Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4UniversalFluctuation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4UniversalFluctuation.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4UniversalFluctuation.cc (Version 10.4.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4UniversalFluctuation.cc 106265 2017-09-26 23:32:49Z gcosmo $
 26 //                                                 27 //
 27 // -------------------------------------------     28 // -------------------------------------------------------------------
 28 //                                                 29 //
 29 // GEANT4 Class file                               30 // GEANT4 Class file
 30 //                                                 31 //
 31 //                                                 32 //
 32 // File name:     G4UniversalFluctuation           33 // File name:     G4UniversalFluctuation
 33 //                                                 34 //
 34 // Author:        V. Ivanchenko for Laszlo Urb     35 // Author:        V. Ivanchenko for Laszlo Urban
 35 //                                                 36 // 
 36 // Creation date: 03.01.2002                       37 // Creation date: 03.01.2002
 37 //                                                 38 //
 38 // Modifications:                                  39 // Modifications: 
 39 //                                                 40 //
 40 //                                                 41 //
 41                                                    42 
 42 //....oooOO0OOooo........oooOO0OOooo........oo     43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 43 //....oooOO0OOooo........oooOO0OOooo........oo     44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 44                                                    45 
 45 #include "G4UniversalFluctuation.hh"               46 #include "G4UniversalFluctuation.hh"
 46 #include "G4PhysicalConstants.hh"                  47 #include "G4PhysicalConstants.hh"
 47 #include "G4SystemOfUnits.hh"                      48 #include "G4SystemOfUnits.hh"
 48 #include "Randomize.hh"                            49 #include "Randomize.hh"
 49 #include "G4Poisson.hh"                            50 #include "G4Poisson.hh"
                                                   >>  51 #include "G4Step.hh"
 50 #include "G4Material.hh"                           52 #include "G4Material.hh"
 51 #include "G4MaterialCutsCouple.hh"                 53 #include "G4MaterialCutsCouple.hh"
 52 #include "G4DynamicParticle.hh"                    54 #include "G4DynamicParticle.hh"
 53 #include "G4ParticleDefinition.hh"                 55 #include "G4ParticleDefinition.hh"
 54 #include "G4Log.hh"                                56 #include "G4Log.hh"
                                                   >>  57 #include "G4Exp.hh"
 55                                                    58 
 56 //....oooOO0OOooo........oooOO0OOooo........oo     59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57                                                    60 
                                                   >>  61 using namespace std;
                                                   >>  62 
 58 G4UniversalFluctuation::G4UniversalFluctuation     63 G4UniversalFluctuation::G4UniversalFluctuation(const G4String& nam)
 59  :G4VEmFluctuationModel(nam),                      64  :G4VEmFluctuationModel(nam),
 60   minLoss(10.*CLHEP::eV)                       <<  65   particle(nullptr),
                                                   >>  66   minNumberInteractionsBohr(10.0),
                                                   >>  67   minLoss(10.*eV),
                                                   >>  68   nmaxCont(16.),
                                                   >>  69   rate(0.56),
                                                   >>  70   a0(50.),
                                                   >>  71   fw(4.00)
 61 {                                                  72 {
 62   rndmarray = new G4double[sizearray];         <<  73   lastMaterial = nullptr;
                                                   >>  74   particleMass = chargeSquare = ipotFluct = electronDensity = f1Fluct = f2Fluct 
                                                   >>  75     = e1Fluct = e2Fluct = e1LogFluct = e2LogFluct = ipotLogFluct = e0 = esmall 
                                                   >>  76     = e1 = e2 = 0.0;
                                                   >>  77   m_Inv_particleMass = m_massrate = DBL_MAX;
                                                   >>  78   sizearray = 30;
                                                   >>  79   rndmarray = new G4double[30];
 63 }                                                  80 }
 64                                                    81 
 65 //....oooOO0OOooo........oooOO0OOooo........oo     82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 66                                                    83 
 67 G4UniversalFluctuation::~G4UniversalFluctuatio     84 G4UniversalFluctuation::~G4UniversalFluctuation()
 68 {                                                  85 {
 69   delete [] rndmarray;                             86   delete [] rndmarray;
 70 }                                                  87 }
 71                                                    88 
 72 //....oooOO0OOooo........oooOO0OOooo........oo     89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 73                                                    90 
 74 void G4UniversalFluctuation::InitialiseMe(cons     91 void G4UniversalFluctuation::InitialiseMe(const G4ParticleDefinition* part)
 75 {                                                  92 {
 76   particle = part;                             <<  93   particle       = part;
 77   particleMass = part->GetPDGMass();           <<  94   particleMass   = part->GetPDGMass();
 78   const G4double q = part->GetPDGCharge()/CLHE <<  95   G4double q     = part->GetPDGCharge()/eplus;
 79                                                    96 
 80   // Derived quantities                            97   // Derived quantities
 81   m_Inv_particleMass = 1.0 / particleMass;         98   m_Inv_particleMass = 1.0 / particleMass;
 82   m_massrate = CLHEP::electron_mass_c2 * m_Inv <<  99   m_massrate = electron_mass_c2 * m_Inv_particleMass ;
 83   chargeSquare = q*q;                          << 100   chargeSquare   = q*q;
 84 }                                                 101 }
 85                                                   102 
 86 //....oooOO0OOooo........oooOO0OOooo........oo    103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87                                                   104 
 88 G4double                                          105 G4double 
 89 G4UniversalFluctuation::SampleFluctuations(con    106 G4UniversalFluctuation::SampleFluctuations(const G4MaterialCutsCouple* couple,
 90                                            con    107                                            const G4DynamicParticle* dp,
 91                                            con << 108                                            G4double tmax,
 92                                            con << 109                                            G4double length,
 93                                            con << 110                                            G4double averageLoss)
 94                                            con << 
 95 {                                                 111 {
 96   // Calculate actual loss from the mean loss.    112   // Calculate actual loss from the mean loss.
 97   // The model used to get the fluctuations is    113   // The model used to get the fluctuations is essentially the same
 98   // as in Glandz in Geant3 (Cern program libr    114   // as in Glandz in Geant3 (Cern program library W5013, phys332).
 99   // L. Urban et al. NIM A362, p.416 (1995) an    115   // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
100                                                   116 
101   // shortcut for very small loss or from a st    117   // shortcut for very small loss or from a step nearly equal to the range
102   // (out of validity of the model)               118   // (out of validity of the model)
103   //                                              119   //
104   if (averageLoss < minLoss) { return averageL << 120   G4double meanLoss = averageLoss;
105   meanLoss = averageLoss;                      << 121   G4double tkin  = dp->GetKineticEnergy();
106   const G4double tkin  = dp->GetKineticEnergy( << 
107   //G4cout<< "Emean= "<< meanLoss<< " tmax= "<    122   //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl;
                                                   >> 123   if (meanLoss < minLoss) { return meanLoss; }
108                                                   124 
109   if(dp->GetDefinition() != particle) { Initia    125   if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
110                                                   126 
111   CLHEP::HepRandomEngine* rndmEngineF = G4Rand    127   CLHEP::HepRandomEngine* rndmEngineF = G4Random::getTheEngine();
112                                                << 128   
113   const G4double gam   = tkin * m_Inv_particle << 129   G4double tau   = tkin * m_Inv_particleMass;            
114   const G4double gam2  = gam*gam;              << 130   G4double gam   = tau + 1.0;
115   const G4double beta  = dp->GetBeta();        << 131   G4double gam2  = gam*gam;
116   const G4double beta2 = beta*beta;            << 132   G4double beta2 = tau*(tau + 2.0)/gam2;
117                                                   133 
118   G4double loss(0.), siga(0.);                    134   G4double loss(0.), siga(0.);
119                                                   135 
120   const G4Material* material = couple->GetMate    136   const G4Material* material = couple->GetMaterial();
121                                                   137   
122   // Gaussian regime                              138   // Gaussian regime
123   // for heavy particles only and conditions      139   // for heavy particles only and conditions
124   // for Gauusian fluct. has been changed         140   // for Gauusian fluct. has been changed 
125   //                                              141   //
126   if (particleMass > CLHEP::electron_mass_c2 & << 142   if ((particleMass > electron_mass_c2) &&
127       meanLoss >= minNumberInteractionsBohr*tc << 143       (meanLoss >= minNumberInteractionsBohr*tmax))
                                                   >> 144   {
                                                   >> 145     G4double tmaxkine = 2.*electron_mass_c2*beta2*gam2/
                                                   >> 146                         (1.+m_massrate*(2.*gam+m_massrate)) ;
                                                   >> 147     if (tmaxkine <= 2.*tmax)   
                                                   >> 148     {
                                                   >> 149       electronDensity = material->GetElectronDensity();
                                                   >> 150       siga = sqrt((1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
                                                   >> 151                   * electronDensity * chargeSquare);
128                                                   152 
129     siga = std::sqrt((tmax/beta2 - 0.5*tcut)*C << 153       G4double sn = meanLoss/siga;
130                       length*chargeSquare*mate << 
131     const G4double sn = meanLoss/siga;         << 
132                                                   154   
133     // thick target case                       << 155       // thick target case 
134     if (sn >= 2.0) {                           << 156       if (sn >= 2.0) {
135                                                   157 
136       const G4double twomeanLoss = meanLoss +  << 158         G4double twomeanLoss = meanLoss + meanLoss;
137       do {                                     << 159         do {
138   loss = G4RandGauss::shoot(rndmEngineF, meanL << 160           loss = G4RandGauss::shoot(rndmEngineF,meanLoss,siga);
139   // Loop checking, 03-Aug-2015, Vladimir Ivan << 161           // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
140       } while  (0.0 > loss || twomeanLoss < lo << 162         } while  (0.0 > loss || twomeanLoss < loss);
141                                                   163 
142       // Gamma distribution                    << 164         // Gamma distribution
143     } else {                                   << 165       } else {
144                                                   166 
145       const G4double neff = sn*sn;             << 167         G4double neff = sn*sn;
146       loss = meanLoss*G4RandGamma::shoot(rndmE << 168         loss = meanLoss*G4RandGamma::shoot(rndmEngineF,neff,1.0)/neff;
                                                   >> 169       }
                                                   >> 170       //G4cout << "Gauss: " << loss << G4endl;
                                                   >> 171       return loss;
147     }                                             172     }
148     //G4cout << "Gauss: " << loss << G4endl;   << 
149     return loss;                               << 
150   }                                               173   }
151                                                   174 
152   auto ioni = material->GetIonisation();       << 175   // Glandz regime : initialisation
153   e0 = ioni->GetEnergy0fluct();                << 176   //
                                                   >> 177   if (material != lastMaterial) {
                                                   >> 178     f1Fluct      = material->GetIonisation()->GetF1fluct();
                                                   >> 179     f2Fluct      = material->GetIonisation()->GetF2fluct();
                                                   >> 180     e1Fluct      = material->GetIonisation()->GetEnergy1fluct();
                                                   >> 181     e2Fluct      = material->GetIonisation()->GetEnergy2fluct();
                                                   >> 182     e1LogFluct   = material->GetIonisation()->GetLogEnergy1fluct();
                                                   >> 183     e2LogFluct   = material->GetIonisation()->GetLogEnergy2fluct();
                                                   >> 184     ipotFluct    = material->GetIonisation()->GetMeanExcitationEnergy();
                                                   >> 185     ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy();
                                                   >> 186     e0 = material->GetIonisation()->GetEnergy0fluct();
                                                   >> 187     esmall = 0.5*sqrt(e0*ipotFluct);  
                                                   >> 188     lastMaterial = material;   
                                                   >> 189   }
154                                                   190 
155   // very small step or low-density material      191   // very small step or low-density material
156   if(tcut <= e0) { return meanLoss; }          << 192   if(tmax <= e0) { return meanLoss; }
157                                                << 
158   ipotFluct = ioni->GetMeanExcitationEnergy(); << 
159   ipotLogFluct = ioni->GetLogMeanExcEnergy();  << 
160                                                   193 
161   // width correction for small cuts              194   // width correction for small cuts
162   const G4double scaling = std::min(1.+0.5*CLH << 195   G4double scaling = std::min(1.+0.5*CLHEP::keV/tmax,1.50);
163   meanLoss /= scaling;                            196   meanLoss /= scaling;
164                                                   197 
165   w2 = (tcut > ipotFluct) ?                    << 198   G4double a1(0.0), a2(0.0), a3(0.0);
166     G4Log(2.*CLHEP::electron_mass_c2*beta2*gam << 199     
167   return SampleGlandz(rndmEngineF, material, t << 200   loss = 0.0;
168 }                                              << 201 
169                                                << 202   e1 = e1Fluct;
170 //....oooOO0OOooo........oooOO0OOooo........oo << 203   e2 = e2Fluct;
171                                                << 204 
172 G4double                                       << 205   if(tmax > ipotFluct) {
173 G4UniversalFluctuation::SampleGlandz(CLHEP::He << 206     G4double w2 = G4Log(2.*electron_mass_c2*beta2*gam2)-beta2;
174                                      const G4M << 207 
175                                      const G4d << 208     if(w2 > ipotLogFluct)  {
176 {                                              << 209       if(w2 > e2LogFluct) {
177   G4double a1(0.0), a3(0.0);                   << 210   G4double C = meanLoss*(1.-rate)/(w2-ipotLogFluct);
178   G4double loss = 0.0;                         << 211   a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct;
179   G4double e1 = ipotFluct;                     << 212   a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct;
180                                                << 213       } else {
181   if(tcut > e1) {                              << 214   a1 = meanLoss*(1.-rate)/e1;
182     a1 = meanLoss*(1.-rate)/e1;                << 215       }
183     if(a1 < a0) {                              << 216       if(a1 < a0) { 
184       const G4double fwnow = 0.1+(fw-0.1)*std: << 217         G4double fwnow = 0.5+(fw-0.5)*sqrt(a1/a0);
185       a1 /= fwnow;                             << 218         a1 /= fwnow;
186       e1 *= fwnow;                             << 219         e1 *= fwnow;
187     } else {                                   << 220       } else {
188       a1 /= fw;                                << 221         a1 /= fw;
189       e1 *= fw;                                << 222         e1 = fw*e1Fluct;
                                                   >> 223       }
190     }                                             224     }   
191   }                                               225   }
192                                                   226 
193   const G4double w1 = tcut/e0;                 << 227   G4double w1 = tmax/e0;
194   a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Lo << 228   if(tmax > e0) {
195   if(a1 <= 0.) { a3 /= rate; }                 << 229     a3 = rate*meanLoss*(tmax-e0)/(e0*tmax*G4Log(w1));
196                                                << 230     if(a1+a2 <= 0.) { 
                                                   >> 231       a3 /= rate;
                                                   >> 232     }
                                                   >> 233   }
197   //'nearly' Gaussian fluctuation if a1>nmaxCo    234   //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont  
198   G4double emean = 0.;                            235   G4double emean = 0.;
199   G4double sig2e = 0.;                            236   G4double sig2e = 0.;
200                                                   237 
201   // excitation of type 1                         238   // excitation of type 1
202   if(a1 > 0.0) { AddExcitation(rndmEngineF, a1    239   if(a1 > 0.0) { AddExcitation(rndmEngineF, a1, e1, emean, loss, sig2e); }
203                                                   240 
                                                   >> 241   // excitation of type 2
                                                   >> 242   if(a2 > 0.0) { AddExcitation(rndmEngineF, a2, e2, emean, loss, sig2e); }
                                                   >> 243 
204   if(sig2e > 0.0) { SampleGauss(rndmEngineF, e    244   if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
205                                                   245 
206   // ionisation                                   246   // ionisation 
207   if(a3 > 0.) {                                   247   if(a3 > 0.) {
208     emean = 0.;                                   248     emean = 0.;
209     sig2e = 0.;                                   249     sig2e = 0.;
210     G4double p3 = a3;                             250     G4double p3 = a3;
211     G4double alfa = 1.;                           251     G4double alfa = 1.;
212     if(a3 > nmaxCont) {                        << 252     if(a3 > nmaxCont)
213       alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3) << 253       {
214       const G4double alfa1  = alfa*G4Log(alfa) << 254         alfa            = w1*(nmaxCont+a3)/(w1*nmaxCont+a3);
215       const G4double namean = a3*w1*(alfa-1.)/ << 255         G4double alfa1  = alfa*G4Log(alfa)/(alfa-1.);
216       emean += namean*e0*alfa1;                << 256         G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa);
217       sig2e += e0*e0*namean*(alfa-alfa1*alfa1) << 257         emean          += namean*e0*alfa1;
218       p3 = a3 - namean;                        << 258         sig2e          += e0*e0*namean*(alfa-alfa1*alfa1);
219     }                                          << 259         p3              = a3-namean;
                                                   >> 260       }
220                                                   261 
221     const G4double w3 = alfa*e0;               << 262     G4double w2 = alfa*e0;
222     if(tcut > w3) {                            << 263     if(tmax > w2) {
223       const G4double w = (tcut-w3)/tcut;       << 264       G4double w  = (tmax-w2)/tmax;
224       const G4int nnb = (G4int)G4Poisson(p3);  << 265       G4int nnb = G4Poisson(p3);
225       if(nnb > 0) {                               266       if(nnb > 0) {
226         if(nnb > sizearray) {                     267         if(nnb > sizearray) {
227           sizearray = nnb;                        268           sizearray = nnb;
228           delete [] rndmarray;                    269           delete [] rndmarray;
229           rndmarray = new G4double[nnb];          270           rndmarray = new G4double[nnb];
230         }                                         271         }
231         rndmEngineF->flatArray(nnb, rndmarray)    272         rndmEngineF->flatArray(nnb, rndmarray);
232         for (G4int k=0; k<nnb; ++k) { loss +=  << 273         for (G4int k=0; k<nnb; ++k) { loss += w2/(1.-w*rndmarray[k]); }
233       }                                           274       }
234     }                                             275     }
235     if(sig2e > 0.0) { SampleGauss(rndmEngineF,    276     if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
236   }                                               277   }
237   //G4cout << "### loss=" << loss << G4endl;   << 278 
                                                   >> 279   loss *= scaling;
                                                   >> 280 
238   return loss;                                    281   return loss;
                                                   >> 282 
239 }                                                 283 }
240                                                   284 
241 //....oooOO0OOooo........oooOO0OOooo........oo    285 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
242                                                   286 
243                                                   287 
244 G4double G4UniversalFluctuation::Dispersion(      288 G4double G4UniversalFluctuation::Dispersion(
245                           const G4Material* ma    289                           const G4Material* material,
246                           const G4DynamicParti    290                           const G4DynamicParticle* dp,
247                           const G4double tcut, << 291                                 G4double tmax,
248                           const G4double tmax, << 292                                 G4double length)
249                           const G4double lengt << 
250 {                                                 293 {
251   if(dp->GetDefinition() != particle) { Initia    294   if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
252   const G4double beta = dp->GetBeta();         << 295 
253   return (tmax/(beta*beta) - 0.5*tcut) * CLHEP << 296   electronDensity = material->GetElectronDensity();
254     * material->GetElectronDensity() * chargeS << 297 
                                                   >> 298   G4double gam   = (dp->GetKineticEnergy())*m_Inv_particleMass + 1.0;
                                                   >> 299   G4double beta2 = 1.0 - 1.0/(gam*gam);
                                                   >> 300 
                                                   >> 301   G4double siga  = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
                                                   >> 302                  * electronDensity * chargeSquare;
                                                   >> 303 
                                                   >> 304   return siga;
255 }                                                 305 }
256                                                   306 
257 //....oooOO0OOooo........oooOO0OOooo........oo    307 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
258                                                   308 
259 void                                              309 void 
260 G4UniversalFluctuation::SetParticleAndCharge(c    310 G4UniversalFluctuation::SetParticleAndCharge(const G4ParticleDefinition* part,
261                                              G    311                                              G4double q2)
262 {                                                 312 {
263   if(part != particle) {                          313   if(part != particle) {
264     particle = part;                           << 314     particle       = part;
265     particleMass = part->GetPDGMass();         << 315     particleMass   = part->GetPDGMass();
266                                                   316 
267     // Derived quantities                         317     // Derived quantities
268     m_Inv_particleMass = 1.0 / particleMass;   << 318     if( particleMass != 0.0 ){
269     m_massrate = CLHEP::electron_mass_c2 * m_I << 319       m_Inv_particleMass = 1.0 / particleMass;
                                                   >> 320       m_massrate = electron_mass_c2 * m_Inv_particleMass ;
                                                   >> 321     }else{
                                                   >> 322       m_Inv_particleMass = DBL_MAX;
                                                   >> 323       m_massrate = DBL_MAX;
                                                   >> 324     }
270   }                                               325   }
271   chargeSquare = q2;                              326   chargeSquare = q2;
272 }                                                 327 }
273                                                   328 
274 //....oooOO0OOooo........oooOO0OOooo........oo    329 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
275                                                   330