Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PAIPhotModel.cc 73607 2013-09-02 10:04:03Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class 30 // GEANT4 Class 30 // File name: G4PAIPhotModel.cc 31 // File name: G4PAIPhotModel.cc 31 // 32 // 32 // Author: Vladimir.Grichine@cern.ch on base o 33 // Author: Vladimir.Grichine@cern.ch on base of G4PAIModel MT interface 33 // 34 // 34 // Creation date: 07.10.2013 35 // Creation date: 07.10.2013 35 // 36 // 36 // Modifications: 37 // Modifications: 37 // 38 // 38 // 39 // 39 40 40 #include "G4PAIPhotModel.hh" 41 #include "G4PAIPhotModel.hh" 41 42 42 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 43 #include "G4PhysicalConstants.hh" 44 #include "G4PhysicalConstants.hh" 44 #include "G4Region.hh" 45 #include "G4Region.hh" >> 46 #include "G4PhysicsLogVector.hh" >> 47 #include "G4PhysicsFreeVector.hh" >> 48 #include "G4PhysicsTable.hh" 45 #include "G4ProductionCutsTable.hh" 49 #include "G4ProductionCutsTable.hh" 46 #include "G4MaterialCutsCouple.hh" 50 #include "G4MaterialCutsCouple.hh" 47 #include "G4MaterialTable.hh" 51 #include "G4MaterialTable.hh" >> 52 #include "G4SandiaTable.hh" >> 53 #include "G4OrderedTable.hh" 48 #include "G4RegionStore.hh" 54 #include "G4RegionStore.hh" 49 55 50 #include "Randomize.hh" 56 #include "Randomize.hh" 51 #include "G4Electron.hh" 57 #include "G4Electron.hh" 52 #include "G4Positron.hh" 58 #include "G4Positron.hh" 53 #include "G4Gamma.hh" 59 #include "G4Gamma.hh" 54 #include "G4Poisson.hh" 60 #include "G4Poisson.hh" 55 #include "G4Step.hh" 61 #include "G4Step.hh" 56 #include "G4Material.hh" 62 #include "G4Material.hh" 57 #include "G4DynamicParticle.hh" 63 #include "G4DynamicParticle.hh" 58 #include "G4ParticleDefinition.hh" 64 #include "G4ParticleDefinition.hh" 59 #include "G4ParticleChangeForLoss.hh" 65 #include "G4ParticleChangeForLoss.hh" 60 #include "G4PAIPhotData.hh" 66 #include "G4PAIPhotData.hh" 61 #include "G4DeltaAngle.hh" 67 #include "G4DeltaAngle.hh" 62 68 63 ////////////////////////////////////////////// 69 //////////////////////////////////////////////////////////////////////// 64 70 65 using namespace std; 71 using namespace std; 66 72 67 G4PAIPhotModel::G4PAIPhotModel(const G4Particl 73 G4PAIPhotModel::G4PAIPhotModel(const G4ParticleDefinition* p, const G4String& nam) 68 : G4VEmModel(nam),G4VEmFluctuationModel(nam) 74 : G4VEmModel(nam),G4VEmFluctuationModel(nam), 69 fVerbose(0), 75 fVerbose(0), 70 fModelData(nullptr), << 76 fModelData(0), 71 fParticle(nullptr) << 77 fParticle(0) 72 { 78 { 73 fElectron = G4Electron::Electron(); 79 fElectron = G4Electron::Electron(); 74 fPositron = G4Positron::Positron(); 80 fPositron = G4Positron::Positron(); 75 81 76 fParticleChange = nullptr; << 82 fParticleChange = 0; 77 83 78 if(p) { SetParticle(p); } 84 if(p) { SetParticle(p); } 79 else { SetParticle(fElectron); } 85 else { SetParticle(fElectron); } 80 86 81 // default generator 87 // default generator 82 SetAngularDistribution(new G4DeltaAngle()); 88 SetAngularDistribution(new G4DeltaAngle()); 83 fLowestTcut = 12.5*CLHEP::eV; << 84 } 89 } 85 90 86 ////////////////////////////////////////////// 91 //////////////////////////////////////////////////////////////////////////// 87 92 88 G4PAIPhotModel::~G4PAIPhotModel() 93 G4PAIPhotModel::~G4PAIPhotModel() 89 { 94 { 90 if(IsMaster()) { delete fModelData; fModelDa << 95 //G4cout << "G4PAIPhotModel::~G4PAIPhotModel() " << this << G4endl; >> 96 if(IsMaster()) { delete fModelData; fModelData = 0; } 91 } 97 } 92 98 93 ////////////////////////////////////////////// 99 //////////////////////////////////////////////////////////////////////////// 94 100 95 void G4PAIPhotModel::Initialise(const G4Partic 101 void G4PAIPhotModel::Initialise(const G4ParticleDefinition* p, 96 const G4DataVector& cuts) << 102 const G4DataVector& cuts) 97 { 103 { 98 if(fVerbose > 1) << 104 if(fVerbose > 0) 99 { 105 { 100 G4cout<<"G4PAIPhotModel::Initialise for "< 106 G4cout<<"G4PAIPhotModel::Initialise for "<<p->GetParticleName()<<G4endl; 101 } 107 } 102 SetParticle(p); 108 SetParticle(p); 103 fParticleChange = GetParticleChangeForLoss() 109 fParticleChange = GetParticleChangeForLoss(); 104 110 105 if( IsMaster() ) 111 if( IsMaster() ) 106 { 112 { >> 113 >> 114 InitialiseElementSelectors(p, cuts); >> 115 107 delete fModelData; 116 delete fModelData; 108 fMaterialCutsCoupleVector.clear(); 117 fMaterialCutsCoupleVector.clear(); 109 118 110 G4double tmin = LowEnergyLimit()*fRatio; 119 G4double tmin = LowEnergyLimit()*fRatio; 111 G4double tmax = HighEnergyLimit()*fRatio; 120 G4double tmax = HighEnergyLimit()*fRatio; 112 fModelData = new G4PAIPhotData(tmin, tmax, 121 fModelData = new G4PAIPhotData(tmin, tmax, fVerbose); 113 122 114 // Prepare initialization 123 // Prepare initialization 115 const G4MaterialTable* theMaterialTable = 124 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 116 size_t numOfMat = G4Material::GetNumberO 125 size_t numOfMat = G4Material::GetNumberOfMaterials(); 117 size_t numRegions = fPAIRegionVector.size( 126 size_t numRegions = fPAIRegionVector.size(); 118 127 119 // protect for unit tests 128 // protect for unit tests 120 if(0 == numRegions) { 129 if(0 == numRegions) { 121 G4Exception("G4PAIModel::Initialise()"," 130 G4Exception("G4PAIModel::Initialise()","em0106",JustWarning, 122 "no G4Regions are registered 131 "no G4Regions are registered for the PAI model - World is used"); 123 fPAIRegionVector.push_back(G4RegionStore 132 fPAIRegionVector.push_back(G4RegionStore::GetInstance() 124 ->GetRegion("DefaultRegionForTheWorld 133 ->GetRegion("DefaultRegionForTheWorld", false)); 125 numRegions = 1; 134 numRegions = 1; 126 } 135 } 127 136 128 for( size_t iReg = 0; iReg < numRegions; + 137 for( size_t iReg = 0; iReg < numRegions; ++iReg ) 129 { 138 { 130 const G4Region* curReg = fPAIRegionVecto 139 const G4Region* curReg = fPAIRegionVector[iReg]; 131 G4Region* reg = const_cast<G4Region*>(cu 140 G4Region* reg = const_cast<G4Region*>(curReg); 132 141 133 for(size_t jMat = 0; jMat < numOfMat; ++ 142 for(size_t jMat = 0; jMat < numOfMat; ++jMat) 134 { 143 { 135 G4Material* mat = (*theMaterialTable)[jMat]; 144 G4Material* mat = (*theMaterialTable)[jMat]; 136 const G4MaterialCutsCouple* cutCouple = reg- 145 const G4MaterialCutsCouple* cutCouple = reg->FindCouple(mat); 137 if(nullptr != cutCouple) << 146 //G4cout << "Couple <" << fCutCouple << G4endl; >> 147 if(cutCouple) 138 { 148 { 139 if(fVerbose > 1) << 149 if(fVerbose>0) 140 { 150 { 141 G4cout << "Reg <" <<curReg->GetName() << 151 G4cout << "Reg <" <<curReg->GetName() << "> mat <" 142 << mat->GetName() << "> fCouple= " 152 << mat->GetName() << "> fCouple= " 143 << cutCouple << ", idx= " << cutCouple-> 153 << cutCouple << ", idx= " << cutCouple->GetIndex() 144 <<" " << p->GetParticleName() 154 <<" " << p->GetParticleName() 145 <<", cuts.size() = " << cuts.size() << G 155 <<", cuts.size() = " << cuts.size() << G4endl; 146 } 156 } 147 // check if this couple is not already ini 157 // check if this couple is not already initialized 148 158 149 size_t n = fMaterialCutsCoupleVector.size( 159 size_t n = fMaterialCutsCoupleVector.size(); 150 160 151 G4bool isnew = true; 161 G4bool isnew = true; 152 if( 0 < n ) 162 if( 0 < n ) 153 { 163 { 154 for(size_t i=0; i<fMaterialCutsCoupleVec 164 for(size_t i=0; i<fMaterialCutsCoupleVector.size(); ++i) 155 { 165 { 156 if(cutCouple == fMaterialCutsCoupleVec 166 if(cutCouple == fMaterialCutsCoupleVector[i]) { 157 isnew = false; 167 isnew = false; 158 break; 168 break; 159 } 169 } 160 } 170 } 161 } 171 } 162 // initialise data banks 172 // initialise data banks 163 if(isnew) { 173 if(isnew) { 164 fMaterialCutsCoupleVector.push_back(cutC 174 fMaterialCutsCoupleVector.push_back(cutCouple); 165 G4double deltaCutInKinEnergy = cuts[cutC 175 G4double deltaCutInKinEnergy = cuts[cutCouple->GetIndex()]; 166 fModelData->Initialise(cutCouple, deltaC 176 fModelData->Initialise(cutCouple, deltaCutInKinEnergy, this); 167 } 177 } 168 } 178 } 169 } 179 } 170 } 180 } 171 InitialiseElementSelectors(p, cuts); << 172 } 181 } 173 } 182 } 174 183 175 ////////////////////////////////////////////// 184 ///////////////////////////////////////////////////////////////////////// 176 185 177 void G4PAIPhotModel::InitialiseLocal(const G4P 186 void G4PAIPhotModel::InitialiseLocal(const G4ParticleDefinition*, 178 G4VEmModel* masterModel) 187 G4VEmModel* masterModel) 179 { 188 { 180 fModelData = static_cast<G4PAIPhotModel*>(ma 189 fModelData = static_cast<G4PAIPhotModel*>(masterModel)->GetPAIPhotData(); 181 fMaterialCutsCoupleVector = static_cast<G4PA 190 fMaterialCutsCoupleVector = static_cast<G4PAIPhotModel*>(masterModel)->GetVectorOfCouples(); 182 SetElementSelectors( masterModel->GetElement 191 SetElementSelectors( masterModel->GetElementSelectors() ); 183 } 192 } 184 193 185 ////////////////////////////////////////////// 194 ////////////////////////////////////////////////////////////////////////////// 186 195 187 G4double G4PAIPhotModel::MinEnergyCut(const G4 << 188 const G4MaterialCutsCouple*) << 189 { << 190 return fLowestTcut; << 191 } << 192 << 193 ////////////////////////////////////////////// << 194 << 195 G4double G4PAIPhotModel::ComputeDEDXPerVolume( 196 G4double G4PAIPhotModel::ComputeDEDXPerVolume(const G4Material*, 196 const G4ParticleDefinition* p, 197 const G4ParticleDefinition* p, 197 G4double kineticEnergy, 198 G4double kineticEnergy, 198 G4double cutEnergy) 199 G4double cutEnergy) 199 { 200 { 200 G4int coupleIndex = FindCoupleIndex(CurrentC 201 G4int coupleIndex = FindCoupleIndex(CurrentCouple()); 201 if(0 > coupleIndex) { return 0.0; } 202 if(0 > coupleIndex) { return 0.0; } 202 203 203 G4double cut = std::min(MaxSecondaryEnergy(p 204 G4double cut = std::min(MaxSecondaryEnergy(p, kineticEnergy), cutEnergy); >> 205 204 G4double scaledTkin = kineticEnergy*fRatio; 206 G4double scaledTkin = kineticEnergy*fRatio; 205 G4double dedx = fChargeSquare*fModelData->DE << 207 206 return dedx; << 208 return fChargeSquare*fModelData->DEDXPerVolume(coupleIndex, scaledTkin, cut); 207 } 209 } 208 210 209 ////////////////////////////////////////////// 211 ///////////////////////////////////////////////////////////////////////// 210 212 211 G4double G4PAIPhotModel::CrossSectionPerVolume 213 G4double G4PAIPhotModel::CrossSectionPerVolume( const G4Material*, 212 const G4ParticleDefinition* p, 214 const G4ParticleDefinition* p, 213 G4double kineticEnergy, 215 G4double kineticEnergy, 214 G4double cutEnergy, 216 G4double cutEnergy, 215 G4double maxEnergy ) 217 G4double maxEnergy ) 216 { 218 { 217 G4int coupleIndex = FindCoupleIndex(CurrentC 219 G4int coupleIndex = FindCoupleIndex(CurrentCouple()); 218 if(0 > coupleIndex) { return 0.0; } << 220 >> 221 if(0 > coupleIndex) return 0.0; 219 222 220 G4double tmax = std::min(MaxSecondaryEnergy( 223 G4double tmax = std::min(MaxSecondaryEnergy(p, kineticEnergy), maxEnergy); 221 if(tmax <= cutEnergy) { return 0.0; } << 224 >> 225 if(tmax <= cutEnergy) return 0.0; 222 226 223 G4double scaledTkin = kineticEnergy*fRatio; 227 G4double scaledTkin = kineticEnergy*fRatio; 224 G4double xs = fChargeSquare*fModelData->Cros << 228 G4double xsc = fChargeSquare*fModelData->CrossSectionPerVolume(coupleIndex, 225 scal << 229 scaledTkin, 226 return xs; << 230 cutEnergy, tmax); >> 231 return xsc; 227 } 232 } 228 233 229 ////////////////////////////////////////////// 234 /////////////////////////////////////////////////////////////////////////// 230 // 235 // 231 // It is analog of PostStepDoIt in terms of se 236 // It is analog of PostStepDoIt in terms of secondary electron. 232 // 237 // 233 238 234 void G4PAIPhotModel::SampleSecondaries(std::ve 239 void G4PAIPhotModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 235 const G4MaterialCutsCouple* matCC, 240 const G4MaterialCutsCouple* matCC, 236 const G4DynamicParticle* dp, 241 const G4DynamicParticle* dp, 237 G4double tmin, 242 G4double tmin, 238 G4double maxEnergy) 243 G4double maxEnergy) 239 { 244 { 240 G4int coupleIndex = FindCoupleIndex(matCC); 245 G4int coupleIndex = FindCoupleIndex(matCC); 241 if(0 > coupleIndex) { return; } 246 if(0 > coupleIndex) { return; } 242 247 243 SetParticle(dp->GetDefinition()); 248 SetParticle(dp->GetDefinition()); 244 249 245 G4double kineticEnergy = dp->GetKineticEnerg 250 G4double kineticEnergy = dp->GetKineticEnergy(); 246 251 247 G4double tmax = MaxSecondaryEnergy(fParticle 252 G4double tmax = MaxSecondaryEnergy(fParticle, kineticEnergy); 248 253 249 if( maxEnergy < tmax) tmax = maxEnergy; 254 if( maxEnergy < tmax) tmax = maxEnergy; 250 if( tmin >= tmax) return; 255 if( tmin >= tmax) return; 251 256 252 G4ThreeVector direction = dp->GetMomentumDir 257 G4ThreeVector direction = dp->GetMomentumDirection(); 253 G4double scaledTkin = kineticEnergy*fRat 258 G4double scaledTkin = kineticEnergy*fRatio; 254 G4double totalEnergy = kineticEnergy + fM 259 G4double totalEnergy = kineticEnergy + fMass; 255 G4double totalMomentum = sqrt(kineticEnergy 260 G4double totalMomentum = sqrt(kineticEnergy*(totalEnergy + fMass)); 256 G4double plRatio = fModelData->GetPla 261 G4double plRatio = fModelData->GetPlasmonRatio(coupleIndex, scaledTkin); 257 262 258 if( G4UniformRand() <= plRatio ) 263 if( G4UniformRand() <= plRatio ) 259 { 264 { 260 G4double deltaTkin = fModelData->SamplePos 265 G4double deltaTkin = fModelData->SamplePostStepPlasmonTransfer(coupleIndex, scaledTkin); 261 266 262 // G4cout<<"G4PAIPhotModel::SampleSecondar 267 // G4cout<<"G4PAIPhotModel::SampleSecondaries; dp "<<dp->GetParticleDefinition()->GetParticleName() 263 // <<"; Tkin = "<<kineticEnergy/keV<<" keV 268 // <<"; Tkin = "<<kineticEnergy/keV<<" keV; transfer = "<<deltaTkin/keV<<" keV "<<G4endl; 264 269 265 if( deltaTkin <= 0. && fVerbose > 0) 270 if( deltaTkin <= 0. && fVerbose > 0) 266 { 271 { 267 G4cout<<"G4PAIPhotModel::SampleSecondary << 272 G4cout<<"G4PAIPhotModel::SampleSecondary e- deltaTkin = "<<deltaTkin<<G4endl; 268 } 273 } 269 if( deltaTkin <= 0.) { return; } << 274 if( deltaTkin <= 0.) return; 270 275 271 if( deltaTkin > tmax) { deltaTkin = tmax; << 276 if( deltaTkin > tmax) deltaTkin = tmax; 272 277 273 const G4Element* anElement = SelectTargetA << 278 const G4Element* anElement = SelectRandomAtom(matCC,fParticle,kineticEnergy); 274 << 279 G4int Z = G4lrint(anElement->GetZ()); 275 G4int Z = anElement->GetZasInt(); << 276 280 277 auto deltaRay = new G4DynamicParticle(fEle << 281 G4DynamicParticle* deltaRay = new G4DynamicParticle(fElectron, 278 GetAngularDistribution()->SampleDirectio 282 GetAngularDistribution()->SampleDirection(dp, deltaTkin, 279 Z, matCC->GetMaterial()), 283 Z, matCC->GetMaterial()), 280 deltaTkin); 284 deltaTkin); 281 285 282 // primary change 286 // primary change 283 287 284 kineticEnergy -= deltaTkin; 288 kineticEnergy -= deltaTkin; 285 289 286 if( kineticEnergy <= 0. ) // kill primary 290 if( kineticEnergy <= 0. ) // kill primary as local? energy deposition 287 { 291 { 288 fParticleChange->SetProposedKineticEnerg 292 fParticleChange->SetProposedKineticEnergy(0.0); 289 fParticleChange->ProposeLocalEnergyDepos 293 fParticleChange->ProposeLocalEnergyDeposit(kineticEnergy+deltaTkin); >> 294 // fParticleChange->ProposeTrackStatus(fStopAndKill); 290 return; 295 return; 291 } 296 } 292 else 297 else 293 { 298 { 294 G4ThreeVector dir = totalMomentum*direct 299 G4ThreeVector dir = totalMomentum*direction - deltaRay->GetMomentum(); 295 direction = dir.unit(); 300 direction = dir.unit(); 296 fParticleChange->SetProposedKineticEnerg 301 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 297 fParticleChange->SetProposedMomentumDire 302 fParticleChange->SetProposedMomentumDirection(direction); 298 vdp->push_back(deltaRay); 303 vdp->push_back(deltaRay); 299 } 304 } 300 } 305 } 301 else // secondary X-ray CR photon 306 else // secondary X-ray CR photon 302 { 307 { 303 G4double deltaTkin = fModelData->Sampl 308 G4double deltaTkin = fModelData->SamplePostStepPhotonTransfer(coupleIndex, scaledTkin); 304 309 305 // G4cout<<"PAIPhotonModel PhotonPostStep 310 // G4cout<<"PAIPhotonModel PhotonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl; 306 311 307 if( deltaTkin <= 0. ) 312 if( deltaTkin <= 0. ) 308 { 313 { 309 G4cout<<"G4PAIPhotonModel::SampleSeconda 314 G4cout<<"G4PAIPhotonModel::SampleSecondary gamma deltaTkin = "<<deltaTkin<<G4endl; 310 } 315 } 311 if( deltaTkin <= 0.) return; 316 if( deltaTkin <= 0.) return; 312 317 313 if( deltaTkin >= kineticEnergy ) // stop p 318 if( deltaTkin >= kineticEnergy ) // stop primary 314 { 319 { 315 deltaTkin = kineticEnergy; 320 deltaTkin = kineticEnergy; 316 kineticEnergy = 0.0; 321 kineticEnergy = 0.0; 317 } 322 } 318 G4double costheta = 0.; // G4UniformRand() 323 G4double costheta = 0.; // G4UniformRand(); // VG: ??? for start only 319 G4double sintheta = sqrt((1.+costheta)*(1. 324 G4double sintheta = sqrt((1.+costheta)*(1.-costheta)); 320 325 321 // direction of the 'Cherenkov' photon 326 // direction of the 'Cherenkov' photon 322 G4double phi = twopi*G4UniformRand(); 327 G4double phi = twopi*G4UniformRand(); 323 G4double dirx = sintheta*cos(phi), diry = 328 G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta; 324 329 325 G4ThreeVector deltaDirection(dirx,diry,dir 330 G4ThreeVector deltaDirection(dirx,diry,dirz); 326 deltaDirection.rotateUz(direction); 331 deltaDirection.rotateUz(direction); 327 332 328 if( kineticEnergy > 0.) // primary change 333 if( kineticEnergy > 0.) // primary change 329 { 334 { 330 kineticEnergy -= deltaTkin; 335 kineticEnergy -= deltaTkin; 331 fParticleChange->SetProposedKineticEnerg 336 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 332 } 337 } 333 else // stop primary, but pass X-ray CR 338 else // stop primary, but pass X-ray CR 334 { 339 { 335 // fParticleChange->ProposeLocalEnergyDe 340 // fParticleChange->ProposeLocalEnergyDeposit(deltaTkin); 336 fParticleChange->SetProposedKineticEnerg 341 fParticleChange->SetProposedKineticEnergy(0.0); 337 } 342 } 338 // create G4DynamicParticle object for pho 343 // create G4DynamicParticle object for photon ray 339 344 340 auto photonRay = new G4DynamicParticle; << 345 G4DynamicParticle* photonRay = new G4DynamicParticle; 341 photonRay->SetDefinition( G4Gamma::Gamma() 346 photonRay->SetDefinition( G4Gamma::Gamma() ); 342 photonRay->SetKineticEnergy( deltaTkin ); 347 photonRay->SetKineticEnergy( deltaTkin ); 343 photonRay->SetMomentumDirection(deltaDirec 348 photonRay->SetMomentumDirection(deltaDirection); 344 349 345 vdp->push_back(photonRay); 350 vdp->push_back(photonRay); 346 } 351 } 347 return; 352 return; 348 } 353 } 349 354 350 ////////////////////////////////////////////// 355 /////////////////////////////////////////////////////////////////////// 351 356 352 G4double G4PAIPhotModel::SampleFluctuations( << 357 G4double G4PAIPhotModel::SampleFluctuations( const G4MaterialCutsCouple* matCC, 353 const G4MaterialCutsC << 358 const G4DynamicParticle* aParticle, 354 const G4DynamicPartic << 359 G4double, G4double step, 355 const G4double, const << 360 G4double eloss) 356 const G4double step, << 357 { 361 { 358 // return 0.; 362 // return 0.; 359 G4int coupleIndex = FindCoupleIndex(matCC); 363 G4int coupleIndex = FindCoupleIndex(matCC); 360 if(0 > coupleIndex) { return eloss; } 364 if(0 > coupleIndex) { return eloss; } 361 365 362 SetParticle(aParticle->GetDefinition()); 366 SetParticle(aParticle->GetDefinition()); 363 367 >> 368 364 // G4cout << "G4PAIPhotModel::SampleFluctuat 369 // G4cout << "G4PAIPhotModel::SampleFluctuations step(mm)= "<< step/mm 365 // << " Eloss(keV)= " << eloss/keV << " in 370 // << " Eloss(keV)= " << eloss/keV << " in " 366 // << matCC->GetMaterial()->GetName() << G4e 371 // << matCC->GetMaterial()->GetName() << G4endl; >> 372 367 373 368 G4double Tkin = aParticle->GetKineticE 374 G4double Tkin = aParticle->GetKineticEnergy(); 369 G4double scaledTkin = Tkin*fRatio; 375 G4double scaledTkin = Tkin*fRatio; 370 376 371 G4double loss = fModelData->SampleAlongStepP 377 G4double loss = fModelData->SampleAlongStepPhotonTransfer(coupleIndex, Tkin, 372 scaledTkin, << 378 scaledTkin, 373 step*fChargeSquare); << 379 step*fChargeSquare); 374 loss += fModelData->SampleAlongStepPlasmonTr << 380 loss += fModelData->SampleAlongStepPlasmonTransfer(coupleIndex, Tkin, 375 << 381 scaledTkin, >> 382 step*fChargeSquare); >> 383 376 384 377 // G4cout<<" PAIPhotModel::SampleFluctuatio 385 // G4cout<<" PAIPhotModel::SampleFluctuations loss = "<<loss/keV<<" keV, on step = " 378 // <<step/mm<<" mm"<<G4endl; 386 // <<step/mm<<" mm"<<G4endl; 379 return loss; 387 return loss; 380 388 381 } 389 } 382 390 383 ////////////////////////////////////////////// 391 ////////////////////////////////////////////////////////////////////// 384 // 392 // 385 // Returns the statistical estimation of the e 393 // Returns the statistical estimation of the energy loss distribution variance 386 // 394 // 387 395 388 396 389 G4double G4PAIPhotModel::Dispersion(const G4Ma << 397 G4double G4PAIPhotModel::Dispersion( const G4Material* material, 390 const G4Dy << 398 const G4DynamicParticle* aParticle, 391 const G4double tcut, << 399 G4double tmax, 392 const G4double tmax, << 400 G4double step ) 393 const G4double step) << 394 { 401 { 395 G4double particleMass = aParticle->GetMass( 402 G4double particleMass = aParticle->GetMass(); 396 G4double electronDensity = material->GetElec 403 G4double electronDensity = material->GetElectronDensity(); 397 G4double kineticEnergy = aParticle->GetKinet 404 G4double kineticEnergy = aParticle->GetKineticEnergy(); 398 G4double q = aParticle->GetCharge()/eplus; 405 G4double q = aParticle->GetCharge()/eplus; 399 G4double etot = kineticEnergy + particleMass 406 G4double etot = kineticEnergy + particleMass; 400 G4double beta2 = kineticEnergy*(kineticEnerg 407 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*particleMass)/(etot*etot); 401 G4double siga = (tmax/beta2 - 0.5*tcut) * t << 408 G4double siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * step 402 * electronDensity * q * q; 409 * electronDensity * q * q; 403 410 404 return siga; 411 return siga; >> 412 /* >> 413 G4double loss, sumLoss=0., sumLoss2=0., sigma2, meanLoss=0.; >> 414 for(G4int i = 0; i < fMeanNumber; i++) >> 415 { >> 416 loss = SampleFluctuations(material,aParticle,tmax,step,meanLoss); >> 417 sumLoss += loss; >> 418 sumLoss2 += loss*loss; >> 419 } >> 420 meanLoss = sumLoss/fMeanNumber; >> 421 sigma2 = meanLoss*meanLoss + (sumLoss2-2*sumLoss*meanLoss)/fMeanNumber; >> 422 return sigma2; >> 423 */ 405 } 424 } 406 425 407 ////////////////////////////////////////////// 426 ///////////////////////////////////////////////////////////////////// 408 427 409 G4double G4PAIPhotModel::MaxSecondaryEnergy( c 428 G4double G4PAIPhotModel::MaxSecondaryEnergy( const G4ParticleDefinition* p, 410 G4double kinEnergy) 429 G4double kinEnergy) 411 { 430 { 412 SetParticle(p); 431 SetParticle(p); 413 G4double tmax = kinEnergy; 432 G4double tmax = kinEnergy; 414 if(p == fElectron) { tmax *= 0.5; } 433 if(p == fElectron) { tmax *= 0.5; } 415 else if(p != fPositron) { 434 else if(p != fPositron) { 416 G4double ratio= electron_mass_c2/fMass; 435 G4double ratio= electron_mass_c2/fMass; 417 G4double gamma= kinEnergy/fMass + 1.0; 436 G4double gamma= kinEnergy/fMass + 1.0; 418 tmax = 2.0*electron_mass_c2*(gamma*gamma - 437 tmax = 2.0*electron_mass_c2*(gamma*gamma - 1.) / 419 (1. + 2.0*gamma*ratio + rati 438 (1. + 2.0*gamma*ratio + ratio*ratio); 420 } 439 } 421 return tmax; 440 return tmax; 422 } 441 } 423 442 424 ////////////////////////////////////////////// 443 /////////////////////////////////////////////////////////////// 425 444 426 void G4PAIPhotModel::DefineForRegion(const G4R 445 void G4PAIPhotModel::DefineForRegion(const G4Region* r) 427 { 446 { 428 fPAIRegionVector.push_back(r); 447 fPAIRegionVector.push_back(r); 429 } 448 } 430 449 431 // 450 // 432 // 451 // 433 ////////////////////////////////////////////// 452 ///////////////////////////////////////////////// 434 453