Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4PAIPhotModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4PAIPhotModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4PAIPhotModel.cc (Version 10.1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4PAIPhotModel.cc 73607 2013-09-02 10:04:03Z gcosmo $
 26 //                                                 27 //
 27 // -------------------------------------------     28 // -------------------------------------------------------------------
 28 //                                                 29 //
 29 // GEANT4 Class                                    30 // GEANT4 Class
 30 // File name:     G4PAIPhotModel.cc                31 // File name:     G4PAIPhotModel.cc
 31 //                                                 32 //
 32 // Author: Vladimir.Grichine@cern.ch on base o     33 // Author: Vladimir.Grichine@cern.ch on base of G4PAIModel MT interface
 33 //                                                 34 //
 34 // Creation date: 07.10.2013                       35 // Creation date: 07.10.2013
 35 //                                                 36 //
 36 // Modifications:                                  37 // Modifications:
 37 //                                                 38 //
 38 //                                                 39 //
 39                                                    40 
 40 #include "G4PAIPhotModel.hh"                       41 #include "G4PAIPhotModel.hh"
 41                                                    42 
 42 #include "G4SystemOfUnits.hh"                      43 #include "G4SystemOfUnits.hh"
 43 #include "G4PhysicalConstants.hh"                  44 #include "G4PhysicalConstants.hh"
 44 #include "G4Region.hh"                             45 #include "G4Region.hh"
                                                   >>  46 #include "G4PhysicsLogVector.hh"
                                                   >>  47 #include "G4PhysicsFreeVector.hh"
                                                   >>  48 #include "G4PhysicsTable.hh"
 45 #include "G4ProductionCutsTable.hh"                49 #include "G4ProductionCutsTable.hh"
 46 #include "G4MaterialCutsCouple.hh"                 50 #include "G4MaterialCutsCouple.hh"
 47 #include "G4MaterialTable.hh"                      51 #include "G4MaterialTable.hh"
 48 #include "G4RegionStore.hh"                    <<  52 #include "G4SandiaTable.hh"
                                                   >>  53 #include "G4OrderedTable.hh"
 49                                                    54 
 50 #include "Randomize.hh"                            55 #include "Randomize.hh"
 51 #include "G4Electron.hh"                           56 #include "G4Electron.hh"
 52 #include "G4Positron.hh"                           57 #include "G4Positron.hh"
 53 #include "G4Gamma.hh"                              58 #include "G4Gamma.hh"
 54 #include "G4Poisson.hh"                            59 #include "G4Poisson.hh"
 55 #include "G4Step.hh"                               60 #include "G4Step.hh"
 56 #include "G4Material.hh"                           61 #include "G4Material.hh"
 57 #include "G4DynamicParticle.hh"                    62 #include "G4DynamicParticle.hh"
 58 #include "G4ParticleDefinition.hh"                 63 #include "G4ParticleDefinition.hh"
 59 #include "G4ParticleChangeForLoss.hh"              64 #include "G4ParticleChangeForLoss.hh"
 60 #include "G4PAIPhotData.hh"                        65 #include "G4PAIPhotData.hh"
 61 #include "G4DeltaAngle.hh"                         66 #include "G4DeltaAngle.hh"
 62                                                    67 
 63 //////////////////////////////////////////////     68 ////////////////////////////////////////////////////////////////////////
 64                                                    69 
 65 using namespace std;                               70 using namespace std;
 66                                                    71 
 67 G4PAIPhotModel::G4PAIPhotModel(const G4Particl     72 G4PAIPhotModel::G4PAIPhotModel(const G4ParticleDefinition* p, const G4String& nam)
 68   : G4VEmModel(nam),G4VEmFluctuationModel(nam)     73   : G4VEmModel(nam),G4VEmFluctuationModel(nam),
 69     fVerbose(0),                                   74     fVerbose(0),
 70     fModelData(nullptr),                       <<  75     fModelData(0),
 71     fParticle(nullptr)                         <<  76     fParticle(0)
 72 {                                                  77 {  
 73   fElectron = G4Electron::Electron();              78   fElectron = G4Electron::Electron();
 74   fPositron = G4Positron::Positron();              79   fPositron = G4Positron::Positron();
 75                                                    80 
 76   fParticleChange = nullptr;                   <<  81   fParticleChange = 0;
 77                                                    82 
 78   if(p) { SetParticle(p); }                        83   if(p) { SetParticle(p); }
 79   else  { SetParticle(fElectron); }                84   else  { SetParticle(fElectron); }
 80                                                    85 
 81   // default generator                             86   // default generator
 82   SetAngularDistribution(new G4DeltaAngle());      87   SetAngularDistribution(new G4DeltaAngle());
 83   fLowestTcut = 12.5*CLHEP::eV;                <<  88 
                                                   >>  89   isInitialised = false;
 84 }                                                  90 }
 85                                                    91 
 86 //////////////////////////////////////////////     92 ////////////////////////////////////////////////////////////////////////////
 87                                                    93 
 88 G4PAIPhotModel::~G4PAIPhotModel()                  94 G4PAIPhotModel::~G4PAIPhotModel()
 89 {                                                  95 {
 90   if(IsMaster()) { delete fModelData; fModelDa <<  96   //G4cout << "G4PAIPhotModel::~G4PAIPhotModel() " << this << G4endl;
                                                   >>  97   if(IsMaster()) { delete fModelData; fModelData = 0; }
 91 }                                                  98 }
 92                                                    99 
 93 //////////////////////////////////////////////    100 ////////////////////////////////////////////////////////////////////////////
 94                                                   101 
 95 void G4PAIPhotModel::Initialise(const G4Partic    102 void G4PAIPhotModel::Initialise(const G4ParticleDefinition* p,
 96               const G4DataVector& cuts)        << 103           const G4DataVector& cuts)
 97 {                                                 104 {
 98   if(fVerbose > 1)                             << 105   // if(fVerbose > 0) 
 99   {                                               106   {
100     G4cout<<"G4PAIPhotModel::Initialise for "<    107     G4cout<<"G4PAIPhotModel::Initialise for "<<p->GetParticleName()<<G4endl;
101   }                                               108   }
                                                   >> 109 
                                                   >> 110   if(isInitialised) { return; }
                                                   >> 111   isInitialised = true;
                                                   >> 112 
102   SetParticle(p);                                 113   SetParticle(p);
103   fParticleChange = GetParticleChangeForLoss()    114   fParticleChange = GetParticleChangeForLoss();
104                                                   115 
105   if( IsMaster() )                             << 116   if(IsMaster()) { 
106   {                                            << 117 
107     delete fModelData;                         << 118     InitialiseElementSelectors(p, cuts);
108     fMaterialCutsCoupleVector.clear();         << 119 
109                                                << 120     if(!fModelData) {
110     G4double tmin = LowEnergyLimit()*fRatio;   << 121 
111     G4double tmax = HighEnergyLimit()*fRatio;  << 122       G4double tmin = LowEnergyLimit()*fRatio;
112     fModelData = new G4PAIPhotData(tmin, tmax, << 123       G4double tmax = HighEnergyLimit()*fRatio;
113                                                << 124       fModelData = new G4PAIPhotData(tmin, tmax, fVerbose);
                                                   >> 125     }
114     // Prepare initialization                     126     // Prepare initialization
115     const G4MaterialTable* theMaterialTable =     127     const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
116     size_t numOfMat   = G4Material::GetNumberO    128     size_t numOfMat   = G4Material::GetNumberOfMaterials();
117     size_t numRegions = fPAIRegionVector.size(    129     size_t numRegions = fPAIRegionVector.size();
118                                                   130 
119     // protect for unit tests                  << 131     for(size_t iReg = 0; iReg < numRegions; ++iReg) {
120     if(0 == numRegions) {                      << 
121       G4Exception("G4PAIModel::Initialise()"," << 
122                   "no G4Regions are registered << 
123       fPAIRegionVector.push_back(G4RegionStore << 
124          ->GetRegion("DefaultRegionForTheWorld << 
125       numRegions = 1;                          << 
126     }                                          << 
127                                                << 
128     for( size_t iReg = 0; iReg < numRegions; + << 
129     {                                          << 
130       const G4Region* curReg = fPAIRegionVecto    132       const G4Region* curReg = fPAIRegionVector[iReg];
131       G4Region* reg = const_cast<G4Region*>(cu    133       G4Region* reg = const_cast<G4Region*>(curReg);
132                                                   134 
133       for(size_t jMat = 0; jMat < numOfMat; ++ << 135       for(size_t jMat = 0; jMat < numOfMat; ++jMat) {
134       {                                        << 
135   G4Material* mat = (*theMaterialTable)[jMat];    136   G4Material* mat = (*theMaterialTable)[jMat];
136   const G4MaterialCutsCouple* cutCouple = reg-    137   const G4MaterialCutsCouple* cutCouple = reg->FindCouple(mat);
137   if(nullptr != cutCouple)                     << 138   //G4cout << "Couple <" << fCutCouple << G4endl;
138         {                                      << 139   if(cutCouple) {
139     if(fVerbose > 1)                           << 140     /*
140     {                                          << 
141       G4cout << "Reg <" <<curReg->GetName() <<    141       G4cout << "Reg <" <<curReg->GetName() << ">  mat <" 
142       << mat->GetName() << ">  fCouple= "      << 142       << fMaterial->GetName() << ">  fCouple= " 
143       << cutCouple << ", idx= " << cutCouple-> << 143       << fCutCouple << " idx= " << fCutCouple->GetIndex()
144       <<"  " << p->GetParticleName()           << 144       <<"  " << p->GetParticleName() <<G4endl;
145       <<", cuts.size() = " << cuts.size() << G << 145       // G4cout << cuts.size() << G4endl;
146     }                                          << 146       */
147     // check if this couple is not already ini    147     // check if this couple is not already initialized
148                                                << 
149     size_t n = fMaterialCutsCoupleVector.size(    148     size_t n = fMaterialCutsCoupleVector.size();
150                                                << 149     if(0 < n) {
151     G4bool isnew = true;                       << 150       for(size_t i=0; i<fMaterialCutsCoupleVector.size(); ++i) {
152     if( 0 < n )                                << 
153           {                                    << 
154       for(size_t i=0; i<fMaterialCutsCoupleVec << 
155             {                                  << 
156         if(cutCouple == fMaterialCutsCoupleVec    151         if(cutCouple == fMaterialCutsCoupleVector[i]) {
157     isnew = false;                             << 
158     break;                                        152     break;
159         }                                         153         }
160       }                                           154       }
161     }                                             155     }
162     // initialise data banks                      156     // initialise data banks
163     if(isnew) {                                << 157     fMaterialCutsCoupleVector.push_back(cutCouple);
164       fMaterialCutsCoupleVector.push_back(cutC << 158     G4double deltaCutInKinEnergy = cuts[cutCouple->GetIndex()];
165       G4double deltaCutInKinEnergy = cuts[cutC << 159     fModelData->Initialise(cutCouple, deltaCutInKinEnergy, this);
166       fModelData->Initialise(cutCouple, deltaC << 
167     }                                          << 
168   }                                               160   }
169       }                                           161       }
170     }                                             162     }
171     InitialiseElementSelectors(p, cuts);       << 
172   }                                               163   }
173 }                                                 164 }
174                                                   165 
175 //////////////////////////////////////////////    166 /////////////////////////////////////////////////////////////////////////
176                                                   167 
177 void G4PAIPhotModel::InitialiseLocal(const G4P    168 void G4PAIPhotModel::InitialiseLocal(const G4ParticleDefinition*, 
178          G4VEmModel* masterModel)                 169          G4VEmModel* masterModel)
179 {                                                 170 {
180   fModelData = static_cast<G4PAIPhotModel*>(ma    171   fModelData = static_cast<G4PAIPhotModel*>(masterModel)->GetPAIPhotData();
181   fMaterialCutsCoupleVector = static_cast<G4PA << 172   SetElementSelectors(masterModel->GetElementSelectors());
182   SetElementSelectors( masterModel->GetElement << 
183 }                                              << 
184                                                << 
185 ////////////////////////////////////////////// << 
186                                                << 
187 G4double G4PAIPhotModel::MinEnergyCut(const G4 << 
188               const G4MaterialCutsCouple*)     << 
189 {                                              << 
190   return fLowestTcut;                          << 
191 }                                                 173 }
192                                                   174 
193 //////////////////////////////////////////////    175 //////////////////////////////////////////////////////////////////////////////
194                                                   176 
195 G4double G4PAIPhotModel::ComputeDEDXPerVolume(    177 G4double G4PAIPhotModel::ComputeDEDXPerVolume(const G4Material*,
196             const G4ParticleDefinition* p,        178             const G4ParticleDefinition* p,
197             G4double kineticEnergy,               179             G4double kineticEnergy,
198             G4double cutEnergy)                   180             G4double cutEnergy)
199 {                                                 181 {
200   G4int coupleIndex = FindCoupleIndex(CurrentC    182   G4int coupleIndex = FindCoupleIndex(CurrentCouple());
201   if(0 > coupleIndex) { return 0.0; }             183   if(0 > coupleIndex) { return 0.0; }
202                                                   184 
203   G4double cut = std::min(MaxSecondaryEnergy(p    185   G4double cut = std::min(MaxSecondaryEnergy(p, kineticEnergy), cutEnergy);
                                                   >> 186 
204   G4double scaledTkin = kineticEnergy*fRatio;     187   G4double scaledTkin = kineticEnergy*fRatio;
205   G4double dedx = fChargeSquare*fModelData->DE << 188  
206   return dedx;                                 << 189   return fChargeSquare*fModelData->DEDXPerVolume(coupleIndex, scaledTkin, cut);
207 }                                                 190 }
208                                                   191 
209 //////////////////////////////////////////////    192 /////////////////////////////////////////////////////////////////////////
210                                                   193 
211 G4double G4PAIPhotModel::CrossSectionPerVolume    194 G4double G4PAIPhotModel::CrossSectionPerVolume( const G4Material*,
212               const G4ParticleDefinition* p,      195               const G4ParticleDefinition* p,
213               G4double kineticEnergy,             196               G4double kineticEnergy,
214               G4double cutEnergy,                 197               G4double cutEnergy,
215               G4double maxEnergy  )               198               G4double maxEnergy  ) 
216 {                                                 199 {
217   G4int coupleIndex = FindCoupleIndex(CurrentC    200   G4int coupleIndex = FindCoupleIndex(CurrentCouple());
218   if(0 > coupleIndex) { return 0.0; }          << 201 
                                                   >> 202   if(0 > coupleIndex) return 0.0; 
219                                                   203 
220   G4double tmax = std::min(MaxSecondaryEnergy(    204   G4double tmax = std::min(MaxSecondaryEnergy(p, kineticEnergy), maxEnergy);
221   if(tmax <= cutEnergy) { return 0.0; }        << 205 
                                                   >> 206   if(tmax <= cutEnergy)  return 0.0; 
222                                                   207 
223   G4double scaledTkin = kineticEnergy*fRatio;     208   G4double scaledTkin = kineticEnergy*fRatio;
224   G4double xs = fChargeSquare*fModelData->Cros << 209   G4double xsc = fChargeSquare*fModelData->CrossSectionPerVolume(coupleIndex, 
225                                           scal << 210                scaledTkin, 
226   return xs;                                   << 211                cutEnergy, tmax);
                                                   >> 212   return xsc;
227 }                                                 213 }
228                                                   214 
229 //////////////////////////////////////////////    215 ///////////////////////////////////////////////////////////////////////////
230 //                                                216 //
231 // It is analog of PostStepDoIt in terms of se    217 // It is analog of PostStepDoIt in terms of secondary electron.
232 //                                                218 //
233                                                   219  
234 void G4PAIPhotModel::SampleSecondaries(std::ve    220 void G4PAIPhotModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
235            const G4MaterialCutsCouple* matCC,     221            const G4MaterialCutsCouple* matCC,
236            const G4DynamicParticle* dp,           222            const G4DynamicParticle* dp,
237            G4double tmin,                         223            G4double tmin,
238            G4double maxEnergy)                    224            G4double maxEnergy)
239 {                                                 225 {
240   G4int coupleIndex = FindCoupleIndex(matCC);     226   G4int coupleIndex = FindCoupleIndex(matCC);
241   if(0 > coupleIndex) { return; }                 227   if(0 > coupleIndex) { return; }
242                                                   228 
243   SetParticle(dp->GetDefinition());               229   SetParticle(dp->GetDefinition());
244                                                   230 
245   G4double kineticEnergy = dp->GetKineticEnerg    231   G4double kineticEnergy = dp->GetKineticEnergy();
246                                                   232 
247   G4double tmax = MaxSecondaryEnergy(fParticle    233   G4double tmax = MaxSecondaryEnergy(fParticle, kineticEnergy);
248                                                   234 
249   if( maxEnergy <  tmax) tmax = maxEnergy;        235   if( maxEnergy <  tmax) tmax = maxEnergy; 
250   if( tmin      >= tmax) return;                  236   if( tmin      >= tmax) return; 
251                                                   237 
252   G4ThreeVector direction = dp->GetMomentumDir    238   G4ThreeVector direction = dp->GetMomentumDirection();
253   G4double scaledTkin     = kineticEnergy*fRat    239   G4double scaledTkin     = kineticEnergy*fRatio;
254   G4double totalEnergy    = kineticEnergy + fM    240   G4double totalEnergy    = kineticEnergy + fMass;
255   G4double totalMomentum  = sqrt(kineticEnergy    241   G4double totalMomentum  = sqrt(kineticEnergy*(totalEnergy + fMass));
256   G4double plRatio        = fModelData->GetPla    242   G4double plRatio        = fModelData->GetPlasmonRatio(coupleIndex, scaledTkin);
257                                                   243 
258   if( G4UniformRand() <= plRatio )                244   if( G4UniformRand() <= plRatio )
259   {                                               245   {
260     G4double deltaTkin = fModelData->SamplePos    246     G4double deltaTkin = fModelData->SamplePostStepPlasmonTransfer(coupleIndex, scaledTkin);
261                                                   247 
262     // G4cout<<"G4PAIPhotModel::SampleSecondar    248     // G4cout<<"G4PAIPhotModel::SampleSecondaries; dp "<<dp->GetParticleDefinition()->GetParticleName()
263     // <<"; Tkin = "<<kineticEnergy/keV<<" keV    249     // <<"; Tkin = "<<kineticEnergy/keV<<" keV; transfer = "<<deltaTkin/keV<<" keV "<<G4endl;
264                                                   250 
265     if( deltaTkin <= 0. && fVerbose > 0)          251     if( deltaTkin <= 0. && fVerbose > 0) 
266     {                                             252     {
267       G4cout<<"G4PAIPhotModel::SampleSecondary << 253     G4cout<<"G4PAIPhotModel::SampleSecondary e- deltaTkin = "<<deltaTkin<<G4endl;
268     }                                             254     }
269     if( deltaTkin <= 0.) { return; }           << 255     if( deltaTkin <= 0.) return; 
270                                                   256 
271     if( deltaTkin > tmax) { deltaTkin = tmax;  << 257     if( deltaTkin > tmax) deltaTkin = tmax;
272                                                   258 
273     const G4Element* anElement = SelectTargetA << 259     const G4Element* anElement = SelectRandomAtom(matCC,fParticle,kineticEnergy);
274                                                << 260     G4int Z = G4lrint(anElement->GetZ());
275     G4int Z = anElement->GetZasInt();          << 
276                                                   261  
277     auto deltaRay = new G4DynamicParticle(fEle << 262     G4DynamicParticle* deltaRay = new G4DynamicParticle(fElectron, 
278       GetAngularDistribution()->SampleDirectio    263       GetAngularDistribution()->SampleDirection(dp, deltaTkin,
279                   Z, matCC->GetMaterial()),       264                   Z, matCC->GetMaterial()),
280                   deltaTkin);                     265                   deltaTkin);
281                                                   266 
282     // primary change                             267     // primary change
283                                                   268 
284     kineticEnergy -= deltaTkin;                   269     kineticEnergy -= deltaTkin;
285                                                   270 
286     if( kineticEnergy <= 0. ) // kill primary     271     if( kineticEnergy <= 0. ) // kill primary as local? energy deposition
287     {                                             272     {
288       fParticleChange->SetProposedKineticEnerg    273       fParticleChange->SetProposedKineticEnergy(0.0);
289       fParticleChange->ProposeLocalEnergyDepos    274       fParticleChange->ProposeLocalEnergyDeposit(kineticEnergy+deltaTkin);
                                                   >> 275       // fParticleChange->ProposeTrackStatus(fStopAndKill);
290       return;                                     276       return; 
291     }                                             277     }
292     else                                          278     else
293     {                                             279     {
294       G4ThreeVector dir = totalMomentum*direct    280       G4ThreeVector dir = totalMomentum*direction - deltaRay->GetMomentum();
295       direction = dir.unit();                     281       direction = dir.unit();
296       fParticleChange->SetProposedKineticEnerg    282       fParticleChange->SetProposedKineticEnergy(kineticEnergy);
297       fParticleChange->SetProposedMomentumDire    283       fParticleChange->SetProposedMomentumDirection(direction);
298       vdp->push_back(deltaRay);                   284       vdp->push_back(deltaRay);
299     }                                             285     }
300   }                                               286   }
301   else // secondary X-ray CR photon               287   else // secondary X-ray CR photon
302   {                                               288   {
303     G4double deltaTkin     = fModelData->Sampl    289     G4double deltaTkin     = fModelData->SamplePostStepPhotonTransfer(coupleIndex, scaledTkin);
304                                                   290 
305     //  G4cout<<"PAIPhotonModel PhotonPostStep    291     //  G4cout<<"PAIPhotonModel PhotonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl; 
306                                                   292 
307     if( deltaTkin <= 0. )                         293     if( deltaTkin <= 0. )
308     {                                             294     {
309       G4cout<<"G4PAIPhotonModel::SampleSeconda    295       G4cout<<"G4PAIPhotonModel::SampleSecondary gamma deltaTkin = "<<deltaTkin<<G4endl;
310     }                                             296     }
311     if( deltaTkin <= 0.) return;                  297     if( deltaTkin <= 0.) return;
312                                                   298 
313     if( deltaTkin >= kineticEnergy ) // stop p    299     if( deltaTkin >= kineticEnergy ) // stop primary
314     {                                             300     {
315       deltaTkin = kineticEnergy;                  301       deltaTkin = kineticEnergy;
316       kineticEnergy = 0.0;                        302       kineticEnergy = 0.0;
317     }                                             303     }
318     G4double costheta = 0.; // G4UniformRand()    304     G4double costheta = 0.; // G4UniformRand(); // VG: ??? for start only
319     G4double sintheta = sqrt((1.+costheta)*(1.    305     G4double sintheta = sqrt((1.+costheta)*(1.-costheta));
320                                                   306 
321     //  direction of the 'Cherenkov' photon       307     //  direction of the 'Cherenkov' photon  
322     G4double phi = twopi*G4UniformRand();         308     G4double phi = twopi*G4UniformRand(); 
323     G4double dirx = sintheta*cos(phi), diry =     309     G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
324                                                   310 
325     G4ThreeVector deltaDirection(dirx,diry,dir    311     G4ThreeVector deltaDirection(dirx,diry,dirz);
326     deltaDirection.rotateUz(direction);           312     deltaDirection.rotateUz(direction);
327                                                   313 
328     if( kineticEnergy > 0.) // primary change     314     if( kineticEnergy > 0.) // primary change
329     {                                             315     {
330       kineticEnergy -= deltaTkin;                 316       kineticEnergy -= deltaTkin;
331       fParticleChange->SetProposedKineticEnerg    317       fParticleChange->SetProposedKineticEnergy(kineticEnergy);
332     }                                             318     }
333     else // stop primary, but pass X-ray CR       319     else // stop primary, but pass X-ray CR
334     {                                             320     {
335       // fParticleChange->ProposeLocalEnergyDe    321       // fParticleChange->ProposeLocalEnergyDeposit(deltaTkin);
336       fParticleChange->SetProposedKineticEnerg    322       fParticleChange->SetProposedKineticEnergy(0.0);
337     }                                             323     }
338     // create G4DynamicParticle object for pho    324     // create G4DynamicParticle object for photon ray
339                                                   325  
340     auto photonRay = new G4DynamicParticle;    << 326     G4DynamicParticle* photonRay = new G4DynamicParticle;
341     photonRay->SetDefinition( G4Gamma::Gamma()    327     photonRay->SetDefinition( G4Gamma::Gamma() );
342     photonRay->SetKineticEnergy( deltaTkin );     328     photonRay->SetKineticEnergy( deltaTkin );
343     photonRay->SetMomentumDirection(deltaDirec    329     photonRay->SetMomentumDirection(deltaDirection); 
344                                                   330 
345     vdp->push_back(photonRay);                    331     vdp->push_back(photonRay);
346   }                                               332   }
347   return;                                         333   return;
348 }                                                 334 }
349                                                   335 
350 //////////////////////////////////////////////    336 ///////////////////////////////////////////////////////////////////////
351                                                   337 
352 G4double G4PAIPhotModel::SampleFluctuations(   << 338 G4double G4PAIPhotModel::SampleFluctuations( const G4MaterialCutsCouple* matCC,
353                          const G4MaterialCutsC << 339                                          const G4DynamicParticle* aParticle,
354                          const G4DynamicPartic << 340            G4double, G4double step,
355                          const G4double, const << 341            G4double eloss)
356                          const G4double step,  << 
357 {                                                 342 {
358   // return 0.;                                   343   // return 0.;
359   G4int coupleIndex = FindCoupleIndex(matCC);     344   G4int coupleIndex = FindCoupleIndex(matCC);
360   if(0 > coupleIndex) { return eloss; }           345   if(0 > coupleIndex) { return eloss; }
361                                                   346 
362   SetParticle(aParticle->GetDefinition());        347   SetParticle(aParticle->GetDefinition());
363                                                   348 
                                                   >> 349   
364   // G4cout << "G4PAIPhotModel::SampleFluctuat    350   // G4cout << "G4PAIPhotModel::SampleFluctuations step(mm)= "<< step/mm
365   // << "  Eloss(keV)= " << eloss/keV  << " in    351   // << "  Eloss(keV)= " << eloss/keV  << " in " 
366   // << matCC->GetMaterial()->GetName() << G4e    352   // << matCC->GetMaterial()->GetName() << G4endl;
                                                   >> 353   
367                                                   354 
368   G4double Tkin       = aParticle->GetKineticE    355   G4double Tkin       = aParticle->GetKineticEnergy();
369   G4double scaledTkin = Tkin*fRatio;              356   G4double scaledTkin = Tkin*fRatio;
370                                                   357 
371   G4double loss = fModelData->SampleAlongStepP    358   G4double loss = fModelData->SampleAlongStepPhotonTransfer(coupleIndex, Tkin,
372                         scaledTkin,            << 359                   scaledTkin,
373                         step*fChargeSquare);   << 360                   step*fChargeSquare);
374   loss += fModelData->SampleAlongStepPlasmonTr << 361            loss += fModelData->SampleAlongStepPlasmonTransfer(coupleIndex, Tkin,
375                                                << 362                   scaledTkin,
                                                   >> 363                     step*fChargeSquare);
                                                   >> 364 
376                                                   365   
377   // G4cout<<"  PAIPhotModel::SampleFluctuatio    366   // G4cout<<"  PAIPhotModel::SampleFluctuations loss = "<<loss/keV<<" keV, on step = "
378   // <<step/mm<<" mm"<<G4endl;                    367   // <<step/mm<<" mm"<<G4endl; 
379   return loss;                                    368   return loss;
380                                                   369 
381 }                                                 370 }
382                                                   371 
383 //////////////////////////////////////////////    372 //////////////////////////////////////////////////////////////////////
384 //                                                373 //
385 // Returns the statistical estimation of the e    374 // Returns the statistical estimation of the energy loss distribution variance
386 //                                                375 //
387                                                   376 
388                                                   377 
389 G4double G4PAIPhotModel::Dispersion(const G4Ma << 378 G4double G4PAIPhotModel::Dispersion( const G4Material* material, 
390                                     const G4Dy << 379                                  const G4DynamicParticle* aParticle,
391             const G4double tcut,               << 380                G4double tmax, 
392             const G4double tmax,               << 381                      G4double step       )
393                   const G4double step)         << 
394 {                                                 382 {
395   G4double particleMass  = aParticle->GetMass(    383   G4double particleMass  = aParticle->GetMass();
396   G4double electronDensity = material->GetElec    384   G4double electronDensity = material->GetElectronDensity();
397   G4double kineticEnergy = aParticle->GetKinet    385   G4double kineticEnergy = aParticle->GetKineticEnergy();
398   G4double q = aParticle->GetCharge()/eplus;      386   G4double q = aParticle->GetCharge()/eplus;
399   G4double etot = kineticEnergy + particleMass    387   G4double etot = kineticEnergy + particleMass;
400   G4double beta2 = kineticEnergy*(kineticEnerg    388   G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*particleMass)/(etot*etot);
401   G4double siga  = (tmax/beta2 - 0.5*tcut) * t << 389   G4double siga  = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * step
402                  * electronDensity * q * q;       390                  * electronDensity * q * q;
403                                                   391 
404   return siga;                                    392   return siga;
                                                   >> 393   /*
                                                   >> 394   G4double loss, sumLoss=0., sumLoss2=0., sigma2, meanLoss=0.;
                                                   >> 395   for(G4int i = 0; i < fMeanNumber; i++)
                                                   >> 396   {
                                                   >> 397     loss      = SampleFluctuations(material,aParticle,tmax,step,meanLoss);
                                                   >> 398     sumLoss  += loss;
                                                   >> 399     sumLoss2 += loss*loss;
                                                   >> 400   }
                                                   >> 401   meanLoss = sumLoss/fMeanNumber;
                                                   >> 402   sigma2   = meanLoss*meanLoss + (sumLoss2-2*sumLoss*meanLoss)/fMeanNumber;
                                                   >> 403   return sigma2;
                                                   >> 404   */
405 }                                                 405 }
406                                                   406 
407 //////////////////////////////////////////////    407 /////////////////////////////////////////////////////////////////////
408                                                   408 
409 G4double G4PAIPhotModel::MaxSecondaryEnergy( c    409 G4double G4PAIPhotModel::MaxSecondaryEnergy( const G4ParticleDefinition* p,
410            G4double kinEnergy)                    410            G4double kinEnergy) 
411 {                                                 411 {
412   SetParticle(p);                                 412   SetParticle(p);
413   G4double tmax = kinEnergy;                      413   G4double tmax = kinEnergy;
414   if(p == fElectron) { tmax *= 0.5; }             414   if(p == fElectron) { tmax *= 0.5; }
415   else if(p != fPositron) {                       415   else if(p != fPositron) { 
416     G4double ratio= electron_mass_c2/fMass;       416     G4double ratio= electron_mass_c2/fMass;
417     G4double gamma= kinEnergy/fMass + 1.0;        417     G4double gamma= kinEnergy/fMass + 1.0;
418     tmax = 2.0*electron_mass_c2*(gamma*gamma -    418     tmax = 2.0*electron_mass_c2*(gamma*gamma - 1.) /
419                   (1. + 2.0*gamma*ratio + rati    419                   (1. + 2.0*gamma*ratio + ratio*ratio);
420   }                                               420   }
421   return tmax;                                    421   return tmax;
422 }                                                 422 }
423                                                   423 
424 //////////////////////////////////////////////    424 ///////////////////////////////////////////////////////////////
425                                                   425 
426 void G4PAIPhotModel::DefineForRegion(const G4R    426 void G4PAIPhotModel::DefineForRegion(const G4Region* r) 
427 {                                                 427 {
428   fPAIRegionVector.push_back(r);                  428   fPAIRegionVector.push_back(r);
429 }                                                 429 }
430                                                   430 
431 //                                                431 //
432 //                                                432 //
433 //////////////////////////////////////////////    433 /////////////////////////////////////////////////
434                                                   434