Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4UniversalFluctuation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4UniversalFluctuation.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4UniversalFluctuation.cc (Version 8.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4UniversalFluctuation.cc,v 1.8 2006/06/29 19:53:32 gunter Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-08-01-patch-01 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4UniversalFluctuation           34 // File name:     G4UniversalFluctuation
 33 //                                                 35 //
 34 // Author:        V. Ivanchenko for Laszlo Urb <<  36 // Author:        Vladimir Ivanchenko 
 35 //                                                 37 // 
 36 // Creation date: 03.01.2002                       38 // Creation date: 03.01.2002
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications: 
 39 //                                                 41 //
 40 //                                             <<  42 // 28-12-02 add method Dispersion (V.Ivanchenko)
                                                   >>  43 // 07-02-03 change signature (V.Ivanchenko)
                                                   >>  44 // 13-02-03 Add name (V.Ivanchenko)
                                                   >>  45 // 16-10-03 Changed interface to Initialisation (V.Ivanchenko)
                                                   >>  46 // 07-11-03 Fix problem of rounding of double in G4UniversalFluctuations
                                                   >>  47 // 06-02-04 Add control on big sigma > 2*meanLoss (V.Ivanchenko)
                                                   >>  48 // 26-04-04 Comment out the case of very small step (V.Ivanchenko)
                                                   >>  49 // 07-02-05 define problim = 5.e-3 (mma)
                                                   >>  50 // 03-05-05 conditions of Gaussian fluctuation changed (bugfix)
                                                   >>  51 //          + smearing for very small loss (L.Urban)
                                                   >>  52 // 03-10-05 energy dependent rate -> cut dependence of the
                                                   >>  53 //          distribution is much weaker (L.Urban)
                                                   >>  54 // 17-10-05 correction for very small loss (L.Urban)
                                                   >>  55 //          
 41                                                    56 
 42 //....oooOO0OOooo........oooOO0OOooo........oo     57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 43 //....oooOO0OOooo........oooOO0OOooo........oo     58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 44                                                    59 
 45 #include "G4UniversalFluctuation.hh"               60 #include "G4UniversalFluctuation.hh"
 46 #include "G4PhysicalConstants.hh"              << 
 47 #include "G4SystemOfUnits.hh"                  << 
 48 #include "Randomize.hh"                            61 #include "Randomize.hh"
 49 #include "G4Poisson.hh"                            62 #include "G4Poisson.hh"
                                                   >>  63 #include "G4Step.hh"
 50 #include "G4Material.hh"                           64 #include "G4Material.hh"
 51 #include "G4MaterialCutsCouple.hh"             << 
 52 #include "G4DynamicParticle.hh"                    65 #include "G4DynamicParticle.hh"
 53 #include "G4ParticleDefinition.hh"                 66 #include "G4ParticleDefinition.hh"
 54 #include "G4Log.hh"                            << 
 55                                                    67 
 56 //....oooOO0OOooo........oooOO0OOooo........oo     68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57                                                    69 
                                                   >>  70 using namespace std;
                                                   >>  71 
 58 G4UniversalFluctuation::G4UniversalFluctuation     72 G4UniversalFluctuation::G4UniversalFluctuation(const G4String& nam)
 59  :G4VEmFluctuationModel(nam),                      73  :G4VEmFluctuationModel(nam),
 60   minLoss(10.*CLHEP::eV)                       <<  74   particle(0),
                                                   >>  75   minNumberInteractionsBohr(10.0),
                                                   >>  76   theBohrBeta2(50.0*keV/proton_mass_c2),
                                                   >>  77   minLoss(10.*eV),
                                                   >>  78   problim(5.e-3),  
                                                   >>  79   alim(10.),
                                                   >>  80   nmaxCont1(4.),
                                                   >>  81   nmaxCont2(16.)
 61 {                                                  82 {
 62   rndmarray = new G4double[sizearray];         <<  83   sumalim = -log(problim);
                                                   >>  84   lastMaterial = 0;
 63 }                                                  85 }
 64                                                    86 
 65 //....oooOO0OOooo........oooOO0OOooo........oo     87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 66                                                    88 
 67 G4UniversalFluctuation::~G4UniversalFluctuatio     89 G4UniversalFluctuation::~G4UniversalFluctuation()
 68 {                                              <<  90 {}
 69   delete [] rndmarray;                         << 
 70 }                                              << 
 71                                                    91 
 72 //....oooOO0OOooo........oooOO0OOooo........oo     92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 73                                                    93 
 74 void G4UniversalFluctuation::InitialiseMe(cons     94 void G4UniversalFluctuation::InitialiseMe(const G4ParticleDefinition* part)
 75 {                                                  95 {
 76   particle = part;                             <<  96   particle       = part;
 77   particleMass = part->GetPDGMass();           <<  97   particleMass   = part->GetPDGMass();
 78   const G4double q = part->GetPDGCharge()/CLHE <<  98   G4double q     = part->GetPDGCharge()/eplus;
 79                                                <<  99   chargeSquare   = q*q;
 80   // Derived quantities                        << 
 81   m_Inv_particleMass = 1.0 / particleMass;     << 
 82   m_massrate = CLHEP::electron_mass_c2 * m_Inv << 
 83   chargeSquare = q*q;                          << 
 84 }                                                 100 }
 85                                                   101 
 86 //....oooOO0OOooo........oooOO0OOooo........oo    102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87                                                   103 
 88 G4double                                       << 104 G4double G4UniversalFluctuation::SampleFluctuations(const G4Material* material,
 89 G4UniversalFluctuation::SampleFluctuations(con << 105                                                 const G4DynamicParticle* dp,
 90                                            con << 106                               G4double& tmax,
 91                                            con << 107                         G4double& length,
 92                                            con << 108                                                       G4double& meanLoss)
 93                                            con << 
 94                                            con << 
 95 {                                                 109 {
 96   // Calculate actual loss from the mean loss. << 110 // Calculate actual loss from the mean loss.
 97   // The model used to get the fluctuations is << 111 // The model used to get the fluctuations is essentially the same
 98   // as in Glandz in Geant3 (Cern program libr << 112 // as in Glandz in Geant3 (Cern program library W5013, phys332).
 99   // L. Urban et al. NIM A362, p.416 (1995) an << 113 // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
100                                                   114 
101   // shortcut for very small loss or from a st << 115   // shortcut for very very small loss (out of validity of the model)
102   // (out of validity of the model)            << 
103   //                                              116   //
104   if (averageLoss < minLoss) { return averageL << 117   if (meanLoss < minLoss) return meanLoss;
105   meanLoss = averageLoss;                      << 
106   const G4double tkin  = dp->GetKineticEnergy( << 
107   //G4cout<< "Emean= "<< meanLoss<< " tmax= "< << 
108                                                << 
109   if(dp->GetDefinition() != particle) { Initia << 
110                                                << 
111   CLHEP::HepRandomEngine* rndmEngineF = G4Rand << 
112                                                << 
113   const G4double gam   = tkin * m_Inv_particle << 
114   const G4double gam2  = gam*gam;              << 
115   const G4double beta  = dp->GetBeta();        << 
116   const G4double beta2 = beta*beta;            << 
117                                                   118 
118   G4double loss(0.), siga(0.);                 << 119   if(!particle) InitialiseMe(dp->GetDefinition());
                                                   >> 120 
                                                   >> 121   G4double tau   = dp->GetKineticEnergy()/particleMass;
                                                   >> 122   G4double gam   = tau + 1.0;
                                                   >> 123   G4double gam2  = gam*gam;
                                                   >> 124   G4double beta2 = tau*(tau + 2.0)/gam2;
119                                                   125 
120   const G4Material* material = couple->GetMate << 126   G4double loss(0.), siga(0.);
121                                                   127   
122   // Gaussian regime                              128   // Gaussian regime
123   // for heavy particles only and conditions      129   // for heavy particles only and conditions
124   // for Gauusian fluct. has been changed         130   // for Gauusian fluct. has been changed 
125   //                                              131   //
126   if (particleMass > CLHEP::electron_mass_c2 & << 132   if ((particleMass > electron_mass_c2) &&
127       meanLoss >= minNumberInteractionsBohr*tc << 133       (meanLoss >= minNumberInteractionsBohr*tmax))
128                                                << 134   {
129     siga = std::sqrt((tmax/beta2 - 0.5*tcut)*C << 135     G4double massrate = electron_mass_c2/particleMass ;
130                       length*chargeSquare*mate << 136     G4double tmaxkine = 2.*electron_mass_c2*beta2*gam2/
131     const G4double sn = meanLoss/siga;         << 137                         (1.+massrate*(2.*gam+massrate)) ;
132                                                << 138     if (tmaxkine <= 2.*tmax)   
133     // thick target case                       << 139     {
134     if (sn >= 2.0) {                           << 140       electronDensity = material->GetElectronDensity();
135                                                << 141       siga  = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
136       const G4double twomeanLoss = meanLoss +  << 142                                 * electronDensity * chargeSquare;
137       do {                                     << 143       siga = sqrt(siga);
138   loss = G4RandGauss::shoot(rndmEngineF, meanL << 144       G4double twomeanLoss = meanLoss + meanLoss;
139   // Loop checking, 03-Aug-2015, Vladimir Ivan << 145       if (twomeanLoss < siga) {
140       } while  (0.0 > loss || twomeanLoss < lo << 146         G4double x;
141                                                << 147         do {
142       // Gamma distribution                    << 148           loss = twomeanLoss*G4UniformRand();
143     } else {                                   << 149           x = (loss - meanLoss)/siga;
144                                                << 150         } while (1.0 - 0.5*x*x < G4UniformRand());
145       const G4double neff = sn*sn;             << 151       } else {
146       loss = meanLoss*G4RandGamma::shoot(rndmE << 152         do {
                                                   >> 153           loss = G4RandGauss::shoot(meanLoss,siga);
                                                   >> 154         } while (loss < 0. || loss > twomeanLoss);
                                                   >> 155       }
                                                   >> 156       return loss;
147     }                                             157     }
148     //G4cout << "Gauss: " << loss << G4endl;   << 
149     return loss;                               << 
150   }                                               158   }
151                                                   159 
152   auto ioni = material->GetIonisation();       << 160   // Glandz regime : initialisation
153   e0 = ioni->GetEnergy0fluct();                << 161   //
154                                                << 162   if (material != lastMaterial) {
155   // very small step or low-density material   << 163     f1Fluct      = material->GetIonisation()->GetF1fluct();
156   if(tcut <= e0) { return meanLoss; }          << 164     f2Fluct      = material->GetIonisation()->GetF2fluct();
157                                                << 165     e1Fluct      = material->GetIonisation()->GetEnergy1fluct();
158   ipotFluct = ioni->GetMeanExcitationEnergy(); << 166     e2Fluct      = material->GetIonisation()->GetEnergy2fluct();
159   ipotLogFluct = ioni->GetLogMeanExcEnergy();  << 167     e1LogFluct   = material->GetIonisation()->GetLogEnergy1fluct();
                                                   >> 168     e2LogFluct   = material->GetIonisation()->GetLogEnergy2fluct();
                                                   >> 169     ipotFluct    = material->GetIonisation()->GetMeanExcitationEnergy();
                                                   >> 170     ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy();
                                                   >> 171     lastMaterial = material;
                                                   >> 172   }
160                                                   173 
161   // width correction for small cuts           << 174   G4double a1 = 0. , a2 = 0., a3 = 0. ;
162   const G4double scaling = std::min(1.+0.5*CLH << 175   G4double p1,p2,p3;
163   meanLoss /= scaling;                         << 176   // cut and material dependent rate --------------------------------
164                                                << 177   G4double rate = 0.173+0.027*log(tmax/ipotFluct) ;
165   w2 = (tcut > ipotFluct) ?                    << 178   if(rate < 0.) rate = 0. ;
166     G4Log(2.*CLHEP::electron_mass_c2*beta2*gam << 179   if(rate > 1.) rate = 1. ;
167   return SampleGlandz(rndmEngineF, material, t << 180 
168 }                                              << 181   G4double w1 = tmax/ipotFluct;
                                                   >> 182   G4double w2 = log(2.*electron_mass_c2*beta2*gam2)-beta2;
                                                   >> 183 
                                                   >> 184   if(w2 > ipotLogFluct)
                                                   >> 185   {
                                                   >> 186     G4double C = meanLoss*(1.-rate)/(w2-ipotLogFluct);
                                                   >> 187     a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct;
                                                   >> 188     a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct;
                                                   >> 189     if(a2 < 0.)
                                                   >> 190     {
                                                   >> 191       a1 = 0. ;
                                                   >> 192       a2 = 0. ;
                                                   >> 193       rate = 1. ;  
                                                   >> 194     }
                                                   >> 195   }
                                                   >> 196   else
                                                   >> 197   {
                                                   >> 198     rate = 1. ;
                                                   >> 199   }
169                                                   200 
170 //....oooOO0OOooo........oooOO0OOooo........oo << 201   if(tmax > ipotFluct) 
                                                   >> 202     a3 = rate*meanLoss*(tmax-ipotFluct)/(ipotFluct*tmax*log(w1));
171                                                   203 
172 G4double                                       << 204   G4double suma = a1+a2+a3;
173 G4UniversalFluctuation::SampleGlandz(CLHEP::He << 
174                                      const G4M << 
175                                      const G4d << 
176 {                                              << 
177   G4double a1(0.0), a3(0.0);                   << 
178   G4double loss = 0.0;                         << 
179   G4double e1 = ipotFluct;                     << 
180                                                << 
181   if(tcut > e1) {                              << 
182     a1 = meanLoss*(1.-rate)/e1;                << 
183     if(a1 < a0) {                              << 
184       const G4double fwnow = 0.1+(fw-0.1)*std: << 
185       a1 /= fwnow;                             << 
186       e1 *= fwnow;                             << 
187     } else {                                   << 
188       a1 /= fw;                                << 
189       e1 *= fw;                                << 
190     }                                          << 
191   }                                            << 
192                                                << 
193   const G4double w1 = tcut/e0;                 << 
194   a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Lo << 
195   if(a1 <= 0.) { a3 /= rate; }                 << 
196                                                   205   
197   //'nearly' Gaussian fluctuation if a1>nmaxCo << 206   // Glandz regime
198   G4double emean = 0.;                         << 207   //
199   G4double sig2e = 0.;                         << 208   if (suma > sumalim)
200                                                << 209   {
201   // excitation of type 1                      << 210     p1 = 0., p2 = 0 ;
202   if(a1 > 0.0) { AddExcitation(rndmEngineF, a1 << 211     if((a1+a2) > 0.)
203                                                << 212     {
204   if(sig2e > 0.0) { SampleGauss(rndmEngineF, e << 213       // excitation type 1
205                                                << 214       if (a1>alim) {
206   // ionisation                                << 215         siga=sqrt(a1) ;
207   if(a3 > 0.) {                                << 216         p1 = max(0.,G4RandGauss::shoot(a1,siga)+0.5);
208     emean = 0.;                                << 217       } else {
209     sig2e = 0.;                                << 218         p1 = G4double(G4Poisson(a1));
210     G4double p3 = a3;                          << 219       }
211     G4double alfa = 1.;                        << 220     
212     if(a3 > nmaxCont) {                        << 221       // excitation type 2
213       alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3) << 222       if (a2>alim) {
214       const G4double alfa1  = alfa*G4Log(alfa) << 223         siga=sqrt(a2) ;
215       const G4double namean = a3*w1*(alfa-1.)/ << 224         p2 = max(0.,G4RandGauss::shoot(a2,siga)+0.5);
216       emean += namean*e0*alfa1;                << 225       } else {
217       sig2e += e0*e0*namean*(alfa-alfa1*alfa1) << 226         p2 = G4double(G4Poisson(a2));
218       p3 = a3 - namean;                        << 227       }
                                                   >> 228     
                                                   >> 229       loss = p1*e1Fluct+p2*e2Fluct;
                                                   >> 230  
                                                   >> 231       // smearing to avoid unphysical peaks
                                                   >> 232       if (p2 > 0.)
                                                   >> 233         loss += (1.-2.*G4UniformRand())*e2Fluct;
                                                   >> 234       else if (loss>0.)
                                                   >> 235         loss += (1.-2.*G4UniformRand())*e1Fluct;   
                                                   >> 236       if (loss < 0.) loss = 0.0;
219     }                                             237     }
220                                                   238 
221     const G4double w3 = alfa*e0;               << 239     // ionisation
222     if(tcut > w3) {                            << 240     if (a3 > 0.) {
223       const G4double w = (tcut-w3)/tcut;       << 241       if (a3>alim) {
224       const G4int nnb = (G4int)G4Poisson(p3);  << 242         siga=sqrt(a3) ;
225       if(nnb > 0) {                            << 243         p3 = max(0.,G4RandGauss::shoot(a3,siga)+0.5);
226         if(nnb > sizearray) {                  << 244       } else {
227           sizearray = nnb;                     << 245         p3 = G4double(G4Poisson(a3));
228           delete [] rndmarray;                 << 
229           rndmarray = new G4double[nnb];       << 
230         }                                      << 
231         rndmEngineF->flatArray(nnb, rndmarray) << 
232         for (G4int k=0; k<nnb; ++k) { loss +=  << 
233       }                                           246       }
                                                   >> 247       G4double lossc = 0.;
                                                   >> 248       if (p3 > 0) {
                                                   >> 249         G4double na = 0.; 
                                                   >> 250         G4double alfa = 1.;
                                                   >> 251         if (p3 > nmaxCont2) {
                                                   >> 252           G4double rfac   = p3/(nmaxCont2+p3);
                                                   >> 253           G4double namean = p3*rfac;
                                                   >> 254           G4double sa     = nmaxCont1*rfac;
                                                   >> 255           na              = G4RandGauss::shoot(namean,sa);
                                                   >> 256           if (na > 0.) {
                                                   >> 257             alfa   = w1*(nmaxCont2+p3)/(w1*nmaxCont2+p3);
                                                   >> 258             G4double alfa1  = alfa*log(alfa)/(alfa-1.);
                                                   >> 259             G4double ea     = na*ipotFluct*alfa1;
                                                   >> 260             G4double sea    = ipotFluct*sqrt(na*(alfa-alfa1*alfa1));
                                                   >> 261             lossc += G4RandGauss::shoot(ea,sea);
                                                   >> 262           }
                                                   >> 263         }
                                                   >> 264 
                                                   >> 265         if (p3 > na) {
                                                   >> 266           w2 = alfa*ipotFluct;
                                                   >> 267           G4double w  = (tmax-w2)/tmax;
                                                   >> 268           G4int    nb = G4int(p3-na);
                                                   >> 269           for (G4int k=0; k<nb; k++) lossc += w2/(1.-w*G4UniformRand());
                                                   >> 270         }
                                                   >> 271       }        
                                                   >> 272       loss += lossc;  
234     }                                             273     }
235     if(sig2e > 0.0) { SampleGauss(rndmEngineF, << 274     return loss;
236   }                                               275   }
237   //G4cout << "### loss=" << loss << G4endl;   << 276   
238   return loss;                                 << 277   // suma < sumalim;  very small energy loss;  
                                                   >> 278   //
                                                   >> 279   G4double e0 = material->GetIonisation()->GetEnergy0fluct();
                                                   >> 280 
                                                   >> 281   if(tmax <= e0) return meanLoss;
                                                   >> 282   else a3 = meanLoss*(tmax-e0)/(tmax*e0*log(tmax/e0));
                                                   >> 283 
                                                   >> 284   if (a3 > alim)
                                                   >> 285   {
                                                   >> 286     siga=sqrt(a3);
                                                   >> 287     p3 = max(0.,G4RandGauss::shoot(a3,siga)+0.5);
                                                   >> 288   } else {
                                                   >> 289     p3 = G4double(G4Poisson(a3));
                                                   >> 290   }
                                                   >> 291   if (p3 > 0.) {
                                                   >> 292     G4double w = (tmax-e0)/tmax;
                                                   >> 293     G4double corrfac = 1.;
                                                   >> 294     if (p3 > nmaxCont2) {
                                                   >> 295       corrfac = p3/nmaxCont2;
                                                   >> 296       p3 = nmaxCont2;
                                                   >> 297     } 
                                                   >> 298     G4int ip3 = (G4int)p3;
                                                   >> 299     for (G4int i=0; i<ip3; i++) loss += 1./(1.-w*G4UniformRand());
                                                   >> 300     loss *= e0*corrfac;
                                                   >> 301     // smearing for losses near to e0
                                                   >> 302     if(p3 <= 2.)
                                                   >> 303     loss += e0*(1.-2.*G4UniformRand()) ;
                                                   >> 304    }
                                                   >> 305     
                                                   >> 306    return loss;
239 }                                                 307 }
240                                                   308 
241 //....oooOO0OOooo........oooOO0OOooo........oo    309 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
242                                                   310 
243                                                   311 
244 G4double G4UniversalFluctuation::Dispersion(      312 G4double G4UniversalFluctuation::Dispersion(
245                           const G4Material* ma    313                           const G4Material* material,
246                           const G4DynamicParti    314                           const G4DynamicParticle* dp,
247                           const G4double tcut, << 315         G4double& tmax,
248                           const G4double tmax, << 316               G4double& length)
249                           const G4double lengt << 
250 {                                                 317 {
251   if(dp->GetDefinition() != particle) { Initia << 318   if(!particle) InitialiseMe(dp->GetDefinition());
252   const G4double beta = dp->GetBeta();         << 
253   return (tmax/(beta*beta) - 0.5*tcut) * CLHEP << 
254     * material->GetElectronDensity() * chargeS << 
255 }                                              << 
256                                                   319 
257 //....oooOO0OOooo........oooOO0OOooo........oo << 320   electronDensity = material->GetElectronDensity();
258                                                   321 
259 void                                           << 322   G4double gam   = (dp->GetKineticEnergy())/particleMass + 1.0;
260 G4UniversalFluctuation::SetParticleAndCharge(c << 323   G4double beta2 = 1.0 - 1.0/(gam*gam);
261                                              G << 324 
262 {                                              << 325   G4double siga  = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
263   if(part != particle) {                       << 326                  * electronDensity * chargeSquare;
264     particle = part;                           << 327 
265     particleMass = part->GetPDGMass();         << 328   return siga;
266                                                << 
267     // Derived quantities                      << 
268     m_Inv_particleMass = 1.0 / particleMass;   << 
269     m_massrate = CLHEP::electron_mass_c2 * m_I << 
270   }                                            << 
271   chargeSquare = q2;                           << 
272 }                                                 329 }
273                                                   330 
274 //....oooOO0OOooo........oooOO0OOooo........oo    331 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
275                                                   332