Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4UniversalFluctuation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4UniversalFluctuation.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4UniversalFluctuation.cc (Version 10.6)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // -------------------------------------------     27 // -------------------------------------------------------------------
 28 //                                                 28 //
 29 // GEANT4 Class file                               29 // GEANT4 Class file
 30 //                                                 30 //
 31 //                                                 31 //
 32 // File name:     G4UniversalFluctuation           32 // File name:     G4UniversalFluctuation
 33 //                                                 33 //
 34 // Author:        V. Ivanchenko for Laszlo Urb     34 // Author:        V. Ivanchenko for Laszlo Urban
 35 //                                                 35 // 
 36 // Creation date: 03.01.2002                       36 // Creation date: 03.01.2002
 37 //                                                 37 //
 38 // Modifications:                                  38 // Modifications: 
 39 //                                                 39 //
 40 //                                                 40 //
 41                                                    41 
 42 //....oooOO0OOooo........oooOO0OOooo........oo     42 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 43 //....oooOO0OOooo........oooOO0OOooo........oo     43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 44                                                    44 
 45 #include "G4UniversalFluctuation.hh"               45 #include "G4UniversalFluctuation.hh"
 46 #include "G4PhysicalConstants.hh"                  46 #include "G4PhysicalConstants.hh"
 47 #include "G4SystemOfUnits.hh"                      47 #include "G4SystemOfUnits.hh"
 48 #include "Randomize.hh"                            48 #include "Randomize.hh"
 49 #include "G4Poisson.hh"                            49 #include "G4Poisson.hh"
                                                   >>  50 #include "G4Step.hh"
 50 #include "G4Material.hh"                           51 #include "G4Material.hh"
 51 #include "G4MaterialCutsCouple.hh"                 52 #include "G4MaterialCutsCouple.hh"
 52 #include "G4DynamicParticle.hh"                    53 #include "G4DynamicParticle.hh"
 53 #include "G4ParticleDefinition.hh"                 54 #include "G4ParticleDefinition.hh"
 54 #include "G4Log.hh"                                55 #include "G4Log.hh"
                                                   >>  56 #include "G4Exp.hh"
 55                                                    57 
 56 //....oooOO0OOooo........oooOO0OOooo........oo     58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57                                                    59 
                                                   >>  60 using namespace std;
                                                   >>  61 
 58 G4UniversalFluctuation::G4UniversalFluctuation     62 G4UniversalFluctuation::G4UniversalFluctuation(const G4String& nam)
 59  :G4VEmFluctuationModel(nam),                      63  :G4VEmFluctuationModel(nam),
 60   minLoss(10.*CLHEP::eV)                       <<  64   particle(nullptr),
                                                   >>  65   minNumberInteractionsBohr(10.0),
                                                   >>  66   minLoss(10.*eV),
                                                   >>  67   nmaxCont(16.),
                                                   >>  68   rate(0.56),
                                                   >>  69   a0(50.),
                                                   >>  70   fw(4.00)
 61 {                                                  71 {
 62   rndmarray = new G4double[sizearray];         <<  72   lastMaterial = nullptr;
                                                   >>  73   particleMass = chargeSquare = ipotFluct = electronDensity = f1Fluct = f2Fluct 
                                                   >>  74     = e1Fluct = e2Fluct = e1LogFluct = e2LogFluct = ipotLogFluct = e0 = esmall 
                                                   >>  75     = e1 = e2 = 0.0;
                                                   >>  76   m_Inv_particleMass = m_massrate = DBL_MAX;
                                                   >>  77   sizearray = 30;
                                                   >>  78   rndmarray = new G4double[30];
 63 }                                                  79 }
 64                                                    80 
 65 //....oooOO0OOooo........oooOO0OOooo........oo     81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 66                                                    82 
 67 G4UniversalFluctuation::~G4UniversalFluctuatio     83 G4UniversalFluctuation::~G4UniversalFluctuation()
 68 {                                                  84 {
 69   delete [] rndmarray;                             85   delete [] rndmarray;
 70 }                                                  86 }
 71                                                    87 
 72 //....oooOO0OOooo........oooOO0OOooo........oo     88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 73                                                    89 
 74 void G4UniversalFluctuation::InitialiseMe(cons     90 void G4UniversalFluctuation::InitialiseMe(const G4ParticleDefinition* part)
 75 {                                                  91 {
 76   particle = part;                             <<  92   particle       = part;
 77   particleMass = part->GetPDGMass();           <<  93   particleMass   = part->GetPDGMass();
 78   const G4double q = part->GetPDGCharge()/CLHE <<  94   G4double q     = part->GetPDGCharge()/eplus;
 79                                                    95 
 80   // Derived quantities                            96   // Derived quantities
 81   m_Inv_particleMass = 1.0 / particleMass;         97   m_Inv_particleMass = 1.0 / particleMass;
 82   m_massrate = CLHEP::electron_mass_c2 * m_Inv <<  98   m_massrate = electron_mass_c2 * m_Inv_particleMass ;
 83   chargeSquare = q*q;                          <<  99   chargeSquare   = q*q;
 84 }                                                 100 }
 85                                                   101 
 86 //....oooOO0OOooo........oooOO0OOooo........oo    102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87                                                   103 
 88 G4double                                          104 G4double 
 89 G4UniversalFluctuation::SampleFluctuations(con    105 G4UniversalFluctuation::SampleFluctuations(const G4MaterialCutsCouple* couple,
 90                                            con    106                                            const G4DynamicParticle* dp,
 91                                            con << 107                                            G4double tmax,
 92                                            con << 108                                            G4double length,
 93                                            con << 109                                            G4double averageLoss)
 94                                            con << 
 95 {                                                 110 {
 96   // Calculate actual loss from the mean loss.    111   // Calculate actual loss from the mean loss.
 97   // The model used to get the fluctuations is    112   // The model used to get the fluctuations is essentially the same
 98   // as in Glandz in Geant3 (Cern program libr    113   // as in Glandz in Geant3 (Cern program library W5013, phys332).
 99   // L. Urban et al. NIM A362, p.416 (1995) an    114   // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
100                                                   115 
101   // shortcut for very small loss or from a st    116   // shortcut for very small loss or from a step nearly equal to the range
102   // (out of validity of the model)               117   // (out of validity of the model)
103   //                                              118   //
104   if (averageLoss < minLoss) { return averageL << 119   G4double meanLoss = averageLoss;
105   meanLoss = averageLoss;                      << 120   G4double tkin  = dp->GetKineticEnergy();
106   const G4double tkin  = dp->GetKineticEnergy( << 
107   //G4cout<< "Emean= "<< meanLoss<< " tmax= "<    121   //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl;
                                                   >> 122   if (meanLoss < minLoss) { return meanLoss; }
108                                                   123 
109   if(dp->GetDefinition() != particle) { Initia    124   if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
110                                                   125 
111   CLHEP::HepRandomEngine* rndmEngineF = G4Rand    126   CLHEP::HepRandomEngine* rndmEngineF = G4Random::getTheEngine();
112                                                << 127   
113   const G4double gam   = tkin * m_Inv_particle << 128   G4double tau   = tkin * m_Inv_particleMass;            
114   const G4double gam2  = gam*gam;              << 129   G4double gam   = tau + 1.0;
115   const G4double beta  = dp->GetBeta();        << 130   G4double gam2  = gam*gam;
116   const G4double beta2 = beta*beta;            << 131   G4double beta2 = tau*(tau + 2.0)/gam2;
117                                                   132 
118   G4double loss(0.), siga(0.);                    133   G4double loss(0.), siga(0.);
119                                                   134 
120   const G4Material* material = couple->GetMate    135   const G4Material* material = couple->GetMaterial();
121                                                   136   
122   // Gaussian regime                              137   // Gaussian regime
123   // for heavy particles only and conditions      138   // for heavy particles only and conditions
124   // for Gauusian fluct. has been changed         139   // for Gauusian fluct. has been changed 
125   //                                              140   //
126   if (particleMass > CLHEP::electron_mass_c2 & << 141   if ((particleMass > electron_mass_c2) &&
127       meanLoss >= minNumberInteractionsBohr*tc << 142       (meanLoss >= minNumberInteractionsBohr*tmax))
                                                   >> 143   {
                                                   >> 144     G4double tmaxkine = 2.*electron_mass_c2*beta2*gam2/
                                                   >> 145                         (1.+m_massrate*(2.*gam+m_massrate)) ;
                                                   >> 146     if (tmaxkine <= 2.*tmax)   
                                                   >> 147     {
                                                   >> 148       electronDensity = material->GetElectronDensity();
                                                   >> 149       siga = sqrt((1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
                                                   >> 150                   * electronDensity * chargeSquare);
128                                                   151 
129     siga = std::sqrt((tmax/beta2 - 0.5*tcut)*C << 152       G4double sn = meanLoss/siga;
130                       length*chargeSquare*mate << 
131     const G4double sn = meanLoss/siga;         << 
132                                                   153   
133     // thick target case                       << 154       // thick target case 
134     if (sn >= 2.0) {                           << 155       if (sn >= 2.0) {
135                                                   156 
136       const G4double twomeanLoss = meanLoss +  << 157         G4double twomeanLoss = meanLoss + meanLoss;
137       do {                                     << 158         do {
138   loss = G4RandGauss::shoot(rndmEngineF, meanL << 159           loss = G4RandGauss::shoot(rndmEngineF,meanLoss,siga);
139   // Loop checking, 03-Aug-2015, Vladimir Ivan << 160           // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
140       } while  (0.0 > loss || twomeanLoss < lo << 161         } while  (0.0 > loss || twomeanLoss < loss);
141                                                   162 
142       // Gamma distribution                    << 163         // Gamma distribution
143     } else {                                   << 164       } else {
144                                                   165 
145       const G4double neff = sn*sn;             << 166         G4double neff = sn*sn;
146       loss = meanLoss*G4RandGamma::shoot(rndmE << 167         loss = meanLoss*G4RandGamma::shoot(rndmEngineF,neff,1.0)/neff;
                                                   >> 168       }
                                                   >> 169       //G4cout << "Gauss: " << loss << G4endl;
                                                   >> 170       return loss;
147     }                                             171     }
148     //G4cout << "Gauss: " << loss << G4endl;   << 
149     return loss;                               << 
150   }                                               172   }
151                                                   173 
152   auto ioni = material->GetIonisation();       << 174   // Glandz regime : initialisation
153   e0 = ioni->GetEnergy0fluct();                << 175   //
                                                   >> 176   if (material != lastMaterial) {
                                                   >> 177     f1Fluct      = material->GetIonisation()->GetF1fluct();
                                                   >> 178     f2Fluct      = material->GetIonisation()->GetF2fluct();
                                                   >> 179     e1Fluct      = material->GetIonisation()->GetEnergy1fluct();
                                                   >> 180     e2Fluct      = material->GetIonisation()->GetEnergy2fluct();
                                                   >> 181     e1LogFluct   = material->GetIonisation()->GetLogEnergy1fluct();
                                                   >> 182     e2LogFluct   = material->GetIonisation()->GetLogEnergy2fluct();
                                                   >> 183     ipotFluct    = material->GetIonisation()->GetMeanExcitationEnergy();
                                                   >> 184     ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy();
                                                   >> 185     e0 = material->GetIonisation()->GetEnergy0fluct();
                                                   >> 186     esmall = 0.5*sqrt(e0*ipotFluct);  
                                                   >> 187     lastMaterial = material;   
                                                   >> 188   }
154                                                   189 
155   // very small step or low-density material      190   // very small step or low-density material
156   if(tcut <= e0) { return meanLoss; }          << 191   if(tmax <= e0) { return meanLoss; }
157                                                << 
158   ipotFluct = ioni->GetMeanExcitationEnergy(); << 
159   ipotLogFluct = ioni->GetLogMeanExcEnergy();  << 
160                                                   192 
161   // width correction for small cuts              193   // width correction for small cuts
162   const G4double scaling = std::min(1.+0.5*CLH << 194   G4double scaling = std::min(1.+0.5*CLHEP::keV/tmax,1.50);
163   meanLoss /= scaling;                            195   meanLoss /= scaling;
164                                                   196 
165   w2 = (tcut > ipotFluct) ?                    << 197   G4double a1(0.0), a2(0.0), a3(0.0);
166     G4Log(2.*CLHEP::electron_mass_c2*beta2*gam << 198     
167   return SampleGlandz(rndmEngineF, material, t << 199   loss = 0.0;
168 }                                              << 200 
169                                                << 201   e1 = e1Fluct;
170 //....oooOO0OOooo........oooOO0OOooo........oo << 202   e2 = e2Fluct;
171                                                << 203 
172 G4double                                       << 204   if(tmax > ipotFluct) {
173 G4UniversalFluctuation::SampleGlandz(CLHEP::He << 205     G4double w2 = G4Log(2.*electron_mass_c2*beta2*gam2)-beta2;
174                                      const G4M << 206 
175                                      const G4d << 207     if(w2 > ipotLogFluct)  {
176 {                                              << 208       if(w2 > e2LogFluct) {
177   G4double a1(0.0), a3(0.0);                   << 209   G4double C = meanLoss*(1.-rate)/(w2-ipotLogFluct);
178   G4double loss = 0.0;                         << 210   a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct;
179   G4double e1 = ipotFluct;                     << 211   a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct;
180                                                << 212       } else {
181   if(tcut > e1) {                              << 213   a1 = meanLoss*(1.-rate)/e1;
182     a1 = meanLoss*(1.-rate)/e1;                << 214       }
183     if(a1 < a0) {                              << 215       if(a1 < a0) { 
184       const G4double fwnow = 0.1+(fw-0.1)*std: << 216         G4double fwnow = 0.5+(fw-0.5)*sqrt(a1/a0);
185       a1 /= fwnow;                             << 217         a1 /= fwnow;
186       e1 *= fwnow;                             << 218         e1 *= fwnow;
187     } else {                                   << 219       } else {
188       a1 /= fw;                                << 220         a1 /= fw;
189       e1 *= fw;                                << 221         e1 = fw*e1Fluct;
                                                   >> 222       }
190     }                                             223     }   
191   }                                               224   }
192                                                   225 
193   const G4double w1 = tcut/e0;                 << 226   G4double w1 = tmax/e0;
194   a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Lo << 227   if(tmax > e0) {
195   if(a1 <= 0.) { a3 /= rate; }                 << 228     a3 = rate*meanLoss*(tmax-e0)/(e0*tmax*G4Log(w1));
196                                                << 229     if(a1+a2 <= 0.) { 
                                                   >> 230       a3 /= rate;
                                                   >> 231     }
                                                   >> 232   }
197   //'nearly' Gaussian fluctuation if a1>nmaxCo    233   //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont  
198   G4double emean = 0.;                            234   G4double emean = 0.;
199   G4double sig2e = 0.;                            235   G4double sig2e = 0.;
200                                                   236 
201   // excitation of type 1                         237   // excitation of type 1
202   if(a1 > 0.0) { AddExcitation(rndmEngineF, a1    238   if(a1 > 0.0) { AddExcitation(rndmEngineF, a1, e1, emean, loss, sig2e); }
203                                                   239 
                                                   >> 240   // excitation of type 2
                                                   >> 241   if(a2 > 0.0) { AddExcitation(rndmEngineF, a2, e2, emean, loss, sig2e); }
                                                   >> 242 
204   if(sig2e > 0.0) { SampleGauss(rndmEngineF, e    243   if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
205                                                   244 
206   // ionisation                                   245   // ionisation 
207   if(a3 > 0.) {                                   246   if(a3 > 0.) {
208     emean = 0.;                                   247     emean = 0.;
209     sig2e = 0.;                                   248     sig2e = 0.;
210     G4double p3 = a3;                             249     G4double p3 = a3;
211     G4double alfa = 1.;                           250     G4double alfa = 1.;
212     if(a3 > nmaxCont) {                        << 251     if(a3 > nmaxCont)
213       alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3) << 252       {
214       const G4double alfa1  = alfa*G4Log(alfa) << 253         alfa            = w1*(nmaxCont+a3)/(w1*nmaxCont+a3);
215       const G4double namean = a3*w1*(alfa-1.)/ << 254         G4double alfa1  = alfa*G4Log(alfa)/(alfa-1.);
216       emean += namean*e0*alfa1;                << 255         G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa);
217       sig2e += e0*e0*namean*(alfa-alfa1*alfa1) << 256         emean          += namean*e0*alfa1;
218       p3 = a3 - namean;                        << 257         sig2e          += e0*e0*namean*(alfa-alfa1*alfa1);
219     }                                          << 258         p3              = a3-namean;
                                                   >> 259       }
220                                                   260 
221     const G4double w3 = alfa*e0;               << 261     G4double w2 = alfa*e0;
222     if(tcut > w3) {                            << 262     if(tmax > w2) {
223       const G4double w = (tcut-w3)/tcut;       << 263       G4double w  = (tmax-w2)/tmax;
224       const G4int nnb = (G4int)G4Poisson(p3);  << 264       G4int nnb = G4Poisson(p3);
225       if(nnb > 0) {                               265       if(nnb > 0) {
226         if(nnb > sizearray) {                     266         if(nnb > sizearray) {
227           sizearray = nnb;                        267           sizearray = nnb;
228           delete [] rndmarray;                    268           delete [] rndmarray;
229           rndmarray = new G4double[nnb];          269           rndmarray = new G4double[nnb];
230         }                                         270         }
231         rndmEngineF->flatArray(nnb, rndmarray)    271         rndmEngineF->flatArray(nnb, rndmarray);
232         for (G4int k=0; k<nnb; ++k) { loss +=  << 272         for (G4int k=0; k<nnb; ++k) { loss += w2/(1.-w*rndmarray[k]); }
233       }                                           273       }
234     }                                             274     }
235     if(sig2e > 0.0) { SampleGauss(rndmEngineF,    275     if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
236   }                                               276   }
237   //G4cout << "### loss=" << loss << G4endl;   << 277 
                                                   >> 278   loss *= scaling;
                                                   >> 279 
238   return loss;                                    280   return loss;
                                                   >> 281 
239 }                                                 282 }
240                                                   283 
241 //....oooOO0OOooo........oooOO0OOooo........oo    284 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
242                                                   285 
243                                                   286 
244 G4double G4UniversalFluctuation::Dispersion(      287 G4double G4UniversalFluctuation::Dispersion(
245                           const G4Material* ma    288                           const G4Material* material,
246                           const G4DynamicParti    289                           const G4DynamicParticle* dp,
247                           const G4double tcut, << 290                                 G4double tmax,
248                           const G4double tmax, << 291                                 G4double length)
249                           const G4double lengt << 
250 {                                                 292 {
251   if(dp->GetDefinition() != particle) { Initia    293   if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
252   const G4double beta = dp->GetBeta();         << 294 
253   return (tmax/(beta*beta) - 0.5*tcut) * CLHEP << 295   electronDensity = material->GetElectronDensity();
254     * material->GetElectronDensity() * chargeS << 296 
                                                   >> 297   G4double gam   = (dp->GetKineticEnergy())*m_Inv_particleMass + 1.0;
                                                   >> 298   G4double beta2 = 1.0 - 1.0/(gam*gam);
                                                   >> 299 
                                                   >> 300   G4double siga  = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
                                                   >> 301                  * electronDensity * chargeSquare;
                                                   >> 302 
                                                   >> 303   return siga;
255 }                                                 304 }
256                                                   305 
257 //....oooOO0OOooo........oooOO0OOooo........oo    306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
258                                                   307 
259 void                                              308 void 
260 G4UniversalFluctuation::SetParticleAndCharge(c    309 G4UniversalFluctuation::SetParticleAndCharge(const G4ParticleDefinition* part,
261                                              G    310                                              G4double q2)
262 {                                                 311 {
263   if(part != particle) {                          312   if(part != particle) {
264     particle = part;                           << 313     particle       = part;
265     particleMass = part->GetPDGMass();         << 314     particleMass   = part->GetPDGMass();
266                                                   315 
267     // Derived quantities                         316     // Derived quantities
268     m_Inv_particleMass = 1.0 / particleMass;   << 317     if( particleMass != 0.0 ){
269     m_massrate = CLHEP::electron_mass_c2 * m_I << 318       m_Inv_particleMass = 1.0 / particleMass;
                                                   >> 319       m_massrate = electron_mass_c2 * m_Inv_particleMass ;
                                                   >> 320     }else{
                                                   >> 321       m_Inv_particleMass = DBL_MAX;
                                                   >> 322       m_massrate = DBL_MAX;
                                                   >> 323     }
270   }                                               324   }
271   chargeSquare = q2;                              325   chargeSquare = q2;
272 }                                                 326 }
273                                                   327 
274 //....oooOO0OOooo........oooOO0OOooo........oo    328 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
275                                                   329