Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4UniversalFluctuation.cc 106265 2017-09-26 23:32:49Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4UniversalFluctuation 33 // File name: G4UniversalFluctuation 33 // 34 // 34 // Author: V. Ivanchenko for Laszlo Urb 35 // Author: V. Ivanchenko for Laszlo Urban 35 // 36 // 36 // Creation date: 03.01.2002 37 // Creation date: 03.01.2002 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // 41 // 41 42 42 //....oooOO0OOooo........oooOO0OOooo........oo 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 43 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 44 45 45 #include "G4UniversalFluctuation.hh" 46 #include "G4UniversalFluctuation.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4SystemOfUnits.hh" 48 #include "Randomize.hh" 49 #include "Randomize.hh" 49 #include "G4Poisson.hh" 50 #include "G4Poisson.hh" >> 51 #include "G4Step.hh" 50 #include "G4Material.hh" 52 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 53 #include "G4MaterialCutsCouple.hh" 52 #include "G4DynamicParticle.hh" 54 #include "G4DynamicParticle.hh" 53 #include "G4ParticleDefinition.hh" 55 #include "G4ParticleDefinition.hh" 54 #include "G4Log.hh" 56 #include "G4Log.hh" >> 57 #include "G4Exp.hh" 55 58 56 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 60 >> 61 using namespace std; >> 62 58 G4UniversalFluctuation::G4UniversalFluctuation 63 G4UniversalFluctuation::G4UniversalFluctuation(const G4String& nam) 59 :G4VEmFluctuationModel(nam), 64 :G4VEmFluctuationModel(nam), 60 minLoss(10.*CLHEP::eV) << 65 particle(nullptr), >> 66 minNumberInteractionsBohr(10.0), >> 67 minLoss(10.*eV), >> 68 nmaxCont(16.), >> 69 rate(0.56), >> 70 a0(50.), >> 71 fw(4.00) 61 { 72 { 62 rndmarray = new G4double[sizearray]; << 73 lastMaterial = nullptr; >> 74 particleMass = chargeSquare = ipotFluct = electronDensity = f1Fluct = f2Fluct >> 75 = e1Fluct = e2Fluct = e1LogFluct = e2LogFluct = ipotLogFluct = e0 = esmall >> 76 = e1 = e2 = 0.0; >> 77 m_Inv_particleMass = m_massrate = DBL_MAX; >> 78 sizearray = 30; >> 79 rndmarray = new G4double[30]; 63 } 80 } 64 81 65 //....oooOO0OOooo........oooOO0OOooo........oo 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 66 83 67 G4UniversalFluctuation::~G4UniversalFluctuatio 84 G4UniversalFluctuation::~G4UniversalFluctuation() 68 { 85 { 69 delete [] rndmarray; 86 delete [] rndmarray; 70 } 87 } 71 88 72 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 73 90 74 void G4UniversalFluctuation::InitialiseMe(cons 91 void G4UniversalFluctuation::InitialiseMe(const G4ParticleDefinition* part) 75 { 92 { 76 particle = part; << 93 particle = part; 77 particleMass = part->GetPDGMass(); << 94 particleMass = part->GetPDGMass(); 78 const G4double q = part->GetPDGCharge()/CLHE << 95 G4double q = part->GetPDGCharge()/eplus; 79 96 80 // Derived quantities 97 // Derived quantities 81 m_Inv_particleMass = 1.0 / particleMass; 98 m_Inv_particleMass = 1.0 / particleMass; 82 m_massrate = CLHEP::electron_mass_c2 * m_Inv << 99 m_massrate = electron_mass_c2 * m_Inv_particleMass ; 83 chargeSquare = q*q; << 100 chargeSquare = q*q; 84 } 101 } 85 102 86 //....oooOO0OOooo........oooOO0OOooo........oo 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 87 104 88 G4double 105 G4double 89 G4UniversalFluctuation::SampleFluctuations(con 106 G4UniversalFluctuation::SampleFluctuations(const G4MaterialCutsCouple* couple, 90 con 107 const G4DynamicParticle* dp, 91 con << 108 G4double tmax, 92 con << 109 G4double length, 93 con << 110 G4double averageLoss) 94 con << 95 { 111 { 96 // Calculate actual loss from the mean loss. 112 // Calculate actual loss from the mean loss. 97 // The model used to get the fluctuations is 113 // The model used to get the fluctuations is essentially the same 98 // as in Glandz in Geant3 (Cern program libr 114 // as in Glandz in Geant3 (Cern program library W5013, phys332). 99 // L. Urban et al. NIM A362, p.416 (1995) an 115 // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual 100 116 101 // shortcut for very small loss or from a st 117 // shortcut for very small loss or from a step nearly equal to the range 102 // (out of validity of the model) 118 // (out of validity of the model) 103 // 119 // 104 if (averageLoss < minLoss) { return averageL << 120 G4double meanLoss = averageLoss; 105 meanLoss = averageLoss; << 121 G4double tkin = dp->GetKineticEnergy(); 106 const G4double tkin = dp->GetKineticEnergy( << 107 //G4cout<< "Emean= "<< meanLoss<< " tmax= "< 122 //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl; >> 123 if (meanLoss < minLoss) { return meanLoss; } 108 124 109 if(dp->GetDefinition() != particle) { Initia 125 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); } 110 126 111 CLHEP::HepRandomEngine* rndmEngineF = G4Rand 127 CLHEP::HepRandomEngine* rndmEngineF = G4Random::getTheEngine(); 112 << 128 113 const G4double gam = tkin * m_Inv_particle << 129 G4double tau = tkin * m_Inv_particleMass; 114 const G4double gam2 = gam*gam; << 130 G4double gam = tau + 1.0; 115 const G4double beta = dp->GetBeta(); << 131 G4double gam2 = gam*gam; 116 const G4double beta2 = beta*beta; << 132 G4double beta2 = tau*(tau + 2.0)/gam2; 117 133 118 G4double loss(0.), siga(0.); 134 G4double loss(0.), siga(0.); 119 135 120 const G4Material* material = couple->GetMate 136 const G4Material* material = couple->GetMaterial(); 121 137 122 // Gaussian regime 138 // Gaussian regime 123 // for heavy particles only and conditions 139 // for heavy particles only and conditions 124 // for Gauusian fluct. has been changed 140 // for Gauusian fluct. has been changed 125 // 141 // 126 if (particleMass > CLHEP::electron_mass_c2 & << 142 if ((particleMass > electron_mass_c2) && 127 meanLoss >= minNumberInteractionsBohr*tc << 143 (meanLoss >= minNumberInteractionsBohr*tmax)) >> 144 { >> 145 G4double tmaxkine = 2.*electron_mass_c2*beta2*gam2/ >> 146 (1.+m_massrate*(2.*gam+m_massrate)) ; >> 147 if (tmaxkine <= 2.*tmax) >> 148 { >> 149 electronDensity = material->GetElectronDensity(); >> 150 siga = sqrt((1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length >> 151 * electronDensity * chargeSquare); 128 152 129 siga = std::sqrt((tmax/beta2 - 0.5*tcut)*C << 153 G4double sn = meanLoss/siga; 130 length*chargeSquare*mate << 131 const G4double sn = meanLoss/siga; << 132 154 133 // thick target case << 155 // thick target case 134 if (sn >= 2.0) { << 156 if (sn >= 2.0) { 135 157 136 const G4double twomeanLoss = meanLoss + << 158 G4double twomeanLoss = meanLoss + meanLoss; 137 do { << 159 do { 138 loss = G4RandGauss::shoot(rndmEngineF, meanL << 160 loss = G4RandGauss::shoot(rndmEngineF,meanLoss,siga); 139 // Loop checking, 03-Aug-2015, Vladimir Ivan << 161 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 140 } while (0.0 > loss || twomeanLoss < lo << 162 } while (0.0 > loss || twomeanLoss < loss); 141 163 142 // Gamma distribution << 164 // Gamma distribution 143 } else { << 165 } else { 144 166 145 const G4double neff = sn*sn; << 167 G4double neff = sn*sn; 146 loss = meanLoss*G4RandGamma::shoot(rndmE << 168 loss = meanLoss*G4RandGamma::shoot(rndmEngineF,neff,1.0)/neff; >> 169 } >> 170 //G4cout << "Gauss: " << loss << G4endl; >> 171 return loss; 147 } 172 } 148 //G4cout << "Gauss: " << loss << G4endl; << 149 return loss; << 150 } 173 } 151 174 152 auto ioni = material->GetIonisation(); << 175 // Glandz regime : initialisation 153 e0 = ioni->GetEnergy0fluct(); << 176 // >> 177 if (material != lastMaterial) { >> 178 f1Fluct = material->GetIonisation()->GetF1fluct(); >> 179 f2Fluct = material->GetIonisation()->GetF2fluct(); >> 180 e1Fluct = material->GetIonisation()->GetEnergy1fluct(); >> 181 e2Fluct = material->GetIonisation()->GetEnergy2fluct(); >> 182 e1LogFluct = material->GetIonisation()->GetLogEnergy1fluct(); >> 183 e2LogFluct = material->GetIonisation()->GetLogEnergy2fluct(); >> 184 ipotFluct = material->GetIonisation()->GetMeanExcitationEnergy(); >> 185 ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy(); >> 186 e0 = material->GetIonisation()->GetEnergy0fluct(); >> 187 esmall = 0.5*sqrt(e0*ipotFluct); >> 188 lastMaterial = material; >> 189 } 154 190 155 // very small step or low-density material 191 // very small step or low-density material 156 if(tcut <= e0) { return meanLoss; } << 192 if(tmax <= e0) { return meanLoss; } 157 << 158 ipotFluct = ioni->GetMeanExcitationEnergy(); << 159 ipotLogFluct = ioni->GetLogMeanExcEnergy(); << 160 193 161 // width correction for small cuts 194 // width correction for small cuts 162 const G4double scaling = std::min(1.+0.5*CLH << 195 G4double scaling = std::min(1.+0.5*CLHEP::keV/tmax,1.50); 163 meanLoss /= scaling; 196 meanLoss /= scaling; 164 197 165 w2 = (tcut > ipotFluct) ? << 198 G4double a1(0.0), a2(0.0), a3(0.0); 166 G4Log(2.*CLHEP::electron_mass_c2*beta2*gam << 199 167 return SampleGlandz(rndmEngineF, material, t << 200 loss = 0.0; 168 } << 201 169 << 202 e1 = e1Fluct; 170 //....oooOO0OOooo........oooOO0OOooo........oo << 203 e2 = e2Fluct; 171 << 204 172 G4double << 205 if(tmax > ipotFluct) { 173 G4UniversalFluctuation::SampleGlandz(CLHEP::He << 206 G4double w2 = G4Log(2.*electron_mass_c2*beta2*gam2)-beta2; 174 const G4M << 207 175 const G4d << 208 if(w2 > ipotLogFluct) { 176 { << 209 if(w2 > e2LogFluct) { 177 G4double a1(0.0), a3(0.0); << 210 G4double C = meanLoss*(1.-rate)/(w2-ipotLogFluct); 178 G4double loss = 0.0; << 211 a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct; 179 G4double e1 = ipotFluct; << 212 a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct; 180 << 213 } else { 181 if(tcut > e1) { << 214 a1 = meanLoss*(1.-rate)/e1; 182 a1 = meanLoss*(1.-rate)/e1; << 215 } 183 if(a1 < a0) { << 216 if(a1 < a0) { 184 const G4double fwnow = 0.1+(fw-0.1)*std: << 217 G4double fwnow = 0.5+(fw-0.5)*sqrt(a1/a0); 185 a1 /= fwnow; << 218 a1 /= fwnow; 186 e1 *= fwnow; << 219 e1 *= fwnow; 187 } else { << 220 } else { 188 a1 /= fw; << 221 a1 /= fw; 189 e1 *= fw; << 222 e1 = fw*e1Fluct; >> 223 } 190 } 224 } 191 } 225 } 192 226 193 const G4double w1 = tcut/e0; << 227 G4double w1 = tmax/e0; 194 a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Lo << 228 if(tmax > e0) { 195 if(a1 <= 0.) { a3 /= rate; } << 229 a3 = rate*meanLoss*(tmax-e0)/(e0*tmax*G4Log(w1)); 196 << 230 if(a1+a2 <= 0.) { >> 231 a3 /= rate; >> 232 } >> 233 } 197 //'nearly' Gaussian fluctuation if a1>nmaxCo 234 //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont 198 G4double emean = 0.; 235 G4double emean = 0.; 199 G4double sig2e = 0.; 236 G4double sig2e = 0.; 200 237 201 // excitation of type 1 238 // excitation of type 1 202 if(a1 > 0.0) { AddExcitation(rndmEngineF, a1 239 if(a1 > 0.0) { AddExcitation(rndmEngineF, a1, e1, emean, loss, sig2e); } 203 240 >> 241 // excitation of type 2 >> 242 if(a2 > 0.0) { AddExcitation(rndmEngineF, a2, e2, emean, loss, sig2e); } >> 243 204 if(sig2e > 0.0) { SampleGauss(rndmEngineF, e 244 if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); } 205 245 206 // ionisation 246 // ionisation 207 if(a3 > 0.) { 247 if(a3 > 0.) { 208 emean = 0.; 248 emean = 0.; 209 sig2e = 0.; 249 sig2e = 0.; 210 G4double p3 = a3; 250 G4double p3 = a3; 211 G4double alfa = 1.; 251 G4double alfa = 1.; 212 if(a3 > nmaxCont) { << 252 if(a3 > nmaxCont) 213 alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3) << 253 { 214 const G4double alfa1 = alfa*G4Log(alfa) << 254 alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3); 215 const G4double namean = a3*w1*(alfa-1.)/ << 255 G4double alfa1 = alfa*G4Log(alfa)/(alfa-1.); 216 emean += namean*e0*alfa1; << 256 G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa); 217 sig2e += e0*e0*namean*(alfa-alfa1*alfa1) << 257 emean += namean*e0*alfa1; 218 p3 = a3 - namean; << 258 sig2e += e0*e0*namean*(alfa-alfa1*alfa1); 219 } << 259 p3 = a3-namean; >> 260 } 220 261 221 const G4double w3 = alfa*e0; << 262 G4double w2 = alfa*e0; 222 if(tcut > w3) { << 263 if(tmax > w2) { 223 const G4double w = (tcut-w3)/tcut; << 264 G4double w = (tmax-w2)/tmax; 224 const G4int nnb = (G4int)G4Poisson(p3); << 265 G4int nnb = G4Poisson(p3); 225 if(nnb > 0) { 266 if(nnb > 0) { 226 if(nnb > sizearray) { 267 if(nnb > sizearray) { 227 sizearray = nnb; 268 sizearray = nnb; 228 delete [] rndmarray; 269 delete [] rndmarray; 229 rndmarray = new G4double[nnb]; 270 rndmarray = new G4double[nnb]; 230 } 271 } 231 rndmEngineF->flatArray(nnb, rndmarray) 272 rndmEngineF->flatArray(nnb, rndmarray); 232 for (G4int k=0; k<nnb; ++k) { loss += << 273 for (G4int k=0; k<nnb; ++k) { loss += w2/(1.-w*rndmarray[k]); } 233 } 274 } 234 } 275 } 235 if(sig2e > 0.0) { SampleGauss(rndmEngineF, 276 if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); } 236 } 277 } 237 //G4cout << "### loss=" << loss << G4endl; << 278 >> 279 loss *= scaling; >> 280 238 return loss; 281 return loss; >> 282 239 } 283 } 240 284 241 //....oooOO0OOooo........oooOO0OOooo........oo 285 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 242 286 243 287 244 G4double G4UniversalFluctuation::Dispersion( 288 G4double G4UniversalFluctuation::Dispersion( 245 const G4Material* ma 289 const G4Material* material, 246 const G4DynamicParti 290 const G4DynamicParticle* dp, 247 const G4double tcut, << 291 G4double tmax, 248 const G4double tmax, << 292 G4double length) 249 const G4double lengt << 250 { 293 { 251 if(dp->GetDefinition() != particle) { Initia 294 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); } 252 const G4double beta = dp->GetBeta(); << 295 253 return (tmax/(beta*beta) - 0.5*tcut) * CLHEP << 296 electronDensity = material->GetElectronDensity(); 254 * material->GetElectronDensity() * chargeS << 297 >> 298 G4double gam = (dp->GetKineticEnergy())*m_Inv_particleMass + 1.0; >> 299 G4double beta2 = 1.0 - 1.0/(gam*gam); >> 300 >> 301 G4double siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length >> 302 * electronDensity * chargeSquare; >> 303 >> 304 return siga; 255 } 305 } 256 306 257 //....oooOO0OOooo........oooOO0OOooo........oo 307 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 258 308 259 void 309 void 260 G4UniversalFluctuation::SetParticleAndCharge(c 310 G4UniversalFluctuation::SetParticleAndCharge(const G4ParticleDefinition* part, 261 G 311 G4double q2) 262 { 312 { 263 if(part != particle) { 313 if(part != particle) { 264 particle = part; << 314 particle = part; 265 particleMass = part->GetPDGMass(); << 315 particleMass = part->GetPDGMass(); 266 316 267 // Derived quantities 317 // Derived quantities 268 m_Inv_particleMass = 1.0 / particleMass; << 318 if( particleMass != 0.0 ){ 269 m_massrate = CLHEP::electron_mass_c2 * m_I << 319 m_Inv_particleMass = 1.0 / particleMass; >> 320 m_massrate = electron_mass_c2 * m_Inv_particleMass ; >> 321 }else{ >> 322 m_Inv_particleMass = DBL_MAX; >> 323 m_massrate = DBL_MAX; >> 324 } 270 } 325 } 271 chargeSquare = q2; 326 chargeSquare = q2; 272 } 327 } 273 328 274 //....oooOO0OOooo........oooOO0OOooo........oo 329 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 275 330