                                                   >> 104 
                                                   >> 105   facsafety     = 0.6;
                                                   >> 106 
                                                   >> 107   Zold          = 0.;
                                                   >> 108   Zeff          = 1.;
                                                   >> 109   Z2            = 1.;                
                                                   >> 110   Z23           = 1.;                    
                                                   >> 111   lnZ           = 0.;
                                                   >> 112   coeffth1      = 0.;
                                                   >> 113   coeffth2      = 0.;
                                                   >> 114   coeffc1       = 0.;
                                                   >> 115   coeffc2       = 0.;
                                                   >> 116   coeffc3       = 0.;
                                                   >> 117   coeffc4       = 0.;
                                                   >> 118   particle      = 0;
103                                                   119 
104   positron      = G4Positron::Positron();         120   positron      = G4Positron::Positron();
                                                   >> 121   theManager    = G4LossTableManager::Instance(); 
105   rndmEngineMod = G4Random::getTheEngine();       122   rndmEngineMod = G4Random::getTheEngine();
106                                                   123 
107   drr = 0.35;                                  << 124   firstStep     = true; 
108   finalr = 10.*CLHEP::um;                      << 125   insideskin    = false;
109                                                << 126   latDisplasmentbackup = false;
110   tlow = 5.*CLHEP::keV;                        << 127   dispAlg96 = true;
111   invmev = 1.0/CLHEP::MeV;                     << 128 
                                                   >> 129   rangecut = geombig;
                                                   >> 130   drr      = 0.35 ;
                                                   >> 131   finalr   = 10.*um ;
112                                                   132 
113   skindepth = skin*stepmin;                       133   skindepth = skin*stepmin;
114                                                   134 
115   mass = CLHEP::proton_mass_c2;                << 135   mass = proton_mass_c2;
116   charge = chargeSquare = 1.0;                 << 136   charge = ChargeSquare = 1.0;
117   currentKinEnergy = currentRadLength = lambda    137   currentKinEnergy = currentRadLength = lambda0 = lambdaeff = tPathLength 
118     = zPathLength = par1 = par2 = par3 = rndma << 138     = zPathLength = par1 = par2 = par3 = 0;
119   currentLogKinEnergy = LOG_EKIN_MIN;          << 139 
                                                   >> 140   currentMaterialIndex = -1;
                                                   >> 141   fParticleChange = nullptr;
                                                   >> 142   couple = nullptr;
120 }                                                 143 }
121                                                   144 
122 //....oooOO0OOooo........oooOO0OOooo........oo    145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
123                                                   146 
124 G4UrbanMscModel::~G4UrbanMscModel()               147 G4UrbanMscModel::~G4UrbanMscModel()
125 {                                              << 148 {}
126   if(isFirstInstance) {                        << 
127     for(auto const & ptr : msc) { delete ptr;  << 
128     msc.clear();                               << 
129   }                                            << 
130 }                                              << 
131                                                   149 
132 //....oooOO0OOooo........oooOO0OOooo........oo    150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
133                                                   151 
134 void G4UrbanMscModel::Initialise(const G4Parti    152 void G4UrbanMscModel::Initialise(const G4ParticleDefinition* p,
135                                  const G4DataV    153                                  const G4DataVector&)
136 {                                                 154 {
137   // set values of some data members              155   // set values of some data members
138   SetParticle(p);                                 156   SetParticle(p);
139   fParticleChange = GetParticleChangeForMSC(p)    157   fParticleChange = GetParticleChangeForMSC(p);
140   InitialiseParameters(p);                     << 
141                                                   158 
142   latDisplasmentbackup = latDisplasment;          159   latDisplasmentbackup = latDisplasment;
                                                   >> 160   dispAlg96 = (G4EmParameters::Instance()->LateralDisplacementAlg96());
143                                                   161 
144   // if model is locked parameters should be d << 162   //G4cout << "### G4UrbanMscModel::Initialise done for " 
145   if(!IsLocked()) {                            << 163   //   << p->GetParticleName() << G4endl;
146     dispAlg96 = G4EmParameters::Instance()->La << 
147     fPosiCorrection = G4EmParameters::Instance << 
148   }                                            << 
149                                                << 
150   // initialise cache only once                << 
151   if(0 == msc.size()) {                        << 
152     G4AutoLock l(&theUrbanMutex);              << 
153     if(0 == msc.size()) {                      << 
154       isFirstInstance = true;                  << 
155       msc.resize(1, nullptr);                  << 
156     }                                          << 
157     l.unlock();                                << 
158   }                                            << 
159   // initialise cache for each new run         << 
160   if(isFirstInstance) { InitialiseModelCache() << 
161                                                << 
162   /*                                           << 
163   G4cout << "### G4UrbanMscModel::Initialise d << 
164    << p->GetParticleName() << " type= " << ste << 
165   G4cout << "    RangeFact= " << facrange << " << 
166    << " SafetyFact= " << facsafety << " Lambda << 
167    << G4endl;                                  << 
168   */                                           << 
169 }                                                 164 }
170                                                   165 
171 //....oooOO0OOooo........oooOO0OOooo........oo    166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
172                                                   167 
173 G4double G4UrbanMscModel::ComputeCrossSectionP    168 G4double G4UrbanMscModel::ComputeCrossSectionPerAtom( 
174                              const G4ParticleD    169                              const G4ParticleDefinition* part,
175                                    G4double ki << 170                                    G4double KineticEnergy,
176                                    G4double at << 171                                    G4double AtomicNumber,G4double,
177                                    G4double, G    172                                    G4double, G4double)
178 {                                                 173 {
179   static const G4double epsmin = 1.e-4 , epsma    174   static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
180                                                   175 
181   static const G4double Zdat[15] = { 4.,  6.,     176   static const G4double Zdat[15] = { 4.,  6., 13., 20., 26., 29., 32., 38.,47.,
182                                      50., 56.,    177                                      50., 56., 64., 74., 79., 82. };
183                                                   178 
184   // corr. factors for e-/e+ lambda for T <= T    179   // corr. factors for e-/e+ lambda for T <= Tlim
185   static const G4double celectron[15][22] =       180   static const G4double celectron[15][22] =
186           {{1.125,1.072,1.051,1.047,1.047,1.05    181           {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
187             1.054,1.057,1.062,1.069,1.075,1.09    182             1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
188             1.112,1.108,1.100,1.093,1.089,1.08    183             1.112,1.108,1.100,1.093,1.089,1.087            },
189            {1.408,1.246,1.143,1.096,1.077,1.05    184            {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
190             1.052,1.053,1.058,1.065,1.072,1.08    185             1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
191             1.109,1.105,1.097,1.090,1.086,1.08    186             1.109,1.105,1.097,1.090,1.086,1.082            },
192            {2.833,2.268,1.861,1.612,1.486,1.30    187            {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
193             1.136,1.114,1.106,1.106,1.109,1.11    188             1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
194             1.131,1.124,1.113,1.104,1.099,1.09    189             1.131,1.124,1.113,1.104,1.099,1.098            },
195            {3.879,3.016,2.380,2.007,1.818,1.53    190            {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
196             1.190,1.133,1.107,1.099,1.098,1.10    191             1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
197             1.112,1.105,1.096,1.089,1.085,1.09    192             1.112,1.105,1.096,1.089,1.085,1.098            },
198            {6.937,4.330,2.886,2.256,1.987,1.62    193            {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
199             1.203,1.122,1.080,1.065,1.061,1.06    194             1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
200             1.073,1.070,1.064,1.059,1.056,1.05    195             1.073,1.070,1.064,1.059,1.056,1.056            },
201            {9.616,5.708,3.424,2.551,2.204,1.76    196            {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
202             1.256,1.155,1.099,1.077,1.070,1.06    197             1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
203             1.074,1.070,1.063,1.059,1.056,1.05    198             1.074,1.070,1.063,1.059,1.056,1.052            },
204            {11.72,6.364,3.811,2.806,2.401,1.88    199            {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
205             1.300,1.180,1.112,1.082,1.073,1.06    200             1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
206             1.068,1.064,1.059,1.054,1.051,1.05    201             1.068,1.064,1.059,1.054,1.051,1.050            },
207            {18.08,8.601,4.569,3.183,2.662,2.02    202            {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
208             1.339,1.195,1.108,1.068,1.053,1.04    203             1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
209             1.039,1.037,1.034,1.031,1.030,1.03    204             1.039,1.037,1.034,1.031,1.030,1.036            },
210            {18.22,10.48,5.333,3.713,3.115,2.36    205            {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
211             1.498,1.301,1.171,1.105,1.077,1.04    206             1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
212             1.031,1.028,1.024,1.022,1.021,1.02    207             1.031,1.028,1.024,1.022,1.021,1.024            },
213            {14.14,10.65,5.710,3.929,3.266,2.45    208            {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
214             1.528,1.319,1.178,1.106,1.075,1.04    209             1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
215             1.020,1.017,1.015,1.013,1.013,1.02    210             1.020,1.017,1.015,1.013,1.013,1.020            },
216            {14.11,11.73,6.312,4.240,3.478,2.56    211            {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
217             1.569,1.342,1.186,1.102,1.065,1.02    212             1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
218             0.995,0.993,0.993,0.993,0.993,1.01    213             0.995,0.993,0.993,0.993,0.993,1.011            },
219            {22.76,20.01,8.835,5.287,4.144,2.90    214            {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
220             1.677,1.410,1.224,1.121,1.073,1.01    215             1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
221             0.974,0.972,0.973,0.974,0.975,0.98    216             0.974,0.972,0.973,0.974,0.975,0.987            },
222            {50.77,40.85,14.13,7.184,5.284,3.43    217            {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
223             1.837,1.512,1.283,1.153,1.091,1.01    218             1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
224             0.950,0.947,0.949,0.952,0.954,0.96    219             0.950,0.947,0.949,0.952,0.954,0.963            },
225            {65.87,59.06,15.87,7.570,5.567,3.65    220            {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
226             1.939,1.579,1.325,1.178,1.108,1.01    221             1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
227             0.941,0.938,0.940,0.944,0.946,0.95    222             0.941,0.938,0.940,0.944,0.946,0.954            },
228            {55.60,47.34,15.92,7.810,5.755,3.76    223            {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
229             1.985,1.609,1.343,1.188,1.113,1.01    224             1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
230             0.933,0.930,0.933,0.936,0.939,0.94    225             0.933,0.930,0.933,0.936,0.939,0.949            }};
231                                                   226             
232   static const G4double cpositron[15][22] = {     227   static const G4double cpositron[15][22] = {
233            {2.589,2.044,1.658,1.446,1.347,1.21    228            {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
234             1.097,1.083,1.080,1.086,1.092,1.10    229             1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
235             1.131,1.126,1.117,1.108,1.103,1.10    230             1.131,1.126,1.117,1.108,1.103,1.100            },
236            {3.904,2.794,2.079,1.710,1.543,1.32    231            {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
237             1.122,1.096,1.089,1.092,1.098,1.11    232             1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
238             1.138,1.132,1.122,1.113,1.108,1.10    233             1.138,1.132,1.122,1.113,1.108,1.102            },
239            {7.970,6.080,4.442,3.398,2.872,2.12    234            {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
240             1.357,1.246,1.194,1.179,1.178,1.18    235             1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
241             1.203,1.190,1.173,1.159,1.151,1.14    236             1.203,1.190,1.173,1.159,1.151,1.145            },
242            {9.714,7.607,5.747,4.493,3.815,2.77    237            {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
243             1.553,1.353,1.253,1.219,1.211,1.21    238             1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
244             1.225,1.210,1.191,1.175,1.166,1.17    239             1.225,1.210,1.191,1.175,1.166,1.174            },
245            {17.97,12.95,8.628,6.065,4.849,3.22    240            {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
246             1.624,1.382,1.259,1.214,1.202,1.20    241             1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
247             1.217,1.203,1.184,1.169,1.160,1.15    242             1.217,1.203,1.184,1.169,1.160,1.151            },
248            {24.83,17.06,10.84,7.355,5.767,3.70    243            {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
249             1.759,1.465,1.311,1.252,1.234,1.22    244             1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
250             1.237,1.222,1.201,1.184,1.174,1.15    245             1.237,1.222,1.201,1.184,1.174,1.159            },
251            {23.26,17.15,11.52,8.049,6.375,4.11    246            {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
252             1.880,1.535,1.353,1.281,1.258,1.24    247             1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
253             1.252,1.234,1.212,1.194,1.183,1.17    248             1.252,1.234,1.212,1.194,1.183,1.170            },
254            {22.33,18.01,12.86,9.212,7.336,4.70    249            {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
255             2.015,1.602,1.385,1.297,1.268,1.25    250             2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
256             1.254,1.237,1.214,1.195,1.185,1.17    251             1.254,1.237,1.214,1.195,1.185,1.179            },
257            {33.91,24.13,15.71,10.80,8.507,5.46    252            {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
258             2.407,1.873,1.564,1.425,1.374,1.33    253             2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
259             1.312,1.288,1.258,1.235,1.221,1.20    254             1.312,1.288,1.258,1.235,1.221,1.205            },
260            {32.14,24.11,16.30,11.40,9.015,5.78    255            {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
261             2.490,1.925,1.596,1.447,1.391,1.34    256             2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
262             1.320,1.294,1.264,1.240,1.226,1.21    257             1.320,1.294,1.264,1.240,1.226,1.214            },
263            {29.51,24.07,17.19,12.28,9.766,6.23    258            {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
264             2.602,1.995,1.641,1.477,1.414,1.35    259             2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
265             1.328,1.302,1.270,1.245,1.231,1.23    260             1.328,1.302,1.270,1.245,1.231,1.233            },
266            {38.19,30.85,21.76,15.35,12.07,7.52    261            {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
267             2.926,2.188,1.763,1.563,1.484,1.40    262             2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
268             1.361,1.330,1.294,1.267,1.251,1.23    263             1.361,1.330,1.294,1.267,1.251,1.239            },
269            {49.71,39.80,27.96,19.63,15.36,9.40    264            {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
270             3.417,2.478,1.944,1.692,1.589,1.48    265             3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
271             1.409,1.372,1.330,1.298,1.280,1.25    266             1.409,1.372,1.330,1.298,1.280,1.258            },
272            {59.25,45.08,30.36,20.83,16.15,9.83    267            {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
273             3.641,2.648,2.064,1.779,1.661,1.53    268             3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
274             1.442,1.400,1.354,1.319,1.299,1.27    269             1.442,1.400,1.354,1.319,1.299,1.272            },
275            {56.38,44.29,30.50,21.18,16.51,10.1    270            {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
276             3.752,2.724,2.116,1.817,1.692,1.55    271             3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
277             1.456,1.412,1.364,1.328,1.307,1.28    272             1.456,1.412,1.364,1.328,1.307,1.282            }};
278                                                   273 
279   //data/corrections for T > Tlim                 274   //data/corrections for T > Tlim  
280                                                   275                                              
281   static const G4double hecorr[15] = {            276   static const G4double hecorr[15] = {
282     120.70, 117.50, 105.00, 92.92, 79.23,  74.    277     120.70, 117.50, 105.00, 92.92, 79.23,  74.510,  68.29,
283     57.39,  41.97,  36.14, 24.53, 10.21,  -7.8    278     57.39,  41.97,  36.14, 24.53, 10.21,  -7.855, -16.84,
284     -22.30};                                      279     -22.30};
285                                                   280 
286   G4double sigma;                                 281   G4double sigma;
287   SetParticle(part);                              282   SetParticle(part);
288                                                   283 
289   G4double Z23 = G4Pow::GetInstance()->Z23(G4l << 284   Z23 = G4Pow::GetInstance()->Z23(G4lrint(AtomicNumber));
290                                                   285 
291   // correction if particle .ne. e-/e+            286   // correction if particle .ne. e-/e+
292   // compute equivalent kinetic energy            287   // compute equivalent kinetic energy
293   // lambda depends on p*beta ....                288   // lambda depends on p*beta ....
294                                                   289 
295   G4double eKineticEnergy = kinEnergy;         << 290   G4double eKineticEnergy = KineticEnergy;
296                                                   291 
297   if(mass > CLHEP::electron_mass_c2)           << 292   if(mass > electron_mass_c2)
298   {                                               293   {
299      G4double TAU = kinEnergy/mass ;           << 294      G4double TAU = KineticEnergy/mass ;
300      G4double c = mass*TAU*(TAU+2.)/(CLHEP::el << 295      G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
301      G4double w = c-2.;                        << 296      G4double w = c-2. ;
302      G4double tau = 0.5*(w+std::sqrt(w*w+4.*c) << 297      G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
303      eKineticEnergy = CLHEP::electron_mass_c2* << 298      eKineticEnergy = electron_mass_c2*tau ;
304   }                                               299   }
305                                                   300 
306   G4double eTotalEnergy = eKineticEnergy + CLH << 301   G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
307   G4double beta2 = eKineticEnergy*(eTotalEnerg << 302   G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
308                                  /(eTotalEnerg    303                                  /(eTotalEnergy*eTotalEnergy);
309   G4double bg2   = eKineticEnergy*(eTotalEnerg << 304   G4double bg2   = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
310                                  /(CLHEP::elec << 305                                  /(electron_mass_c2*electron_mass_c2);
311                                                   306 
312   static const G4double epsfactor = 2.*CLHEP::    307   static const G4double epsfactor = 2.*CLHEP::electron_mass_c2*
313     CLHEP::electron_mass_c2*CLHEP::Bohr_radius    308     CLHEP::electron_mass_c2*CLHEP::Bohr_radius*CLHEP::Bohr_radius
314     /(CLHEP::hbarc*CLHEP::hbarc);                 309     /(CLHEP::hbarc*CLHEP::hbarc);
315   G4double eps = epsfactor*bg2/Z23;               310   G4double eps = epsfactor*bg2/Z23;
316                                                   311 
317   if     (eps<epsmin)  sigma = 2.*eps*eps;        312   if     (eps<epsmin)  sigma = 2.*eps*eps;
318   else if(eps<epsmax)  sigma = G4Log(1.+2.*eps    313   else if(eps<epsmax)  sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
319   else                 sigma = G4Log(2.*eps)-1    314   else                 sigma = G4Log(2.*eps)-1.+1./eps;
320                                                   315 
321   sigma *= chargeSquare*atomicNumber*atomicNum << 316   sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
322                                                   317 
323   // interpolate in AtomicNumber and beta2        318   // interpolate in AtomicNumber and beta2 
324   G4double c1,c2,cc1;                          << 319   G4double c1,c2,cc1,cc2,corr;
325                                                   320 
326   // get bin number in Z                          321   // get bin number in Z
327   G4int iZ = 14;                                  322   G4int iZ = 14;
328   // Loop checking, 03-Aug-2015, Vladimir Ivan    323   // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
329   while ((iZ>=0)&&(Zdat[iZ]>=atomicNumber)) {  << 324   while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
330                                                << 325   if (iZ==14)                               iZ = 13;
331   iZ = std::min(std::max(iZ, 0), 13);          << 326   if (iZ==-1)                               iZ = 0 ;
332                                                   327 
333   G4double ZZ1 = Zdat[iZ];                        328   G4double ZZ1 = Zdat[iZ];
334   G4double ZZ2 = Zdat[iZ+1];                      329   G4double ZZ2 = Zdat[iZ+1];
335   G4double ratZ = (atomicNumber-ZZ1)*(atomicNu << 330   G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
336                   ((ZZ2-ZZ1)*(ZZ2+ZZ1));          331                   ((ZZ2-ZZ1)*(ZZ2+ZZ1));
337                                                   332 
338   static const G4double Tlim = 10.*CLHEP::MeV;    333   static const G4double Tlim = 10.*CLHEP::MeV;
339   static const G4double sigmafactor =             334   static const G4double sigmafactor =
340     CLHEP::twopi*CLHEP::classic_electr_radius*    335     CLHEP::twopi*CLHEP::classic_electr_radius*CLHEP::classic_electr_radius;
341   static const G4double beta2lim = Tlim*(Tlim+    336   static const G4double beta2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
342     ((Tlim+CLHEP::electron_mass_c2)*(Tlim+CLHE    337     ((Tlim+CLHEP::electron_mass_c2)*(Tlim+CLHEP::electron_mass_c2));
343   static const G4double bg2lim   = Tlim*(Tlim+    338   static const G4double bg2lim   = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
344     (CLHEP::electron_mass_c2*CLHEP::electron_m    339     (CLHEP::electron_mass_c2*CLHEP::electron_mass_c2);
345                                                   340 
346   static const G4double sig0[15] = {              341   static const G4double sig0[15] = {
347     0.2672*CLHEP::barn,  0.5922*CLHEP::barn,      342     0.2672*CLHEP::barn,  0.5922*CLHEP::barn,  2.653*CLHEP::barn, 6.235*CLHEP::barn,
348     11.69*CLHEP::barn  , 13.24*CLHEP::barn  ,     343     11.69*CLHEP::barn  , 13.24*CLHEP::barn  , 16.12*CLHEP::barn, 23.00*CLHEP::barn,
349     35.13*CLHEP::barn  , 39.95*CLHEP::barn  ,     344     35.13*CLHEP::barn  , 39.95*CLHEP::barn  , 50.85*CLHEP::barn, 67.19*CLHEP::barn,
350     91.15*CLHEP::barn  , 104.4*CLHEP::barn  ,     345     91.15*CLHEP::barn  , 104.4*CLHEP::barn  , 113.1*CLHEP::barn};
351                                                   346 
352   static const G4double Tdat[22] = {              347   static const G4double Tdat[22] = { 
353     100*CLHEP::eV,  200*CLHEP::eV,  400*CLHEP:    348     100*CLHEP::eV,  200*CLHEP::eV,  400*CLHEP::eV,  700*CLHEP::eV,
354     1*CLHEP::keV,   2*CLHEP::keV,   4*CLHEP::k    349     1*CLHEP::keV,   2*CLHEP::keV,   4*CLHEP::keV,   7*CLHEP::keV,
355     10*CLHEP::keV,  20*CLHEP::keV,  40*CLHEP::    350     10*CLHEP::keV,  20*CLHEP::keV,  40*CLHEP::keV,  70*CLHEP::keV,
356     100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP:    351     100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP::keV, 700*CLHEP::keV,
357     1*CLHEP::MeV,   2*CLHEP::MeV,   4*CLHEP::M    352     1*CLHEP::MeV,   2*CLHEP::MeV,   4*CLHEP::MeV,   7*CLHEP::MeV,
358     10*CLHEP::MeV,  20*CLHEP::MeV};               353     10*CLHEP::MeV,  20*CLHEP::MeV};
359                                                   354 
360   if(eKineticEnergy <= Tlim)                      355   if(eKineticEnergy <= Tlim) 
361   {                                               356   {
362     // get bin number in T (beta2)                357     // get bin number in T (beta2)
363     G4int iT = 21;                                358     G4int iT = 21;
364     // Loop checking, 03-Aug-2015, Vladimir Iv    359     // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
365     while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)    360     while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
366                                                << 361     if(iT==21)                                  iT = 20;
367     iT = std::min(std::max(iT, 0), 20);        << 362     if(iT==-1)                                  iT = 0 ;
368                                                   363 
369     //  calculate betasquare values               364     //  calculate betasquare values
370     G4double T = Tdat[iT];                     << 365     G4double T = Tdat[iT],   E = T + electron_mass_c2;
371     G4double E = T + CLHEP::electron_mass_c2;  << 366     G4double b2small = T*(E+electron_mass_c2)/(E*E);
372     G4double b2small = T*(E+CLHEP::electron_ma << 367 
373                                                << 368     T = Tdat[iT+1]; E = T + electron_mass_c2;
374     T = Tdat[iT+1];                            << 369     G4double b2big = T*(E+electron_mass_c2)/(E*E);
375     E = T + CLHEP::electron_mass_c2;           << 
376     G4double b2big = T*(E+CLHEP::electron_mass << 
377     G4double ratb2 = (beta2-b2small)/(b2big-b2    370     G4double ratb2 = (beta2-b2small)/(b2big-b2small);
378                                                   371 
379     if (charge < 0.)                              372     if (charge < 0.)
380     {                                             373     {
381        c1 = celectron[iZ][iT];                    374        c1 = celectron[iZ][iT];
382        c2 = celectron[iZ+1][iT];                  375        c2 = celectron[iZ+1][iT];
383        cc1 = c1+ratZ*(c2-c1);                     376        cc1 = c1+ratZ*(c2-c1);
384                                                   377 
385        c1 = celectron[iZ][iT+1];                  378        c1 = celectron[iZ][iT+1];
386        c2 = celectron[iZ+1][iT+1];                379        c2 = celectron[iZ+1][iT+1];
                                                   >> 380        cc2 = c1+ratZ*(c2-c1);
                                                   >> 381 
                                                   >> 382        corr = cc1+ratb2*(cc2-cc1);
                                                   >> 383 
                                                   >> 384        sigma *= sigmafactor/corr;
387     }                                             385     }
388     else                                          386     else              
389     {                                             387     {
390        c1 = cpositron[iZ][iT];                    388        c1 = cpositron[iZ][iT];
391        c2 = cpositron[iZ+1][iT];                  389        c2 = cpositron[iZ+1][iT];
392        cc1 = c1+ratZ*(c2-c1);                     390        cc1 = c1+ratZ*(c2-c1);
393                                                   391 
394        c1 = cpositron[iZ][iT+1];                  392        c1 = cpositron[iZ][iT+1];
395        c2 = cpositron[iZ+1][iT+1];                393        c2 = cpositron[iZ+1][iT+1];
                                                   >> 394        cc2 = c1+ratZ*(c2-c1);
                                                   >> 395 
                                                   >> 396        corr = cc1+ratb2*(cc2-cc1);
                                                   >> 397 
                                                   >> 398        sigma *= sigmafactor/corr;
396     }                                             399     }
397     G4double cc2 = c1+ratZ*(c2-c1);            << 
398     sigma *= sigmafactor/(cc1+ratb2*(cc2-cc1)) << 
399   }                                               400   }
400   else                                            401   else
401   {                                               402   {
402     c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2    403     c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
403     c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(b    404     c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
404     if((atomicNumber >= ZZ1) && (atomicNumber  << 405     if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
405       sigma = c1+ratZ*(c2-c1) ;                   406       sigma = c1+ratZ*(c2-c1) ;
406     else if(atomicNumber < ZZ1)                << 407     else if(AtomicNumber < ZZ1)
407       sigma = atomicNumber*atomicNumber*c1/(ZZ << 408       sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
408     else if(atomicNumber > ZZ2)                << 409     else if(AtomicNumber > ZZ2)
409       sigma = atomicNumber*atomicNumber*c2/(ZZ << 410       sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
410   }                                               411   }
411   // low energy correction based on theory     << 
412   sigma *= (1.+0.30/(1.+std::sqrt(1000.*eKinet << 
413                                                << 
414   return sigma;                                   412   return sigma;
                                                   >> 413 
415 }                                                 414 }
416                                                   415 
417 //....oooOO0OOooo........oooOO0OOooo........oo    416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
418                                                   417 
419 void G4UrbanMscModel::StartTracking(G4Track* t    418 void G4UrbanMscModel::StartTracking(G4Track* track)
420 {                                                 419 {
421   SetParticle(track->GetDynamicParticle()->Get    420   SetParticle(track->GetDynamicParticle()->GetDefinition());
422   firstStep = true;                               421   firstStep = true; 
423   insideskin = false;                             422   insideskin = false;
424   fr = facrange;                                  423   fr = facrange;
425   tlimit = tgeom = rangeinit = geombig;        << 424   tlimit = tgeom = rangeinit = rangecut = geombig;
426   smallstep     = 1.e10;                          425   smallstep     = 1.e10;
427   stepmin       = tlimitminfix;                   426   stepmin       = tlimitminfix;
428   tlimitmin     = 10.*tlimitminfix;               427   tlimitmin     = 10.*tlimitminfix;            
429   rndmEngineMod = G4Random::getTheEngine();       428   rndmEngineMod = G4Random::getTheEngine();
430 }                                                 429 }
431                                                   430 
432 //....oooOO0OOooo........oooOO0OOooo........oo    431 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
433                                                   432 
434 G4double G4UrbanMscModel::ComputeTruePathLengt    433 G4double G4UrbanMscModel::ComputeTruePathLengthLimit(
435                              const G4Track& tr    434                              const G4Track& track,
436                              G4double& current    435                              G4double& currentMinimalStep)
437 {                                                 436 {
438   tPathLength = currentMinimalStep;               437   tPathLength = currentMinimalStep;
439   const G4DynamicParticle* dp = track.GetDynam    438   const G4DynamicParticle* dp = track.GetDynamicParticle();
440                                                   439   
441   G4StepPoint* sp = track.GetStep()->GetPreSte    440   G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
442   G4StepStatus stepStatus = sp->GetStepStatus(    441   G4StepStatus stepStatus = sp->GetStepStatus();
443   couple = track.GetMaterialCutsCouple();         442   couple = track.GetMaterialCutsCouple();
444   SetCurrentCouple(couple);                       443   SetCurrentCouple(couple); 
445   idx = couple->GetIndex();                    << 444   currentMaterialIndex = couple->GetIndex();
446   currentKinEnergy = dp->GetKineticEnergy();      445   currentKinEnergy = dp->GetKineticEnergy();
447   currentLogKinEnergy = dp->GetLogKineticEnerg << 446   currentRange = GetRange(particle,currentKinEnergy,couple);
448   currentRange = GetRange(particle,currentKinE << 447   lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
449   lambda0 = GetTransportMeanFreePath(particle, << 448   tPathLength = min(tPathLength,currentRange);
450                                                << 449   /*
451   tPathLength = std::min(tPathLength,currentRa << 
452   /*                                           << 
453   G4cout << "G4Urban::StepLimit tPathLength= "    450   G4cout << "G4Urban::StepLimit tPathLength= " << tPathLength 
454   << " range= " <<currentRange<< " lambda= "<<    451   << " range= " <<currentRange<< " lambda= "<<lambda0
455             <<G4endl;                             452             <<G4endl;
456   */                                              453   */
457   // extreme small step                        << 454   // set flag to default values
458   if(tPathLength < tlimitminfix) {             << 455   Zeff = couple->GetMaterial()->GetIonisation()->GetZeffective();
459     latDisplasment = false;                    << 456   //         couple->GetMaterial()->GetTotNbOfAtomsPerVolume();
460     return ConvertTrueToGeom(tPathLength, curr << 
461   }                                            << 
462                                                   457 
463   presafety = (stepStatus == fGeomBoundary) ?  << 458   if(Zold != Zeff)
464               : ComputeSafety(sp->GetPosition( << 459     UpdateCache();
465                                                   460   
466   // stop here if small step or range is less  << 461   // stop here if small step
467   if((tPathLength == currentRange && tPathLeng << 462   if(tPathLength < tlimitminfix) { 
468      tPathLength < tlimitminfix) {             << 
469     latDisplasment = false;                       463     latDisplasment = false;   
470     return ConvertTrueToGeom(tPathLength, curr    464     return ConvertTrueToGeom(tPathLength, currentMinimalStep); 
471   }                                               465   }
472                                                   466 
473   // upper limit for the straight line distanc    467   // upper limit for the straight line distance the particle can travel
474   // for electrons and positrons                  468   // for electrons and positrons
475   G4double distance = (mass < masslimite)      << 469   G4double distance = currentRange;
476     ? currentRange*msc[idx]->doverra           << 470   // for muons, hadrons
477     // for muons, hadrons                      << 471   if(mass > masslimite) {
478     : currentRange*msc[idx]->doverrb;          << 472     distance *= (1.15-9.76e-4*Zeff);
479                                                << 473   } else {
                                                   >> 474     distance *= (1.20-Zeff*(1.62e-2-9.22e-5*Zeff));
                                                   >> 475   }
                                                   >> 476   presafety = sp->GetSafety();
480   /*                                              477   /*  
481   G4cout << "G4Urban::StepLimit tPathLength= "    478   G4cout << "G4Urban::StepLimit tPathLength= " 
482             <<tPathLength<<" safety= " << pres    479             <<tPathLength<<" safety= " << presafety
483           << " range= " <<currentRange<< " lam    480           << " range= " <<currentRange<< " lambda= "<<lambda0
484             << " Alg: " << steppingAlgorithm <    481             << " Alg: " << steppingAlgorithm <<G4endl;
485   */                                              482   */
486   // far from geometry boundary                   483   // far from geometry boundary
487   if(distance < presafety)                        484   if(distance < presafety)
488     {                                             485     {
489       latDisplasment = false;                     486       latDisplasment = false;   
490       return ConvertTrueToGeom(tPathLength, cu    487       return ConvertTrueToGeom(tPathLength, currentMinimalStep);  
491     }                                             488     }
492                                                   489 
493   latDisplasment = latDisplasmentbackup;          490   latDisplasment = latDisplasmentbackup;
494   // ----------------------------------------- << 491   static const G4double invmev = 1.0/CLHEP::MeV;
495   // distance to boundary                      << 492   // standard  version
                                                   >> 493   //
496   if (steppingAlgorithm == fUseDistanceToBound    494   if (steppingAlgorithm == fUseDistanceToBoundary)
497     {                                             495     {
498       //compute geomlimit and presafety           496       //compute geomlimit and presafety 
499       geomlimit = ComputeGeomLimit(track, pres    497       geomlimit = ComputeGeomLimit(track, presafety, currentRange);
500       /*                                          498       /*
501         G4cout << "G4Urban::Distance to bounda    499         G4cout << "G4Urban::Distance to boundary geomlimit= "
502             <<geomlimit<<" safety= " << presaf    500             <<geomlimit<<" safety= " << presafety<<G4endl;
503       */                                          501       */
504                                                   502 
                                                   >> 503       // is it far from boundary ?
                                                   >> 504       if(distance < presafety)
                                                   >> 505         {
                                                   >> 506           latDisplasment = false;   
                                                   >> 507           return ConvertTrueToGeom(tPathLength, currentMinimalStep);   
                                                   >> 508         }
                                                   >> 509 
505       smallstep += 1.;                            510       smallstep += 1.;
506       insideskin = false;                         511       insideskin = false;
507       tgeom = geombig;                         << 
508                                                   512 
509       // initialisation at first step and at t << 513       // initialisation at firs step and at the boundary
510       if(firstStep || (stepStatus == fGeomBoun    514       if(firstStep || (stepStatus == fGeomBoundary))
511         {                                         515         {
512           rangeinit = currentRange;               516           rangeinit = currentRange;
513           if(!firstStep) { smallstep = 1.; }      517           if(!firstStep) { smallstep = 1.; }
514                                                   518 
                                                   >> 519           //define stepmin here (it depends on lambda!)
                                                   >> 520           //rough estimation of lambda_elastic/lambda_transport
                                                   >> 521           G4double rat = currentKinEnergy*invmev;
                                                   >> 522           rat = 1.e-3/(rat*(10.+rat)) ;
515           //stepmin ~ lambda_elastic              523           //stepmin ~ lambda_elastic
516           stepmin = ComputeStepmin();          << 524           stepmin = rat*lambda0;
517           skindepth = skin*stepmin;               525           skindepth = skin*stepmin;
518           tlimitmin = ComputeTlimitmin();      << 526           tlimitmin = max(10*stepmin,tlimitminfix);
519         /*                                        527         /* 
520           G4cout << "rangeinit= " << rangeinit    528           G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
521                  << " tlimitmin= " << tlimitmi    529                  << " tlimitmin= " << tlimitmin << " geomlimit= " 
522                  << geomlimit <<G4endl;           530                  << geomlimit <<G4endl;
523         */                                        531         */
524         }                                      << 532           // constraint from the geometry
525       // constraint from the geometry          << 533 
526       if((geomlimit < geombig) && (geomlimit > << 534           if((geomlimit < geombig) && (geomlimit > geommin))
527         {                                      << 535             {
528           // geomlimit is a geometrical step l << 536               // geomlimit is a geometrical step length
529           // transform it to true path length  << 537               // transform it to true path length (estimation)
530           if(lambda0 > geomlimit) {            << 538               if((1.-geomlimit/lambda0) > 0.)
531             geomlimit = -lambda0*G4Log(1.-geom << 539                 geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin ;
532           }                                    << 540 
533           tgeom = (stepStatus == fGeomBoundary << 541               if(stepStatus == fGeomBoundary)
534       : facrange*rangeinit + stepmin;          << 542                 tgeom = geomlimit/facgeom;
                                                   >> 543               else
                                                   >> 544                 tgeom = 2.*geomlimit/facgeom;
                                                   >> 545             }
                                                   >> 546           else
                                                   >> 547             tgeom = geombig;
535         }                                         548         }
536                                                   549 
537       //step limit                                550       //step limit 
538       tlimit = (currentRange > presafety) ?    << 551       tlimit = facrange*rangeinit;              
539         std::max(facrange*rangeinit, facsafety << 
540                                                   552 
541       //lower limit for tlimit                    553       //lower limit for tlimit
542       tlimit = std::min(std::max(tlimit,tlimit << 554       tlimit = max(tlimit,tlimitmin);
                                                   >> 555       tlimit = min(tlimit,tgeom); 
543       /*                                          556       /*
544       G4cout << "tgeom= " << tgeom << " geomli    557       G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit  
545             << " tlimit= " << tlimit << " pres    558             << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
546       */                                          559       */
547       // shortcut                                 560       // shortcut
548       if((tPathLength < tlimit) && (tPathLengt    561       if((tPathLength < tlimit) && (tPathLength < presafety) &&
549          (smallstep > skin) && (tPathLength <     562          (smallstep > skin) && (tPathLength < geomlimit-0.999*skindepth))
550       {                                           563       {
551         return ConvertTrueToGeom(tPathLength,     564         return ConvertTrueToGeom(tPathLength, currentMinimalStep);   
552       }                                           565       }
553                                                   566 
554       // step reduction near to boundary          567       // step reduction near to boundary
555       if(smallstep <= skin)                       568       if(smallstep <= skin)
556         {                                         569         {
557           tlimit = stepmin;                       570           tlimit = stepmin;
558           insideskin = true;                      571           insideskin = true;
559         }                                         572         }
560       else if(geomlimit < geombig)                573       else if(geomlimit < geombig)
561         {                                         574         {
562           if(geomlimit > skindepth)               575           if(geomlimit > skindepth)
563             {                                     576             {
564               tlimit = std::min(tlimit, geomli << 577               tlimit = min(tlimit, geomlimit-0.999*skindepth);
565             }                                     578             }
566           else                                    579           else
567             {                                     580             {
568               insideskin = true;                  581               insideskin = true;
569               tlimit = std::min(tlimit, stepmi << 582               tlimit = min(tlimit, stepmin);
570             }                                     583             }
571         }                                         584         }
572                                                   585 
573       tlimit = std::max(tlimit, stepmin);      << 586       tlimit = max(tlimit, stepmin); 
574                                                   587 
575       // randomise if not 'small' step and ste    588       // randomise if not 'small' step and step determined by msc
576       tPathLength = (tlimit < tPathLength && s << 589       if((tlimit < tPathLength) && (smallstep > skin) && !insideskin) 
577         ? std::min(tPathLength, Randomizetlimi << 590         { 
578   : std::min(tPathLength, tlimit);             << 591           tPathLength = min(tPathLength, Randomizetlimit());
579     }                                          << 592         }
580   // ----------------------------------------- << 593       else
581   // for simulation with or without magnetic f << 594         {  
582   // there no small step/single scattering at  << 595           tPathLength = min(tPathLength, tlimit); 
                                                   >> 596         }
                                                   >> 597 
                                                   >> 598     }
                                                   >> 599     // for 'normal' simulation with or without magnetic field 
                                                   >> 600     //  there no small step/single scattering at boundaries
583   else if(steppingAlgorithm == fUseSafety)        601   else if(steppingAlgorithm == fUseSafety)
584     {                                             602     {
                                                   >> 603       if(stepStatus != fGeomBoundary)  {
                                                   >> 604         presafety = ComputeSafety(sp->GetPosition(),tPathLength); 
                                                   >> 605       }
                                                   >> 606       /*
                                                   >> 607       G4cout << "presafety= " << presafety
                                                   >> 608              << " firstStep= " << firstStep
                                                   >> 609              << " stepStatus= " << stepStatus 
                                                   >> 610              << G4endl;
                                                   >> 611       */
                                                   >> 612       // is far from boundary
                                                   >> 613       if(distance < presafety)
                                                   >> 614         {
                                                   >> 615           latDisplasment = false;
                                                   >> 616           return ConvertTrueToGeom(tPathLength, currentMinimalStep);  
                                                   >> 617         }
                                                   >> 618 
585       if(firstStep || (stepStatus == fGeomBoun    619       if(firstStep || (stepStatus == fGeomBoundary)) {
586         rangeinit = currentRange;                 620         rangeinit = currentRange;
587         fr = facrange;                            621         fr = facrange;
588         // stepping for e+/e- only (not for mu << 622         // 9.1 like stepping for e+/e- only (not for muons,hadrons)
589         if(mass < masslimite)                     623         if(mass < masslimite) 
590           {                                       624           {
591             rangeinit = std::max(rangeinit, la << 625             rangeinit = max(rangeinit, lambda0);
592             if(lambda0 > lambdalimit) {           626             if(lambda0 > lambdalimit) {
593               fr *= (0.75+0.25*lambda0/lambdal    627               fr *= (0.75+0.25*lambda0/lambdalimit);
594             }                                     628             }
595           }                                       629           }
596         //lower limit for tlimit                  630         //lower limit for tlimit
597         stepmin = ComputeStepmin();            << 631         G4double rat = currentKinEnergy*invmev;
598         tlimitmin = ComputeTlimitmin();        << 632         rat = 1.e-3/(rat*(10 + rat)) ;
                                                   >> 633         stepmin = lambda0*rat;
                                                   >> 634         tlimitmin = max(10*stepmin, tlimitminfix);
599       }                                           635       }
600                                                   636 
601       //step limit                                637       //step limit
602       tlimit = (currentRange > presafety) ?    << 638       tlimit = max(fr*rangeinit, facsafety*presafety);
603         std::max(fr*rangeinit, facsafety*presa << 
604                                                   639   
605       //lower limit for tlimit                    640       //lower limit for tlimit
606       tlimit = std::max(tlimit, tlimitmin);    << 641       tlimit = max(tlimit, tlimitmin); 
607                                                   642      
608       // randomise if step determined by msc      643       // randomise if step determined by msc
609       tPathLength = (tlimit < tPathLength) ?   << 644       if(tlimit < tPathLength)
610         std::min(tPathLength, Randomizetlimit( << 645       {
                                                   >> 646         tPathLength = min(tPathLength, Randomizetlimit());
                                                   >> 647       }
                                                   >> 648       else { tPathLength = min(tPathLength, tlimit); }
611     }                                             649     }
612   // ----------------------------------------- << 650   // new stepping mode UseSafetyPlus
613   // for simulation with or without magnetic f << 
614   // there is small step/single scattering at  << 
615   else if(steppingAlgorithm == fUseSafetyPlus)    651   else if(steppingAlgorithm == fUseSafetyPlus)
616     {                                             652     {
                                                   >> 653       if(stepStatus != fGeomBoundary)  {
                                                   >> 654         presafety = ComputeSafety(sp->GetPosition(),tPathLength);
                                                   >> 655       }
                                                   >> 656       /*
                                                   >> 657       G4cout << "presafety= " << presafety
                                                   >> 658              << " firstStep= " << firstStep
                                                   >> 659              << " stepStatus= " << stepStatus
                                                   >> 660              << G4endl;
                                                   >> 661       */
                                                   >> 662       // is far from boundary
                                                   >> 663       if(distance < presafety)
                                                   >> 664         {
                                                   >> 665           latDisplasment = false;
                                                   >> 666           return ConvertTrueToGeom(tPathLength, currentMinimalStep);
                                                   >> 667         }
                                                   >> 668 
617       if(firstStep || (stepStatus == fGeomBoun    669       if(firstStep || (stepStatus == fGeomBoundary)) {
618         rangeinit = currentRange;                 670         rangeinit = currentRange;
619         fr = facrange;                            671         fr = facrange;
                                                   >> 672         rangecut = geombig;
620         if(mass < masslimite)                     673         if(mass < masslimite)
621           {                                       674           {
                                                   >> 675             G4int index = 1;
                                                   >> 676             if(charge > 0.) index = 2;
                                                   >> 677             rangecut = couple->GetProductionCuts()->GetProductionCut(index);
622             if(lambda0 > lambdalimit) {           678             if(lambda0 > lambdalimit) {
623               fr *= (0.84+0.16*lambda0/lambdal    679               fr *= (0.84+0.16*lambda0/lambdalimit);
624             }                                     680             }
625           }                                       681           }
626         //lower limit for tlimit                  682         //lower limit for tlimit
627         stepmin = ComputeStepmin();            << 683         G4double rat = currentKinEnergy*invmev;
628         tlimitmin = ComputeTlimitmin();        << 684         rat = 1.e-3/(rat*(10 + rat)) ;
                                                   >> 685         stepmin = lambda0*rat;
                                                   >> 686         tlimitmin = max(10*stepmin, tlimitminfix);
629       }                                           687       }
630       //step limit                                688       //step limit
631       tlimit = (currentRange > presafety) ?    << 689       tlimit = max(fr*rangeinit, facsafety*presafety);
632   std::max(fr*rangeinit, facsafety*presafety)  << 
633                                                   690 
634       //lower limit for tlimit                    691       //lower limit for tlimit
635       tlimit = std::max(tlimit, tlimitmin);    << 692       tlimit = max(tlimit, tlimitmin);
636                                                   693 
637       // condition for tPathLength from drr an    694       // condition for tPathLength from drr and finalr
638       if(currentRange > finalr) {                 695       if(currentRange > finalr) {
639         G4double tmax = drr*currentRange+         696         G4double tmax = drr*currentRange+
640                         finalr*(1.-drr)*(2.-fi    697                         finalr*(1.-drr)*(2.-finalr/currentRange);
641         tPathLength = std::min(tPathLength,tma << 698         tPathLength = min(tPathLength,tmax); 
                                                   >> 699       }
                                                   >> 700 
                                                   >> 701       // condition safety
                                                   >> 702       if(currentRange > rangecut) {
                                                   >> 703         if(firstStep) {
                                                   >> 704           tPathLength = min(tPathLength,facsafety*presafety);
                                                   >> 705         } else if(stepStatus != fGeomBoundary && presafety > stepmin) {
                                                   >> 706           tPathLength = min(tPathLength,presafety);
                                                   >> 707         } 
642       }                                           708       }
643                                                   709 
644       // randomise if step determined by msc      710       // randomise if step determined by msc
645       tPathLength = (tlimit < tPathLength) ?   << 711       if(tPathLength < tlimit)
646         std::min(tPathLength, Randomizetlimit( << 712       {
                                                   >> 713         tPathLength = min(tPathLength, Randomizetlimit());
                                                   >> 714       }
                                                   >> 715       else { tPathLength = min(tPathLength, tlimit); }
647     }                                             716     }
648                                                   717 
649   // ----------------------------------------- << 718   // version similar to 7.1 (needed for some experiments)
650   // simple step limitation                    << 
651   else                                            719   else
652     {                                             720     {
653       if (stepStatus == fGeomBoundary)            721       if (stepStatus == fGeomBoundary)
654         {                                         722         {
655           tlimit = (currentRange > lambda0)    << 723           if (currentRange > lambda0) { tlimit = facrange*currentRange; }
656       ? facrange*currentRange : facrange*lambd << 724           else                        { tlimit = facrange*lambda0; }
657           tlimit = std::max(tlimit, tlimitmin) << 725 
                                                   >> 726           tlimit = max(tlimit, tlimitmin);
658         }                                         727         }
659       // randomise if step determined by msc      728       // randomise if step determined by msc
660       tPathLength = (tlimit < tPathLength) ?   << 729       if(tlimit < tPathLength)                      
661         std::min(tPathLength, Randomizetlimit( << 730       {
                                                   >> 731         tPathLength = min(tPathLength, Randomizetlimit());
                                                   >> 732       }
                                                   >> 733       else { tPathLength = min(tPathLength, tlimit); }
662     }                                             734     }
663                                                << 
664   // ----------------------------------------- << 
665   firstStep = false;                              735   firstStep = false; 
666   return ConvertTrueToGeom(tPathLength, curren    736   return ConvertTrueToGeom(tPathLength, currentMinimalStep);
667 }                                                 737 }
668                                                   738 
669 //....oooOO0OOooo........oooOO0OOooo........oo    739 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
670                                                   740 
671 G4double G4UrbanMscModel::ComputeGeomPathLengt    741 G4double G4UrbanMscModel::ComputeGeomPathLength(G4double)
672 {                                                 742 {
673   lambdaeff = lambda0;                            743   lambdaeff = lambda0;
674   par1 = -1. ;                                    744   par1 = -1. ;  
675   par2 = par3 = 0. ;                              745   par2 = par3 = 0. ;  
676                                                   746 
677   // this correction needed to run MSC with eI    747   // this correction needed to run MSC with eIoni and eBrem inactivated
678   // and makes no harm for a normal run           748   // and makes no harm for a normal run
679   tPathLength = std::min(tPathLength,currentRa    749   tPathLength = std::min(tPathLength,currentRange); 
680                                                   750 
681   //  do the true -> geom transformation          751   //  do the true -> geom transformation
682   zPathLength = tPathLength;                      752   zPathLength = tPathLength;
683                                                   753 
684   // z = t for very small tPathLength             754   // z = t for very small tPathLength
685   if(tPathLength < tlimitminfix2) return zPath    755   if(tPathLength < tlimitminfix2) return zPathLength;
686                                                   756 
                                                   >> 757   // VI: it is already checked
                                                   >> 758   // if(tPathLength > currentRange)
                                                   >> 759   //  tPathLength = currentRange ;
687   /*                                              760   /*
688   G4cout << "ComputeGeomPathLength: tpl= " <<     761   G4cout << "ComputeGeomPathLength: tpl= " <<  tPathLength
689          << " R= " << currentRange << " L0= "     762          << " R= " << currentRange << " L0= " << lambda0
690          << " E= " << currentKinEnergy << "  "    763          << " E= " << currentKinEnergy << "  " 
691          << particle->GetParticleName() << G4e    764          << particle->GetParticleName() << G4endl;
692   */                                              765   */
693   G4double tau = tPathLength/lambda0 ;            766   G4double tau = tPathLength/lambda0 ;
694                                                   767 
695   if ((tau <= tausmall) || insideskin) {          768   if ((tau <= tausmall) || insideskin) {
696     zPathLength = std::min(tPathLength, lambda << 769     zPathLength = min(tPathLength, lambda0); 
697                                                   770 
698   } else if (tPathLength < currentRange*dtrl)  << 771   } else  if (tPathLength < currentRange*dtrl) {
699     zPathLength = (tau < taulim) ? tPathLength << 772     if(tau < taulim) zPathLength = tPathLength*(1.-0.5*tau) ;
700       : lambda0*(1.-G4Exp(-tau));              << 773     else             zPathLength = lambda0*(1.-G4Exp(-tau));
701                                                   774 
702   } else if(currentKinEnergy < mass || tPathLe    775   } else if(currentKinEnergy < mass || tPathLength == currentRange)  {
703     par1 = 1./currentRange;                    << 776     par1 = 1./currentRange ;
704     par2 = currentRange/lambda0;               << 777     par2 = 1./(par1*lambda0) ;
705     par3 = 1.+par2;                            << 778     par3 = 1.+par2 ;
706     if(tPathLength < currentRange) {              779     if(tPathLength < currentRange) {
707       zPathLength =                               780       zPathLength = 
708         (1.-G4Exp(par3*G4Log(1.-tPathLength/cu    781         (1.-G4Exp(par3*G4Log(1.-tPathLength/currentRange)))/(par1*par3);
709     } else {                                      782     } else {
710       zPathLength = 1./(par1*par3);               783       zPathLength = 1./(par1*par3);
711     }                                             784     }
712                                                   785 
713   } else {                                        786   } else {
714     G4double rfin = std::max(currentRange-tPat << 787     G4double rfin = max(currentRange-tPathLength, 0.01*currentRange);
715     G4double T1 = GetEnergy(particle,rfin,coup    788     G4double T1 = GetEnergy(particle,rfin,couple);
716     G4double lambda1 = GetTransportMeanFreePat    789     G4double lambda1 = GetTransportMeanFreePath(particle,T1);
717                                                   790 
718     par1 = (lambda0-lambda1)/(lambda0*tPathLen    791     par1 = (lambda0-lambda1)/(lambda0*tPathLength);
719     //G4cout << "par1= " << par1 << " L1= " <<    792     //G4cout << "par1= " << par1 << " L1= " << lambda1 << G4endl;
720     par2 = 1./(par1*lambda0);                     793     par2 = 1./(par1*lambda0);
721     par3 = 1.+par2;                            << 794     par3 = 1.+par2 ;
722     zPathLength = (1.-G4Exp(par3*G4Log(lambda1    795     zPathLength = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3);
723   }                                               796   }
724                                                   797 
725   zPathLength = std::min(zPathLength, lambda0) << 798   zPathLength = min(zPathLength, lambda0);
726   //G4cout<< "zPathLength= "<< zPathLength<< "    799   //G4cout<< "zPathLength= "<< zPathLength<< " L0= " << lambda0 << G4endl;
727   return zPathLength;                             800   return zPathLength;
728 }                                                 801 }
729                                                   802 
730 //....oooOO0OOooo........oooOO0OOooo........oo    803 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
731                                                   804 
732 G4double G4UrbanMscModel::ComputeTrueStepLengt    805 G4double G4UrbanMscModel::ComputeTrueStepLength(G4double geomStepLength)
733 {                                                 806 {
734   // step defined other than transportation       807   // step defined other than transportation 
735   if(geomStepLength == zPathLength) {             808   if(geomStepLength == zPathLength) { 
736     //G4cout << "Urban::ComputeTrueLength: tPa    809     //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength 
737     //           << " step= " << geomStepLengt    810     //           << " step= " << geomStepLength << " *** " << G4endl;
738     return tPathLength;                           811     return tPathLength; 
739   }                                               812   }
740                                                   813 
741   zPathLength = geomStepLength;                   814   zPathLength = geomStepLength;
742                                                   815 
743   // t = z for very small step                    816   // t = z for very small step
744   if(geomStepLength < tlimitminfix2) {            817   if(geomStepLength < tlimitminfix2) { 
745     tPathLength = geomStepLength;                 818     tPathLength = geomStepLength; 
746                                                   819   
747   // recalculation                                820   // recalculation
748   } else {                                        821   } else {
749                                                   822 
750     G4double tlength = geomStepLength;            823     G4double tlength = geomStepLength;
751     if((geomStepLength > lambda0*tausmall) &&     824     if((geomStepLength > lambda0*tausmall) && !insideskin) {
752                                                   825 
753       if(par1 <  0.) {                            826       if(par1 <  0.) {
754         tlength = -lambda0*G4Log(1.-geomStepLe    827         tlength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
755       } else {                                    828       } else {
756         const G4double par4 = par1*par3;       << 829         if(par1*par3*geomStepLength < 1.) {
757         if(par4*geomStepLength < 1.) {         << 830           tlength = (1.-G4Exp(G4Log(1.-par1*par3*geomStepLength)/par3))/par1 ;
758           tlength = (1.-G4Exp(G4Log(1.-par4*ge << 
759         } else {                                  831         } else {
760           tlength = currentRange;                 832           tlength = currentRange;
761         }                                         833         }
762       }                                           834       }
763                                                   835 
764       if(tlength < geomStepLength)   { tlength    836       if(tlength < geomStepLength)   { tlength = geomStepLength; }
765       else if(tlength > tPathLength) { tlength    837       else if(tlength > tPathLength) { tlength = tPathLength; }
766     }                                             838     }  
767     tPathLength = tlength;                        839     tPathLength = tlength; 
768   }                                               840   }
769   //G4cout << "Urban::ComputeTrueLength: tPath    841   //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength 
770   //         << " step= " << geomStepLength <<    842   //         << " step= " << geomStepLength << " &&& " << G4endl;
771                                                   843 
772   return tPathLength;                             844   return tPathLength;
773 }                                                 845 }
774                                                   846 
775 //....oooOO0OOooo........oooOO0OOooo........oo    847 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
776                                                   848 
777 G4ThreeVector&                                    849 G4ThreeVector& 
778 G4UrbanMscModel::SampleScattering(const G4Thre    850 G4UrbanMscModel::SampleScattering(const G4ThreeVector& oldDirection,
779                                   G4double /*s    851                                   G4double /*safety*/)
780 {                                                 852 {
781   fDisplacement.set(0.0,0.0,0.0);                 853   fDisplacement.set(0.0,0.0,0.0);
782   if(tPathLength >= currentRange) { return fDi << 854   G4double kineticEnergy = currentKinEnergy;
783                                                << 
784   G4double kinEnergy = currentKinEnergy;       << 
785   if (tPathLength > currentRange*dtrl) {          855   if (tPathLength > currentRange*dtrl) {
786     kinEnergy = GetEnergy(particle,currentRang << 856     kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
787   } else if(tPathLength > currentRange*0.01) { << 857   } else {
788     kinEnergy -= tPathLength*GetDEDX(particle, << 858     kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
789                                      currentLo << 
790   }                                               859   }
791                                                   860 
792   if((tPathLength <= tlimitminfix) || (tPathLe << 861   if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
793      (kinEnergy <= CLHEP::eV)) { return fDispl << 862      (tPathLength < tausmall*lambda0)) { return fDisplacement; }
794                                                   863 
795   G4double cth = SampleCosineTheta(tPathLength << 864   G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
796                                                   865 
797   // protection against 'bad' cth values          866   // protection against 'bad' cth values
798   if(std::abs(cth) >= 1.0) { return fDisplacem    867   if(std::abs(cth) >= 1.0) { return fDisplacement; } 
799                                                   868 
800   G4double sth = std::sqrt((1.0 - cth)*(1.0 +  << 869   /*
801   G4double phi = CLHEP::twopi*rndmEngineMod->f << 870   if(cth < 1.0 - 1000*tPathLength/lambda0 && cth < 0.5 &&
802   G4ThreeVector newDirection(sth*std::cos(phi) << 871      kineticEnergy > 20*MeV) { 
                                                   >> 872     G4cout << "### G4UrbanMscModel::SampleScattering for "
                                                   >> 873            << particle->GetParticleName()
                                                   >> 874            << " E(MeV)= " << kineticEnergy/MeV
                                                   >> 875            << " Step(mm)= " << tPathLength/mm
                                                   >> 876            << " in " << CurrentCouple()->GetMaterial()->GetName()
                                                   >> 877            << " CosTheta= " << cth << G4endl;
                                                   >> 878   }
                                                   >> 879   */
                                                   >> 880   G4double sth  = sqrt((1.0 - cth)*(1.0 + cth));
                                                   >> 881   G4double phi  = twopi*rndmEngineMod->flat(); 
                                                   >> 882   G4double dirx = sth*cos(phi);
                                                   >> 883   G4double diry = sth*sin(phi);
                                                   >> 884 
                                                   >> 885   G4ThreeVector newDirection(dirx,diry,cth);
803   newDirection.rotateUz(oldDirection);            886   newDirection.rotateUz(oldDirection);
804                                                   887 
805   fParticleChange->ProposeMomentumDirection(ne    888   fParticleChange->ProposeMomentumDirection(newDirection);
806   /*                                              889   /*
807   G4cout << "G4UrbanMscModel::SampleSecondarie    890   G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
808          << " sinTheta= " << sth << " safety(m    891          << " sinTheta= " << sth << " safety(mm)= " << safety
809          << " trueStep(mm)= " << tPathLength      892          << " trueStep(mm)= " << tPathLength
810          << " geomStep(mm)= " << zPathLength      893          << " geomStep(mm)= " << zPathLength
811          << G4endl;                               894          << G4endl;
812   */                                              895   */
813                                                   896 
814   if (latDisplasment && currentTau >= tausmall    897   if (latDisplasment && currentTau >= tausmall) {
815     if(dispAlg96) { SampleDisplacement(sth, ph    898     if(dispAlg96) { SampleDisplacement(sth, phi); }
816     else          { SampleDisplacementNew(cth,    899     else          { SampleDisplacementNew(cth, phi); }
817     fDisplacement.rotateUz(oldDirection);         900     fDisplacement.rotateUz(oldDirection);
818   }                                               901   }
819   return fDisplacement;                           902   return fDisplacement;
820 }                                                 903 }
821                                                   904 
822 //....oooOO0OOooo........oooOO0OOooo........oo    905 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
823                                                   906 
824 G4double G4UrbanMscModel::SampleCosineTheta(G4    907 G4double G4UrbanMscModel::SampleCosineTheta(G4double trueStepLength,
825                                             G4 << 908                                             G4double KineticEnergy)
826 {                                                 909 {
827   G4double cth = 1.0;                          << 910   G4double cth = 1. ;
828   G4double tau = trueStepLength/lambda0;          911   G4double tau = trueStepLength/lambda0;
                                                   >> 912   currentTau   = tau;
                                                   >> 913   lambdaeff    = lambda0;
829                                                   914 
830   // mean tau value                            << 915   G4double lambda1 = GetTransportMeanFreePath(particle,KineticEnergy);
831   if(currentKinEnergy != kinEnergy) {          << 916   if(std::abs(lambda1 - lambda0) > lambda0*0.01 && lambda1 > 0.)
832     G4double lambda1 = GetTransportMeanFreePat << 917   {
833     if(std::abs(lambda1 - lambda0) > lambda0*0 << 918     // mean tau value
834       tau = trueStepLength*G4Log(lambda0/lambd << 919     tau = trueStepLength*G4Log(lambda0/lambda1)/(lambda0-lambda1);
835     }                                          << 
836   }                                               920   }
837                                                   921 
838   currentTau = tau;                            << 922   currentTau = tau ;
839   lambdaeff = trueStepLength/currentTau;          923   lambdaeff = trueStepLength/currentTau;
840   currentRadLength = couple->GetMaterial()->Ge    924   currentRadLength = couple->GetMaterial()->GetRadlen();
841                                                   925 
842   if (tau >= taubig) { cth = -1.+2.*rndmEngine    926   if (tau >= taubig) { cth = -1.+2.*rndmEngineMod->flat(); }
843   else if (tau >= tausmall) {                     927   else if (tau >= tausmall) {
844     static const G4double numlim = 0.01;          928     static const G4double numlim = 0.01;
845     static const G4double onethird = 1./3.;    << 929     G4double xmeanth, x2meanth;
846     if(tau < numlim) {                            930     if(tau < numlim) {
847       xmeanth = 1.0 - tau*(1.0 - 0.5*tau);        931       xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
848       x2meanth= 1.0 - tau*(5.0 - 6.25*tau)*one << 932       x2meanth= 1.0 - tau*(5.0 - 6.25*tau)/3.;
849     } else {                                      933     } else {
850       xmeanth = G4Exp(-tau);                      934       xmeanth = G4Exp(-tau);
851       x2meanth = (1.+2.*G4Exp(-2.5*tau))*oneth << 935       x2meanth = (1.+2.*G4Exp(-2.5*tau))/3.;
852     }                                             936     }
853                                                   937 
854     // too large step of low-energy particle      938     // too large step of low-energy particle
855     G4double relloss = 1. - kinEnergy/currentK << 939     G4double relloss = 1. - KineticEnergy/currentKinEnergy;
856     static const G4double rellossmax= 0.50;       940     static const G4double rellossmax= 0.50;
857     if(relloss > rellossmax) {                    941     if(relloss > rellossmax) {
858       return SimpleScattering();               << 942       return SimpleScattering(xmeanth,x2meanth);
859     }                                             943     }
860     // is step extreme small ?                    944     // is step extreme small ?
861     G4bool extremesmallstep = false;           << 945     G4bool extremesmallstep = false ;
862     G4double tsmall = std::min(tlimitmin,lambd    946     G4double tsmall = std::min(tlimitmin,lambdalimit);
863                                                << 947     G4double theta0 = 0.;
864     G4double theta0;                           << 
865     if(trueStepLength > tsmall) {                 948     if(trueStepLength > tsmall) {
866       theta0 = ComputeTheta0(trueStepLength,ki << 949       theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
867     } else {                                      950     } else {
868       theta0 = std::sqrt(trueStepLength/tsmall << 951       theta0 = sqrt(trueStepLength/tsmall)*ComputeTheta0(tsmall,KineticEnergy);
869   *ComputeTheta0(tsmall,kinEnergy);            << 952       extremesmallstep = true ;
870       extremesmallstep = true;                 << 
871     }                                             953     }
872                                                   954 
873     static const G4double onesixth = 1./6.;    << 955     static const G4double theta0max = CLHEP::pi/6.;
874     static const G4double one12th = 1./12.;    << 956     //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max 
875     static const G4double theta0max = CLHEP::p << 957     //             << "  sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
876                                                   958 
877     // protection for very small angles           959     // protection for very small angles
878     G4double theta2 = theta0*theta0;              960     G4double theta2 = theta0*theta0;
879                                                   961 
880     if(theta2 < tausmall) { return cth; }         962     if(theta2 < tausmall) { return cth; }
881     if(theta0 > theta0max) { return SimpleScat << 963     
                                                   >> 964     if(theta0 > theta0max) {
                                                   >> 965       return SimpleScattering(xmeanth,x2meanth);
                                                   >> 966     }
882                                                   967 
883     G4double x = theta2*(1.0 - theta2*one12th) << 968     G4double x = theta2*(1.0 - theta2/12.);
884     if(theta2 > numlim) {                         969     if(theta2 > numlim) {
885       G4double sth = 2*std::sin(0.5*theta0);   << 970       G4double sth = 2*sin(0.5*theta0);
886       x = sth*sth;                                971       x = sth*sth;
887     }                                             972     }
888                                                   973 
889     // parameter for tail                         974     // parameter for tail
890     G4double ltau = G4Log(tau);                << 975     G4double ltau= G4Log(tau);
891     G4double u = !extremesmallstep ? G4Exp(lta << 976     G4double u   = G4Exp(ltau/6.);
892       : G4Exp(G4Log(tsmall/lambda0)*onesixth); << 977     if(extremesmallstep) { u = G4Exp(G4Log(tsmall/lambda0)/6.); }
893                                                << 
894     G4double xx  = G4Log(lambdaeff/currentRadL    978     G4double xx  = G4Log(lambdaeff/currentRadLength);
895     G4double xsi = msc[idx]->coeffc1 +         << 979     G4double xsi = coeffc1+u*(coeffc2+coeffc3*u)+coeffc4*xx;
896       u*(msc[idx]->coeffc2+msc[idx]->coeffc3*u << 
897                                                   980 
898     // tail should not be too big                 981     // tail should not be too big
899     xsi = std::max(xsi, 1.9);                  << 982     if(xsi < 1.9) { 
900       /*                                          983       /*
901       if(KineticEnergy > 20*MeV && xsi < 1.6)     984       if(KineticEnergy > 20*MeV && xsi < 1.6) {
902         G4cout << "G4UrbanMscModel::SampleCosi    985         G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= " 
903                << KineticEnergy/GeV               986                << KineticEnergy/GeV 
904                << " !!** c= " << xsi              987                << " !!** c= " << xsi
905                << " **!! length(mm)= " << true    988                << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff 
906                << " " << couple->GetMaterial()    989                << " " << couple->GetMaterial()->GetName()
907                << " tau= " << tau << G4endl;      990                << " tau= " << tau << G4endl;
908       }                                           991       }
909       */                                          992       */
                                                   >> 993       xsi = 1.9; 
                                                   >> 994     }
910                                                   995 
911     G4double c = xsi;                             996     G4double c = xsi;
912                                                   997 
913     if(std::abs(c-3.) < 0.001)      { c = 3.00    998     if(std::abs(c-3.) < 0.001)      { c = 3.001; }
914     else if(std::abs(c-2.) < 0.001) { c = 2.00    999     else if(std::abs(c-2.) < 0.001) { c = 2.001; }
915                                                   1000 
916     G4double c1 = c-1.;                           1001     G4double c1 = c-1.;
                                                   >> 1002 
917     G4double ea = G4Exp(-xsi);                    1003     G4double ea = G4Exp(-xsi);
918     G4double eaa = 1.-ea ;                        1004     G4double eaa = 1.-ea ;
919     G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/ea    1005     G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
920     G4double x0 = 1. - xsi*x;                     1006     G4double x0 = 1. - xsi*x;
921                                                   1007 
922     // G4cout << " xmean1= " << xmean1 << "  x    1008     // G4cout << " xmean1= " << xmean1 << "  xmeanth= " << xmeanth << G4endl;
923                                                   1009 
924     if(xmean1 <= 0.999*xmeanth) { return Simpl << 1010     if(xmean1 <= 0.999*xmeanth) {
925                                                << 1011       return SimpleScattering(xmeanth,x2meanth);
                                                   >> 1012     }
926     //from continuity of derivatives              1013     //from continuity of derivatives
927     G4double b = 1.+(c-xsi)*x;                    1014     G4double b = 1.+(c-xsi)*x;
928                                                   1015 
929     G4double b1 = b+1.;                           1016     G4double b1 = b+1.;
930     G4double bx = c*x;                            1017     G4double bx = c*x;
931                                                   1018 
932     G4double eb1 = G4Exp(G4Log(b1)*c1);           1019     G4double eb1 = G4Exp(G4Log(b1)*c1);
933     G4double ebx = G4Exp(G4Log(bx)*c1);           1020     G4double ebx = G4Exp(G4Log(bx)*c1);
934     G4double d = ebx/eb1;                         1021     G4double d = ebx/eb1;
935                                                   1022 
936     G4double xmean2 = (x0 + d - (bx - b1*d)/(c    1023     G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
937                                                   1024 
938     G4double f1x0 = ea/eaa;                       1025     G4double f1x0 = ea/eaa;
939     G4double f2x0 = c1/(c*(1. - d));              1026     G4double f2x0 = c1/(c*(1. - d));
940     G4double prob = f2x0/(f1x0+f2x0);             1027     G4double prob = f2x0/(f1x0+f2x0);
941                                                   1028 
942     G4double qprob = xmeanth/(prob*xmean1+(1.-    1029     G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
943                                                   1030 
944     // sampling of costheta                       1031     // sampling of costheta
945     //G4cout << "c= " << c << " qprob= " << qp    1032     //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
946     // << " c1= " << c1 << " b1= " << b1 << "     1033     // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
947     //             << G4endl;                     1034     //             << G4endl;
948     rndmEngineMod->flatArray(2, rndmarray);    << 1035     if(rndmEngineMod->flat() < qprob)
949     if(rndmarray[0] < qprob)                   << 
950     {                                             1036     {
951       G4double var = 0;                           1037       G4double var = 0;
952       if(rndmarray[1] < prob) {                << 1038       if(rndmEngineMod->flat() < prob) {
953         cth = 1.+G4Log(ea+rndmEngineMod->flat(    1039         cth = 1.+G4Log(ea+rndmEngineMod->flat()*eaa)*x;
954       } else {                                    1040       } else {
955         var = (1.0 - d)*rndmEngineMod->flat();    1041         var = (1.0 - d)*rndmEngineMod->flat();
956         if(var < numlim*d) {                      1042         if(var < numlim*d) {
957           var /= (d*c1);                          1043           var /= (d*c1); 
958           cth = -1.0 + var*(1.0 - 0.5*var*c)*(    1044           cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
959         } else {                                  1045         } else {
960           cth = 1. + x*(c - xsi - c*G4Exp(-G4L    1046           cth = 1. + x*(c - xsi - c*G4Exp(-G4Log(var + d)/c1));
961         }                                         1047         }
962       }                                           1048       } 
963     } else {                                   << 1049       /*
964       cth = -1.+2.*rndmarray[1];               << 1050       if(KineticEnergy > 5*GeV && cth < 0.9) {
                                                   >> 1051         G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= " 
                                                   >> 1052                << KineticEnergy/GeV 
                                                   >> 1053                << " 1-cosT= " << 1 - cth
                                                   >> 1054                << " length(mm)= " << trueStepLength << " Zeff= " << Zeff 
                                                   >> 1055                << " tau= " << tau
                                                   >> 1056                << " prob= " << prob << " var= " << var << G4endl;
                                                   >> 1057         G4cout << "  c= " << c << " qprob= " << qprob << " eb1= " << eb1
                                                   >> 1058                << " ebx= " << ebx
                                                   >> 1059                << " c1= " << c1 << " b= " << b << " b1= " << b1 
                                                   >> 1060                << " bx= " << bx << " d= " << d
                                                   >> 1061                << " ea= " << ea << " eaa= " << eaa << G4endl;
                                                   >> 1062       }
                                                   >> 1063       */
                                                   >> 1064     }
                                                   >> 1065     else {
                                                   >> 1066       cth = -1.+2.*rndmEngineMod->flat();
                                                   >> 1067       /*
                                                   >> 1068       if(KineticEnergy > 5*GeV) {
                                                   >> 1069         G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= " 
                                                   >> 1070                << KineticEnergy/GeV 
                                                   >> 1071                << " length(mm)= " << trueStepLength << " Zeff= " << Zeff 
                                                   >> 1072                << " qprob= " << qprob << G4endl;
                                                   >> 1073       }
                                                   >> 1074       */
965     }                                             1075     }
966   }                                               1076   }
967   return cth;                                  << 1077   return cth ;
968 }                                                 1078 }
969                                                   1079 
970 //....oooOO0OOooo........oooOO0OOooo........oo    1080 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
971                                                   1081 
972 G4double G4UrbanMscModel::ComputeTheta0(G4doub    1082 G4double G4UrbanMscModel::ComputeTheta0(G4double trueStepLength,
973                                         G4doub << 1083                                         G4double KineticEnergy)
974 {                                                 1084 {
975   // for all particles take the width of the c    1085   // for all particles take the width of the central part
976   //  from a  parametrization similar to the H    1086   //  from a  parametrization similar to the Highland formula
977   // ( Highland formula: Particle Physics Book    1087   // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
978   G4double invbetacp = (kinEnergy+mass)/(kinEn << 1088   G4double invbetacp = std::sqrt((currentKinEnergy+mass)*(KineticEnergy+mass)/
979   if(currentKinEnergy != kinEnergy) {          << 1089                                  (currentKinEnergy*(currentKinEnergy+2.*mass)*
980     invbetacp = std::sqrt(invbetacp*(currentKi << 1090                                   KineticEnergy*(KineticEnergy+2.*mass)));
981         (currentKinEnergy*(currentKinEnergy+2. << 
982   }                                            << 
983   G4double y = trueStepLength/currentRadLength    1091   G4double y = trueStepLength/currentRadLength;
984                                                   1092 
985   if(fPosiCorrection && particle == positron)  << 1093   if(particle == positron)
986   {                                               1094   {
987     static const G4double xl= 0.6;                1095     static const G4double xl= 0.6;
988     static const G4double xh= 0.9;                1096     static const G4double xh= 0.9;
989     static const G4double e = 113.0;              1097     static const G4double e = 113.0;
990     G4double corr;                                1098     G4double corr;
991                                                   1099 
992     G4double tau = std::sqrt(currentKinEnergy* << 1100     G4double tau = std::sqrt(currentKinEnergy*KineticEnergy)/mass;
993     G4double x = std::sqrt(tau*(tau+2.)/((tau+    1101     G4double x = std::sqrt(tau*(tau+2.)/((tau+1.)*(tau+1.)));
994     G4double a = msc[idx]->posa;               << 1102     G4double a = 0.994-4.08e-3*Zeff;
995     G4double b = msc[idx]->posb;               << 1103     G4double b = 7.16+(52.6+365./Zeff)/Zeff;
996     G4double c = msc[idx]->posc;               << 1104     G4double c = 1.000-4.47e-3*Zeff;
997     G4double d = msc[idx]->posd;               << 1105     G4double d = 1.21e-3*Zeff;
998     if(x < xl) {                                  1106     if(x < xl) {
999       corr = a*(1.-G4Exp(-b*x));                  1107       corr = a*(1.-G4Exp(-b*x));  
1000     } else if(x > xh) {                          1108     } else if(x > xh) {
1001       corr = c+d*G4Exp(e*(x-1.));                1109       corr = c+d*G4Exp(e*(x-1.)); 
1002     } else {                                     1110     } else {
1003       G4double yl = a*(1.-G4Exp(-b*xl));         1111       G4double yl = a*(1.-G4Exp(-b*xl));
1004       G4double yh = c+d*G4Exp(e*(xh-1.));        1112       G4double yh = c+d*G4Exp(e*(xh-1.));
1005       G4double y0 = (yh-yl)/(xh-xl);             1113       G4double y0 = (yh-yl)/(xh-xl);
1006       G4double y1 = yl-y0*xl;                    1114       G4double y1 = yl-y0*xl;
1007       corr = y0*x+y1;                            1115       corr = y0*x+y1;
1008     }                                            1116     }
1009     //=======================================    1117     //==================================================================
1010     y *= corr*msc[idx]->pose;                 << 1118     y *= corr*(1.+Zeff*(1.84035e-4*Zeff-1.86427e-2)+0.41125);
1011   }                                              1119   }
1012                                                  1120 
1013   static const G4double c_highland = 13.6*CLH    1121   static const G4double c_highland = 13.6*CLHEP::MeV;
1014   G4double theta0 = c_highland*std::abs(charg    1122   G4double theta0 = c_highland*std::abs(charge)*std::sqrt(y)*invbetacp;
1015                                                  1123  
1016   // correction factor from e- scattering dat    1124   // correction factor from e- scattering data
1017   theta0 *= (msc[idx]->coeffth1+msc[idx]->coe << 1125   theta0 *= (coeffth1+coeffth2*G4Log(y));
1018   return theta0;                                 1126   return theta0;
1019 }                                                1127 }
1020                                                  1128 
1021 //....oooOO0OOooo........oooOO0OOooo........o    1129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1022                                                  1130 
1023 void G4UrbanMscModel::SampleDisplacement(G4do << 1131 void G4UrbanMscModel::SampleDisplacement(G4double sth, G4double phi)
1024 {                                             << 1132 {
1025   // simple and fast sampling                 << 1133   G4double rmax = sqrt((tPathLength-zPathLength)*(tPathLength+zPathLength));
1026   // based on single scattering results       << 
1027   // u = r/rmax : mean value                  << 
1028                                                  1134 
1029   G4double rmax = std::sqrt((tPathLength-zPat << 1135   static const G4double third  = 1./3.;
1030   if(rmax > 0.)                               << 1136   G4double r = rmax*G4Exp(G4Log(rndmEngineMod->flat())*third);
1031   {                                           << 1137   /*    
1032     G4double r = 0.73*rmax;                   << 1138     G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
                                                   >> 1139            << " sinTheta= " << sth << " r(mm)= " << r
                                                   >> 1140            << " trueStep(mm)= " << tPathLength
                                                   >> 1141            << " geomStep(mm)= " << zPathLength
                                                   >> 1142            << G4endl;
                                                   >> 1143   */
                                                   >> 1144 
                                                   >> 1145   if(r > 0.) {
                                                   >> 1146     static const G4double kappa = 2.5;
                                                   >> 1147     static const G4double kappami1 = 1.5;
                                                   >> 1148   
                                                   >> 1149     G4double latcorr = 0.;
                                                   >> 1150     if((currentTau >= tausmall) && !insideskin) {
                                                   >> 1151       if(currentTau < taulim) {
                                                   >> 1152   latcorr = lambdaeff*kappa*currentTau*currentTau*
                                                   >> 1153     (1.-(kappa+1.)*currentTau*third)*third;
                                                   >> 1154 
                                                   >> 1155       } else {
                                                   >> 1156   G4double etau = (currentTau < taubig) ? G4Exp(-currentTau) : 0.;
                                                   >> 1157   latcorr = -kappa*currentTau;
                                                   >> 1158   latcorr = G4Exp(latcorr)/kappami1;
                                                   >> 1159   latcorr += 1.-kappa*etau/kappami1 ;
                                                   >> 1160   latcorr *= 2.*lambdaeff*third;
                                                   >> 1161       }
                                                   >> 1162     }
                                                   >> 1163     latcorr = std::min(latcorr, r);
                                                   >> 1164 
                                                   >> 1165     // sample direction of lateral displacement
                                                   >> 1166     // compute it from the lateral correlation
                                                   >> 1167     G4double Phi;
                                                   >> 1168     if(std::abs(r*sth) < latcorr) {
                                                   >> 1169       Phi  = twopi*rndmEngineMod->flat();
1033                                                  1170 
1034     // simple distribution for v=Phi-phi=psi  << 1171     } else {
1035     // beta determined from the requirement t << 1172       //G4cout << "latcorr= " << latcorr << "  r*sth= " << r*sth 
1036     // the same mean value than that obtained << 1173       //     << " ratio= " << latcorr/(r*sth) <<  G4endl;
1037                                               << 1174       G4double psi = std::acos(latcorr/(r*sth));
1038     static const G4double cbeta  = 2.160;     << 1175       G4double rdm = rndmEngineMod->flat();
1039     static const G4double cbeta1 = 1. - G4Exp << 1176       Phi = (rdm < 0.5) ? phi+psi : phi-psi;
1040     rndmEngineMod->flatArray(2, rndmarray);   << 1177     }
1041     G4double psi = -G4Log(1. - rndmarray[0]*c << 
1042     G4double Phi = (rndmarray[1] < 0.5) ? phi << 
1043     fDisplacement.set(r*std::cos(Phi),r*std::    1178     fDisplacement.set(r*std::cos(Phi),r*std::sin(Phi),0.0);
1044   }                                              1179   }
1045 }                                                1180 }
1046                                                  1181 
1047 //....oooOO0OOooo........oooOO0OOooo........o    1182 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1048                                                  1183    
1049 void G4UrbanMscModel::SampleDisplacementNew(G << 1184 void G4UrbanMscModel::SampleDisplacementNew(G4double , G4double phi)
1050 {                                                1185 {
1051   // simple and fast sampling                 << 1186   //sample displacement r
1052   // based on single scattering results       << 
1053   // u = (r/rmax)**2 : distribution from ss s << 
1054   const G4double eps = 1.e-3;                 << 
1055   const G4double rmax =                       << 
1056     std::sqrt((tPathLength-zPathLength)*(tPat << 
1057                                               << 
1058   if(rmax > 0.)                               << 
1059   {                                           << 
1060     const G4double x0 = 0.73 ;                << 
1061     const G4double alpha = G4Log(7.33)/x0 ;   << 
1062     const G4double a1 = 1.-x0 ;               << 
1063     const G4double a2 = 1.-G4Exp(-alpha*x0) ; << 
1064     const G4double a3 = G4Exp(alpha*x0)-1. ;  << 
1065     const G4double w1 = 2.*a2/(alpha*a1+2.*a2 << 
1066                                                  1187 
1067     G4double r, sqx;                          << 1188   G4double rmax = sqrt((tPathLength-zPathLength)*(tPathLength+zPathLength));
1068     if (rmax/currentRange < eps)              << 1189   // u = (r/rmax)**2 , v=1-u
1069     {                                         << 1190   // paramerization from ss simulation
1070       r = 0.73*rmax ;                         << 1191   // f(u) = p0*exp(p1*log(v)-p2*v)+v*(p3+p4*v) 
1071       sqx = 1.;                               << 1192   G4double u ,v , rej;
1072     }                                         << 1193   G4int count = 0;
1073     else                                      << 1194 
1074     {                                         << 1195   static const G4double reps = 1.e-6;
1075       rndmEngineMod->flatArray(2,rndmarray);  << 1196   static const G4double  rp0 = 2.2747e+4;
1076       const G4double x = (rndmarray[0] < w1)  << 1197   static const G4double  rp1 = 4.5980e+0;
1077         1. - a1*std::sqrt(1.-rndmarray[1]);   << 1198   static const G4double  rp2 = 1.5580e+1;
1078                                               << 1199   static const G4double  rp3 = 7.1287e-1;
1079       sqx = std::sqrt(x);                     << 1200   static const G4double  rp4 =-5.7069e-1;
1080       r = sqx*rmax;                           << 1201 
1081     }                                         << 1202   do {
1082     // Gaussian distribution for Phi-phi=psi  << 1203     u = reps+(1.-2.*reps)*rndmEngineMod->flat();
1083     const G4double sigma = 0.1+0.9*sqx;       << 1204     v = 1.-u ;
1084     const G4double psi = G4RandGauss::shoot(0 << 1205     rej = rp0*G4Exp(rp1*G4Log(v)-rp2*v) + v*(rp3+rp4*v);
1085     const G4double Phi = phi+psi;             << 
1086     fDisplacement.set(r*std::cos(Phi), r*std: << 
1087   }                                              1206   }
1088 }                                             << 1207   // Loop checking, 15-Sept-2015, Vladimir Ivanchenko
                                                   >> 1208   while (rndmEngineMod->flat() > rej && ++count < 1000);
                                                   >> 1209   G4double r = rmax*sqrt(u);
1089                                                  1210 
1090 //....oooOO0OOooo........oooOO0OOooo........o << 1211   if(r > 0.)
                                                   >> 1212   {
                                                   >> 1213     // sample Phi using lateral correlation
                                                   >> 1214     // v = Phi-phi = acos(latcorr/(r*sth))
                                                   >> 1215     // v has a universal distribution which can be parametrized from ss
                                                   >> 1216     // simulation as
                                                   >> 1217     // f(v) = 1.49e-2*exp(-v**2/(2*0.320))+2.50e-2*exp(-31.0*log(1.+6.30e-2*v))+
                                                   >> 1218     //        1.96e-5*exp(8.42e-1*log(1.+1.45e1*v))
                                                   >> 1219     static const G4double probv1 = 0.305533;
                                                   >> 1220     static const G4double probv2 = 0.955176;
                                                   >> 1221     static const G4double vhigh  = 3.15;     
                                                   >> 1222     static const G4double w2v = 1./G4Exp(30.*G4Log(1. + 6.30e-2*vhigh));
                                                   >> 1223     static const G4double w3v = 1./G4Exp(-1.842*G4Log(1. + 1.45e1*vhigh));
                                                   >> 1224 
                                                   >> 1225     G4double Phi;
                                                   >> 1226     G4double random = rndmEngineMod->flat();
                                                   >> 1227     if(random < probv1) {
                                                   >> 1228       do {
                                                   >> 1229   v = G4RandGauss::shoot(rndmEngineMod,0.,0.320);
                                                   >> 1230       }
                                                   >> 1231       // Loop checking, 15-Sept-2015, Vladimir Ivanchenko
                                                   >> 1232       while (std::abs(v) >= vhigh);
                                                   >> 1233       Phi = phi + v;
1091                                                  1234 
1092 void G4UrbanMscModel::InitialiseModelCache()  << 1235     } else {
1093 {                                             << 
1094   // it is assumed, that for the second run o << 
1095   // of a new G4MaterialCutsCouple is possibl << 
1096   auto theCoupleTable = G4ProductionCutsTable << 
1097   std::size_t numOfCouples = theCoupleTable-> << 
1098   if(numOfCouples != msc.size()) { msc.resize << 
1099                                               << 
1100   for(G4int j=0; j<(G4int)numOfCouples; ++j)  << 
1101     auto aCouple = theCoupleTable->GetMateria << 
1102                                                  1236 
1103     // new couple                             << 1237       G4double rnd = rndmEngineMod->flat();
1104     msc[j] = new mscData();                   << 1238       v = (random < probv2) 
1105     G4double Zeff = aCouple->GetMaterial()->G << 1239         ? (-1.+1./G4Exp(G4Log(1.-rnd*(1.-w2v))/30.))/6.30e-2
1106     G4double sqrz = std::sqrt(Zeff);          << 1240         : (-1.+1./G4Exp(G4Log(1.-rnd*(1.-w3v))/-1.842))/1.45e1;
1107     msc[j]->sqrtZ = sqrz;                     << 1241 
1108     // parameterisation of step limitation    << 1242       rnd = rndmEngineMod->flat();
1109     msc[j]->factmin = dispAlg96 ? 0.001 : 0.0 << 1243       Phi = (rnd < 0.5) ? phi+v : phi-v;
1110     G4double lnZ = G4Log(Zeff);               << 1244     }
1111     // correction in theta0 formula           << 1245     fDisplacement.set(r*std::cos(Phi),r*std::sin(Phi),0.0);
1112     G4double w = G4Exp(lnZ/6.);               << 
1113     G4double facz = 0.990395+w*(-0.168386+w*0 << 
1114     msc[j]->coeffth1 = facz*(1. - 8.7780e-2/Z << 
1115     msc[j]->coeffth2 = facz*(4.0780e-2 + 1.73 << 
1116                                               << 
1117     // tail parameters                        << 
1118     G4double Z13 = w*w;                       << 
1119     msc[j]->coeffc1 = 2.3785    - Z13*(4.1981 << 
1120     msc[j]->coeffc2 = 4.7526e-1 + Z13*(1.7694 << 
1121     msc[j]->coeffc3 = 2.3683e-1 - Z13*(1.8111 << 
1122     msc[j]->coeffc4 = 1.7888e-2 + Z13*(1.9659 << 
1123                                               << 
1124     msc[j]->Z23 = Z13*Z13;                    << 
1125                                               << 
1126     msc[j]->stepmina = 27.725/(1.+0.203*Zeff) << 
1127     msc[j]->stepminb =  6.152/(1.+0.111*Zeff) << 
1128                                               << 
1129     // 21.07.2020                             << 
1130     msc[j]->doverra = 9.6280e-1 - 8.4848e-2*m << 
1131                                               << 
1132     // 06.10.2020                             << 
1133     // msc[j]->doverra = 7.7024e-1 - 6.7878e- << 
1134     msc[j]->doverrb = 1.15 - 9.76e-4*Zeff;    << 
1135                                               << 
1136     // corrections for e+                     << 
1137     msc[j]->posa = 0.994-4.08e-3*Zeff;        << 
1138     msc[j]->posb = 7.16+(52.6+365./Zeff)/Zeff << 
1139     msc[j]->posc = 1.000-4.47e-3*Zeff;        << 
1140     msc[j]->posd = 1.21e-3*Zeff;              << 
1141     msc[j]->pose = 1.+Zeff*(1.84035e-4*Zeff-1 << 
1142   }                                              1246   }
1143 }                                                1247 }
1144                                                  1248 
1145 //....oooOO0OOooo........oooOO0OOooo........o    1249 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1146                                                  1250