Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4UniversalFluctuation.cc 79188 2014-02-20 09:22:48Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4UniversalFluctuation 33 // File name: G4UniversalFluctuation 33 // 34 // 34 // Author: V. Ivanchenko for Laszlo Urb << 35 // Author: Laszlo Urban 35 // 36 // 36 // Creation date: 03.01.2002 37 // Creation date: 03.01.2002 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // >> 41 // 28-12-02 add method Dispersion (V.Ivanchenko) >> 42 // 07-02-03 change signature (V.Ivanchenko) >> 43 // 13-02-03 Add name (V.Ivanchenko) >> 44 // 16-10-03 Changed interface to Initialisation (V.Ivanchenko) >> 45 // 07-11-03 Fix problem of rounding of double in G4UniversalFluctuations >> 46 // 06-02-04 Add control on big sigma > 2*meanLoss (V.Ivanchenko) >> 47 // 26-04-04 Comment out the case of very small step (V.Ivanchenko) >> 48 // 07-02-05 define problim = 5.e-3 (mma) >> 49 // 03-05-05 conditions of Gaussian fluctuation changed (bugfix) >> 50 // + smearing for very small loss (L.Urban) >> 51 // 03-10-05 energy dependent rate -> cut dependence of the >> 52 // distribution is much weaker (L.Urban) >> 53 // 17-10-05 correction for very small loss (L.Urban) >> 54 // 20-03-07 'GLANDZ' part rewritten completely, no 'very small loss' >> 55 // regime any more (L.Urban) >> 56 // 03-04-07 correction to get better width of eloss distr.(L.Urban) >> 57 // 13-07-07 add protection for very small step or low-density material (VI) >> 58 // 19-03-09 new width correction (does not depend on previous steps) (L.Urban) >> 59 // 20-03-09 modification in the width correction (L.Urban) >> 60 // 14-06-10 fixed tail distribution - do not use uniform function (L.Urban) >> 61 // 08-08-10 width correction algorithm has bee modified --> >> 62 // better results for thin targets (L.Urban) >> 63 // 06-02-11 correction for very small losses (L.Urban) 40 // 64 // 41 65 42 //....oooOO0OOooo........oooOO0OOooo........oo 66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 43 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 44 68 45 #include "G4UniversalFluctuation.hh" 69 #include "G4UniversalFluctuation.hh" 46 #include "G4PhysicalConstants.hh" 70 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 71 #include "G4SystemOfUnits.hh" 48 #include "Randomize.hh" 72 #include "Randomize.hh" 49 #include "G4Poisson.hh" 73 #include "G4Poisson.hh" >> 74 #include "G4Step.hh" 50 #include "G4Material.hh" 75 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 76 #include "G4MaterialCutsCouple.hh" 52 #include "G4DynamicParticle.hh" 77 #include "G4DynamicParticle.hh" 53 #include "G4ParticleDefinition.hh" 78 #include "G4ParticleDefinition.hh" 54 #include "G4Log.hh" 79 #include "G4Log.hh" >> 80 #include "G4Exp.hh" 55 81 56 //....oooOO0OOooo........oooOO0OOooo........oo 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 83 >> 84 using namespace std; >> 85 58 G4UniversalFluctuation::G4UniversalFluctuation 86 G4UniversalFluctuation::G4UniversalFluctuation(const G4String& nam) 59 :G4VEmFluctuationModel(nam), 87 :G4VEmFluctuationModel(nam), 60 minLoss(10.*CLHEP::eV) << 88 particle(0), >> 89 minNumberInteractionsBohr(10.0), >> 90 theBohrBeta2(50.0*keV/proton_mass_c2), >> 91 minLoss(10.*eV), >> 92 nmaxCont(16.), >> 93 rate(0.55), >> 94 fw(4.) 61 { 95 { 62 rndmarray = new G4double[sizearray]; << 96 lastMaterial = 0; >> 97 >> 98 particleMass = chargeSquare = ipotFluct = electronDensity = f1Fluct = f2Fluct >> 99 = e1Fluct = e2Fluct = e1LogFluct = e2LogFluct = ipotLogFluct = e0 = esmall >> 100 = e1 = e2 = 0; >> 101 m_Inv_particleMass = m_massrate = DBL_MAX; 63 } 102 } 64 103 65 //....oooOO0OOooo........oooOO0OOooo........oo 104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 66 105 67 G4UniversalFluctuation::~G4UniversalFluctuatio 106 G4UniversalFluctuation::~G4UniversalFluctuation() 68 { << 107 {} 69 delete [] rndmarray; << 70 } << 71 108 72 //....oooOO0OOooo........oooOO0OOooo........oo 109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 73 110 74 void G4UniversalFluctuation::InitialiseMe(cons 111 void G4UniversalFluctuation::InitialiseMe(const G4ParticleDefinition* part) 75 { 112 { 76 particle = part; << 113 particle = part; 77 particleMass = part->GetPDGMass(); << 114 particleMass = part->GetPDGMass(); 78 const G4double q = part->GetPDGCharge()/CLHE << 115 G4double q = part->GetPDGCharge()/eplus; 79 116 80 // Derived quantities 117 // Derived quantities 81 m_Inv_particleMass = 1.0 / particleMass; 118 m_Inv_particleMass = 1.0 / particleMass; 82 m_massrate = CLHEP::electron_mass_c2 * m_Inv << 119 m_massrate = electron_mass_c2 * m_Inv_particleMass ; 83 chargeSquare = q*q; << 120 chargeSquare = q*q; 84 } 121 } 85 122 86 //....oooOO0OOooo........oooOO0OOooo........oo 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 87 124 88 G4double 125 G4double 89 G4UniversalFluctuation::SampleFluctuations(con 126 G4UniversalFluctuation::SampleFluctuations(const G4MaterialCutsCouple* couple, 90 con << 127 const G4DynamicParticle* dp, 91 con << 128 G4double tmax, 92 con << 129 G4double length, 93 con << 130 G4double averageLoss) 94 con << 95 { 131 { 96 // Calculate actual loss from the mean loss. 132 // Calculate actual loss from the mean loss. 97 // The model used to get the fluctuations is 133 // The model used to get the fluctuations is essentially the same 98 // as in Glandz in Geant3 (Cern program libr 134 // as in Glandz in Geant3 (Cern program library W5013, phys332). 99 // L. Urban et al. NIM A362, p.416 (1995) an 135 // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual 100 136 101 // shortcut for very small loss or from a st 137 // shortcut for very small loss or from a step nearly equal to the range 102 // (out of validity of the model) 138 // (out of validity of the model) 103 // 139 // 104 if (averageLoss < minLoss) { return averageL << 140 G4double meanLoss = averageLoss; 105 meanLoss = averageLoss; << 141 G4double tkin = dp->GetKineticEnergy(); 106 const G4double tkin = dp->GetKineticEnergy( << 107 //G4cout<< "Emean= "<< meanLoss<< " tmax= "< 142 //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl; >> 143 if (meanLoss < minLoss) { return meanLoss; } 108 144 109 if(dp->GetDefinition() != particle) { Initia 145 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); } 110 << 146 111 CLHEP::HepRandomEngine* rndmEngineF = G4Rand << 147 G4double tau = tkin * m_Inv_particleMass; 112 << 148 G4double gam = tau + 1.0; 113 const G4double gam = tkin * m_Inv_particle << 149 G4double gam2 = gam*gam; 114 const G4double gam2 = gam*gam; << 150 G4double beta2 = tau*(tau + 2.0)/gam2; 115 const G4double beta = dp->GetBeta(); << 116 const G4double beta2 = beta*beta; << 117 151 118 G4double loss(0.), siga(0.); 152 G4double loss(0.), siga(0.); 119 153 120 const G4Material* material = couple->GetMate 154 const G4Material* material = couple->GetMaterial(); 121 155 122 // Gaussian regime 156 // Gaussian regime 123 // for heavy particles only and conditions 157 // for heavy particles only and conditions 124 // for Gauusian fluct. has been changed 158 // for Gauusian fluct. has been changed 125 // 159 // 126 if (particleMass > CLHEP::electron_mass_c2 & << 160 if ((particleMass > electron_mass_c2) && 127 meanLoss >= minNumberInteractionsBohr*tc << 161 (meanLoss >= minNumberInteractionsBohr*tmax)) >> 162 { >> 163 G4double tmaxkine = 2.*electron_mass_c2*beta2*gam2/ >> 164 (1.+m_massrate*(2.*gam+m_massrate)) ; >> 165 if (tmaxkine <= 2.*tmax) >> 166 { >> 167 electronDensity = material->GetElectronDensity(); >> 168 siga = sqrt((1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length >> 169 * electronDensity * chargeSquare); 128 170 129 siga = std::sqrt((tmax/beta2 - 0.5*tcut)*C << 171 G4double sn = meanLoss/siga; 130 length*chargeSquare*mate << 131 const G4double sn = meanLoss/siga; << 132 172 133 // thick target case << 173 // thick target case 134 if (sn >= 2.0) { << 174 if (sn >= 2.0) { 135 175 136 const G4double twomeanLoss = meanLoss + << 176 G4double twomeanLoss = meanLoss + meanLoss; 137 do { << 177 do { 138 loss = G4RandGauss::shoot(rndmEngineF, meanL << 178 loss = G4RandGauss::shoot(meanLoss,siga); 139 // Loop checking, 03-Aug-2015, Vladimir Ivan << 179 } while (0.0 > loss || twomeanLoss < loss); 140 } while (0.0 > loss || twomeanLoss < lo << 141 180 142 // Gamma distribution << 181 // Gamma distribution 143 } else { << 182 } else { 144 183 145 const G4double neff = sn*sn; << 184 G4double neff = sn*sn; 146 loss = meanLoss*G4RandGamma::shoot(rndmE << 185 loss = meanLoss*G4RandGamma::shoot(neff,1.0)/neff; >> 186 } >> 187 //G4cout << "Gauss: " << loss << G4endl; >> 188 return loss; 147 } 189 } 148 //G4cout << "Gauss: " << loss << G4endl; << 149 return loss; << 150 } 190 } 151 191 152 auto ioni = material->GetIonisation(); << 192 // Glandz regime : initialisation 153 e0 = ioni->GetEnergy0fluct(); << 193 // >> 194 if (material != lastMaterial) { >> 195 f1Fluct = material->GetIonisation()->GetF1fluct(); >> 196 f2Fluct = material->GetIonisation()->GetF2fluct(); >> 197 e1Fluct = material->GetIonisation()->GetEnergy1fluct(); >> 198 e2Fluct = material->GetIonisation()->GetEnergy2fluct(); >> 199 e1LogFluct = material->GetIonisation()->GetLogEnergy1fluct(); >> 200 e2LogFluct = material->GetIonisation()->GetLogEnergy2fluct(); >> 201 ipotFluct = material->GetIonisation()->GetMeanExcitationEnergy(); >> 202 ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy(); >> 203 e0 = material->GetIonisation()->GetEnergy0fluct(); >> 204 esmall = 0.5*sqrt(e0*ipotFluct); >> 205 lastMaterial = material; >> 206 } 154 207 155 // very small step or low-density material 208 // very small step or low-density material 156 if(tcut <= e0) { return meanLoss; } << 209 if(tmax <= e0) { return meanLoss; } 157 210 158 ipotFluct = ioni->GetMeanExcitationEnergy(); << 211 G4double losstot = 0.; 159 ipotLogFluct = ioni->GetLogMeanExcEnergy(); << 212 G4int nstep = 1; >> 213 if(meanLoss < 25.*ipotFluct) >> 214 { >> 215 if(G4UniformRand()*ipotFluct< 0.04*meanLoss) >> 216 { nstep = 1; } >> 217 else >> 218 { >> 219 nstep = 2; >> 220 meanLoss *= 0.5; >> 221 } >> 222 } 160 223 161 // width correction for small cuts << 224 for (G4int istep=0; istep < nstep; ++istep) { 162 const G4double scaling = std::min(1.+0.5*CLH << 225 163 meanLoss /= scaling; << 226 loss = 0.; 164 << 227 165 w2 = (tcut > ipotFluct) ? << 228 G4double a1 = 0. , a2 = 0., a3 = 0. ; 166 G4Log(2.*CLHEP::electron_mass_c2*beta2*gam << 229 167 return SampleGlandz(rndmEngineF, material, t << 230 if(tmax > ipotFluct) { 168 } << 231 G4double w2 = G4Log(2.*electron_mass_c2*beta2*gam2)-beta2; >> 232 >> 233 if(w2 > ipotLogFluct) { >> 234 G4double C = meanLoss*(1.-rate)/(w2-ipotLogFluct); >> 235 a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct; >> 236 if(w2 > e2LogFluct) { >> 237 a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct; >> 238 } >> 239 if(a1 < nmaxCont) { >> 240 //small energy loss >> 241 G4double sa1 = sqrt(a1); >> 242 if(G4UniformRand() < G4Exp(-sa1)) >> 243 { >> 244 e1 = esmall; >> 245 a1 = meanLoss*(1.-rate)/e1; >> 246 a2 = 0.; >> 247 e2 = e2Fluct; >> 248 } >> 249 else >> 250 { >> 251 a1 = sa1 ; >> 252 e1 = sa1*e1Fluct; >> 253 e2 = e2Fluct; >> 254 } >> 255 >> 256 } else { >> 257 //not small energy loss >> 258 //correction to get better fwhm value >> 259 a1 /= fw; >> 260 e1 = fw*e1Fluct; >> 261 e2 = e2Fluct; >> 262 } >> 263 } >> 264 } 169 265 170 //....oooOO0OOooo........oooOO0OOooo........oo << 266 G4double w1 = tmax/e0; >> 267 if(tmax > e0) { >> 268 a3 = rate*meanLoss*(tmax-e0)/(e0*tmax*G4Log(w1)); >> 269 if(a1+a2 <= 0.) { >> 270 a3 /= rate; >> 271 } >> 272 } >> 273 //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont >> 274 G4double emean = 0.; >> 275 G4double sig2e = 0., sige = 0.; >> 276 G4double p1 = 0., p2 = 0., p3 = 0.; >> 277 >> 278 // excitation of type 1 >> 279 if(a1 > nmaxCont) >> 280 { >> 281 emean += a1*e1; >> 282 sig2e += a1*e1*e1; >> 283 } >> 284 else if(a1 > 0.) >> 285 { >> 286 p1 = G4double(G4Poisson(a1)); >> 287 loss += p1*e1; >> 288 if(p1 > 0.) { >> 289 loss += (1.-2.*G4UniformRand())*e1; >> 290 } >> 291 } 171 292 172 G4double << 293 // excitation of type 2 173 G4UniversalFluctuation::SampleGlandz(CLHEP::He << 294 if(a2 > nmaxCont) 174 const G4M << 295 { 175 const G4d << 296 emean += a2*e2; 176 { << 297 sig2e += a2*e2*e2; 177 G4double a1(0.0), a3(0.0); << 298 } 178 G4double loss = 0.0; << 299 else if(a2 > 0.) 179 G4double e1 = ipotFluct; << 300 { 180 << 301 p2 = G4double(G4Poisson(a2)); 181 if(tcut > e1) { << 302 loss += p2*e2; 182 a1 = meanLoss*(1.-rate)/e1; << 303 if(p2 > 0.) 183 if(a1 < a0) { << 304 loss += (1.-2.*G4UniformRand())*e2; 184 const G4double fwnow = 0.1+(fw-0.1)*std: << 305 } 185 a1 /= fwnow; << 306 if(emean > 0.) 186 e1 *= fwnow; << 307 { 187 } else { << 308 sige = sqrt(sig2e); 188 a1 /= fw; << 309 loss += max(0.,G4RandGauss::shoot(emean,sige)); 189 e1 *= fw; << 310 } 190 } << 191 } << 192 311 193 const G4double w1 = tcut/e0; << 312 // ionisation 194 a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Lo << 313 G4double lossc = 0.; 195 if(a1 <= 0.) { a3 /= rate; } << 314 if(a3 > 0.) { 196 << 315 emean = 0.; 197 //'nearly' Gaussian fluctuation if a1>nmaxCo << 316 sig2e = 0.; 198 G4double emean = 0.; << 317 sige = 0.; 199 G4double sig2e = 0.; << 318 p3 = a3; 200 << 319 G4double alfa = 1.; 201 // excitation of type 1 << 320 if(a3 > nmaxCont) 202 if(a1 > 0.0) { AddExcitation(rndmEngineF, a1 << 321 { 203 << 322 alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3); 204 if(sig2e > 0.0) { SampleGauss(rndmEngineF, e << 323 G4double alfa1 = alfa*G4Log(alfa)/(alfa-1.); 205 << 324 G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa); 206 // ionisation << 325 emean += namean*e0*alfa1; 207 if(a3 > 0.) { << 326 sig2e += e0*e0*namean*(alfa-alfa1*alfa1); 208 emean = 0.; << 327 p3 = a3-namean; 209 sig2e = 0.; << 328 } 210 G4double p3 = a3; << 329 211 G4double alfa = 1.; << 330 G4double w2 = alfa*e0; 212 if(a3 > nmaxCont) { << 331 G4double w = (tmax-w2)/tmax; 213 alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3) << 332 G4int nb = G4Poisson(p3); 214 const G4double alfa1 = alfa*G4Log(alfa) << 333 if(nb > 0) { 215 const G4double namean = a3*w1*(alfa-1.)/ << 334 for (G4int k=0; k<nb; k++) { lossc += w2/(1.-w*G4UniformRand()); } 216 emean += namean*e0*alfa1; << 335 } 217 sig2e += e0*e0*namean*(alfa-alfa1*alfa1) << 336 218 p3 = a3 - namean; << 337 if(emean > 0.) 219 } << 338 { 220 << 339 sige = sqrt(sig2e); 221 const G4double w3 = alfa*e0; << 340 lossc += max(0.,G4RandGauss::shoot(emean,sige)); 222 if(tcut > w3) { << 223 const G4double w = (tcut-w3)/tcut; << 224 const G4int nnb = (G4int)G4Poisson(p3); << 225 if(nnb > 0) { << 226 if(nnb > sizearray) { << 227 sizearray = nnb; << 228 delete [] rndmarray; << 229 rndmarray = new G4double[nnb]; << 230 } << 231 rndmEngineF->flatArray(nnb, rndmarray) << 232 for (G4int k=0; k<nnb; ++k) { loss += << 233 } 341 } 234 } 342 } 235 if(sig2e > 0.0) { SampleGauss(rndmEngineF, << 343 >> 344 loss += lossc; >> 345 >> 346 losstot += loss; 236 } 347 } 237 //G4cout << "### loss=" << loss << G4endl; << 348 //G4cout << "Vavilov: " << losstot << " Nstep= " << nstep << G4endl; 238 return loss; << 349 >> 350 return losstot; >> 351 239 } 352 } 240 353 241 //....oooOO0OOooo........oooOO0OOooo........oo 354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 242 355 243 356 244 G4double G4UniversalFluctuation::Dispersion( 357 G4double G4UniversalFluctuation::Dispersion( 245 const G4Material* ma 358 const G4Material* material, 246 const G4DynamicParti 359 const G4DynamicParticle* dp, 247 const G4double tcut, << 360 G4double tmax, 248 const G4double tmax, << 361 G4double length) 249 const G4double lengt << 250 { 362 { 251 if(dp->GetDefinition() != particle) { Initia 363 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); } 252 const G4double beta = dp->GetBeta(); << 364 253 return (tmax/(beta*beta) - 0.5*tcut) * CLHEP << 365 electronDensity = material->GetElectronDensity(); 254 * material->GetElectronDensity() * chargeS << 366 >> 367 G4double gam = (dp->GetKineticEnergy())*m_Inv_particleMass + 1.0; >> 368 G4double beta2 = 1.0 - 1.0/(gam*gam); >> 369 >> 370 G4double siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length >> 371 * electronDensity * chargeSquare; >> 372 >> 373 return siga; 255 } 374 } 256 375 257 //....oooOO0OOooo........oooOO0OOooo........oo 376 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 258 377 259 void 378 void 260 G4UniversalFluctuation::SetParticleAndCharge(c 379 G4UniversalFluctuation::SetParticleAndCharge(const G4ParticleDefinition* part, 261 G << 380 G4double q2) 262 { 381 { 263 if(part != particle) { 382 if(part != particle) { 264 particle = part; << 383 particle = part; 265 particleMass = part->GetPDGMass(); << 384 particleMass = part->GetPDGMass(); 266 385 267 // Derived quantities 386 // Derived quantities 268 m_Inv_particleMass = 1.0 / particleMass; << 387 if( particleMass != 0.0 ){ 269 m_massrate = CLHEP::electron_mass_c2 * m_I << 388 m_Inv_particleMass = 1.0 / particleMass; >> 389 m_massrate = electron_mass_c2 * m_Inv_particleMass ; >> 390 }else{ >> 391 m_Inv_particleMass = DBL_MAX; >> 392 m_massrate = DBL_MAX; >> 393 } 270 } 394 } 271 chargeSquare = q2; 395 chargeSquare = q2; 272 } 396 } 273 397 274 //....oooOO0OOooo........oooOO0OOooo........oo 398 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 275 399