Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PAIModel.cc 106217 2017-09-21 00:03:23Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class 30 // GEANT4 Class 30 // File name: G4PAIModel.cc 31 // File name: G4PAIModel.cc 31 // 32 // 32 // Author: Vladimir.Grichine@cern.ch on base o 33 // Author: Vladimir.Grichine@cern.ch on base of V.Ivanchenko model interface 33 // 34 // 34 // Creation date: 05.10.2003 35 // Creation date: 05.10.2003 35 // 36 // 36 // Modifications: 37 // Modifications: 37 // 38 // 38 // 17.08.04 V.Grichine, bug fixed for Tkin<=0 39 // 17.08.04 V.Grichine, bug fixed for Tkin<=0 in SampleSecondary 39 // 16.08.04 V.Grichine, bug fixed in massRatio 40 // 16.08.04 V.Grichine, bug fixed in massRatio for DEDX, CrossSection, 40 // SampleSecondary 41 // SampleSecondary 41 // 08.04.05 Major optimisation of internal int 42 // 08.04.05 Major optimisation of internal interfaces (V.Ivantchenko) 42 // 26.07.09 Fixed logic to work with several m 43 // 26.07.09 Fixed logic to work with several materials (V.Ivantchenko) 43 // 21.11.10 V. Grichine verbose flag for proto 44 // 21.11.10 V. Grichine verbose flag for protons and G4PAYySection to 44 // check sandia table 45 // check sandia table 45 // 12.06.13 V. Grichine Bug fixed in SampleSec 46 // 12.06.13 V. Grichine Bug fixed in SampleSecondaries for scaled Tkin 46 // (fMass -> proton_mass_c2) 47 // (fMass -> proton_mass_c2) 47 // 19.08.13 V.Ivanchenko extract data handling 48 // 19.08.13 V.Ivanchenko extract data handling to G4PAIModelData class 48 // added sharing of internal data bet 49 // added sharing of internal data between threads (MT migration) 49 // 50 // 50 51 51 #include "G4PAIModel.hh" 52 #include "G4PAIModel.hh" 52 53 53 #include "G4SystemOfUnits.hh" 54 #include "G4SystemOfUnits.hh" 54 #include "G4PhysicalConstants.hh" 55 #include "G4PhysicalConstants.hh" 55 #include "G4Region.hh" 56 #include "G4Region.hh" 56 #include "G4MaterialCutsCouple.hh" 57 #include "G4MaterialCutsCouple.hh" 57 #include "G4MaterialTable.hh" 58 #include "G4MaterialTable.hh" 58 #include "G4RegionStore.hh" 59 #include "G4RegionStore.hh" 59 60 60 #include "Randomize.hh" 61 #include "Randomize.hh" 61 #include "G4Electron.hh" 62 #include "G4Electron.hh" 62 #include "G4Positron.hh" 63 #include "G4Positron.hh" 63 #include "G4Poisson.hh" 64 #include "G4Poisson.hh" 64 #include "G4Step.hh" 65 #include "G4Step.hh" 65 #include "G4Material.hh" 66 #include "G4Material.hh" 66 #include "G4DynamicParticle.hh" 67 #include "G4DynamicParticle.hh" 67 #include "G4ParticleDefinition.hh" 68 #include "G4ParticleDefinition.hh" 68 #include "G4ParticleChangeForLoss.hh" 69 #include "G4ParticleChangeForLoss.hh" 69 #include "G4PAIModelData.hh" 70 #include "G4PAIModelData.hh" 70 #include "G4DeltaAngle.hh" 71 #include "G4DeltaAngle.hh" 71 72 72 ////////////////////////////////////////////// 73 //////////////////////////////////////////////////////////////////////// 73 74 74 using namespace std; 75 using namespace std; 75 76 76 G4PAIModel::G4PAIModel(const G4ParticleDefinit 77 G4PAIModel::G4PAIModel(const G4ParticleDefinition* p, const G4String& nam) 77 : G4VEmModel(nam),G4VEmFluctuationModel(nam) 78 : G4VEmModel(nam),G4VEmFluctuationModel(nam), 78 fVerbose(0), 79 fVerbose(0), 79 fModelData(nullptr), 80 fModelData(nullptr), 80 fParticle(nullptr) 81 fParticle(nullptr) 81 { 82 { 82 fElectron = G4Electron::Electron(); 83 fElectron = G4Electron::Electron(); 83 fPositron = G4Positron::Positron(); 84 fPositron = G4Positron::Positron(); 84 85 85 fParticleChange = nullptr; 86 fParticleChange = nullptr; 86 87 87 if(p) { SetParticle(p); } 88 if(p) { SetParticle(p); } 88 else { SetParticle(fElectron); } 89 else { SetParticle(fElectron); } 89 90 90 // default generator 91 // default generator 91 SetAngularDistribution(new G4DeltaAngle()); 92 SetAngularDistribution(new G4DeltaAngle()); 92 fLowestTcut = 12.5*CLHEP::eV; 93 fLowestTcut = 12.5*CLHEP::eV; 93 } 94 } 94 95 95 ////////////////////////////////////////////// 96 //////////////////////////////////////////////////////////////////////////// 96 97 97 G4PAIModel::~G4PAIModel() 98 G4PAIModel::~G4PAIModel() 98 { 99 { 99 if(IsMaster()) { delete fModelData; } 100 if(IsMaster()) { delete fModelData; } 100 } 101 } 101 102 102 ////////////////////////////////////////////// 103 //////////////////////////////////////////////////////////////////////////// 103 104 104 void G4PAIModel::Initialise(const G4ParticleDe 105 void G4PAIModel::Initialise(const G4ParticleDefinition* p, 105 const G4DataVector& cuts) 106 const G4DataVector& cuts) 106 { 107 { 107 if(fVerbose > 1) { << 108 if(fVerbose > 0) { 108 G4cout<<"G4PAIModel::Initialise for "<<p-> 109 G4cout<<"G4PAIModel::Initialise for "<<p->GetParticleName()<<G4endl; 109 } 110 } 110 SetParticle(p); 111 SetParticle(p); 111 fParticleChange = GetParticleChangeForLoss() 112 fParticleChange = GetParticleChangeForLoss(); 112 113 113 if(IsMaster()) { 114 if(IsMaster()) { 114 115 115 delete fModelData; 116 delete fModelData; 116 fMaterialCutsCoupleVector.clear(); 117 fMaterialCutsCoupleVector.clear(); 117 if(fVerbose > 1) { << 118 if(fVerbose > 0) { 118 G4cout << "G4PAIModel instantiates data 119 G4cout << "G4PAIModel instantiates data for " << p->GetParticleName() 119 << G4endl; 120 << G4endl; 120 } 121 } 121 G4double tmin = LowEnergyLimit()*fRatio; 122 G4double tmin = LowEnergyLimit()*fRatio; 122 G4double tmax = HighEnergyLimit()*fRatio; 123 G4double tmax = HighEnergyLimit()*fRatio; 123 fModelData = new G4PAIModelData(tmin, tmax 124 fModelData = new G4PAIModelData(tmin, tmax, fVerbose); 124 125 125 // Prepare initialization 126 // Prepare initialization 126 const G4MaterialTable* theMaterialTable = 127 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 127 std::size_t numOfMat = G4Material::GetNu << 128 size_t numOfMat = G4Material::GetNumberOfMaterials(); 128 std::size_t numRegions = fPAIRegionVector. << 129 size_t numRegions = fPAIRegionVector.size(); 129 130 130 // protect for unit tests 131 // protect for unit tests 131 if(0 == numRegions) { 132 if(0 == numRegions) { 132 G4Exception("G4PAIModel::Initialise()"," 133 G4Exception("G4PAIModel::Initialise()","em0106",JustWarning, 133 "no G4Regions are registered 134 "no G4Regions are registered for the PAI model - World is used"); 134 fPAIRegionVector.push_back(G4RegionStore 135 fPAIRegionVector.push_back(G4RegionStore::GetInstance() 135 ->GetRegion("DefaultRegionForTheWorld 136 ->GetRegion("DefaultRegionForTheWorld", false)); 136 numRegions = 1; 137 numRegions = 1; 137 } 138 } 138 139 139 if(fVerbose > 1) { << 140 if(fVerbose > 0) { 140 G4cout << "G4PAIModel is defined for " < 141 G4cout << "G4PAIModel is defined for " << numRegions << " regions " 141 << "; number of materials " << numOfMat << 142 << G4endl; >> 143 G4cout << " total number of materials " << numOfMat << G4endl; 142 } 144 } 143 for(std::size_t iReg = 0; iReg<numRegions; << 145 for(size_t iReg = 0; iReg<numRegions; ++iReg) { 144 const G4Region* curReg = fPAIRegionVecto 146 const G4Region* curReg = fPAIRegionVector[iReg]; 145 G4Region* reg = const_cast<G4Region*>(cu 147 G4Region* reg = const_cast<G4Region*>(curReg); 146 148 147 for(std::size_t jMat = 0; jMat<numOfMat; << 149 for(size_t jMat = 0; jMat<numOfMat; ++jMat) { 148 G4Material* mat = (*theMaterialTable)[jMat]; 150 G4Material* mat = (*theMaterialTable)[jMat]; 149 const G4MaterialCutsCouple* cutCouple = reg- 151 const G4MaterialCutsCouple* cutCouple = reg->FindCouple(mat); 150 std::size_t n = fMaterialCutsCoupleVector.si << 152 size_t n = fMaterialCutsCoupleVector.size(); 151 if(nullptr != cutCouple) { << 153 /* 152 if(fVerbose > 1) { << 154 G4cout << "Region: " << reg->GetName() << " " << reg >> 155 << " Couple " << cutCouple >> 156 << " PAI defined for " << n << " couples" >> 157 << " jMat= " << jMat << " " << mat->GetName() >> 158 << G4endl; >> 159 */ >> 160 if(cutCouple) { >> 161 if(fVerbose > 0) { 153 G4cout << "Region <" << curReg->GetName( 162 G4cout << "Region <" << curReg->GetName() << "> mat <" 154 << mat->GetName() << "> CoupleIndex= " 163 << mat->GetName() << "> CoupleIndex= " 155 << cutCouple->GetIndex() 164 << cutCouple->GetIndex() 156 << " " << p->GetParticleName() 165 << " " << p->GetParticleName() 157 << " cutsize= " << cuts.size() << G4end 166 << " cutsize= " << cuts.size() << G4endl; 158 } 167 } 159 // check if this couple is not already ini 168 // check if this couple is not already initialized 160 G4bool isnew = true; 169 G4bool isnew = true; 161 if(0 < n) { 170 if(0 < n) { 162 for(std::size_t i=0; i<n; ++i) { << 171 for(size_t i=0; i<n; ++i) { 163 G4cout << i << G4endl; << 164 if(cutCouple == fMaterialCutsCoupleVec 172 if(cutCouple == fMaterialCutsCoupleVector[i]) { 165 isnew = false; 173 isnew = false; 166 break; 174 break; 167 } 175 } 168 } 176 } 169 } 177 } 170 // initialise data banks 178 // initialise data banks 171 // G4cout << " isNew: " << isnew << " " << 179 //G4cout << " isNew: " << isnew << " " << cutCouple << G4endl; 172 if(isnew) { 180 if(isnew) { 173 fMaterialCutsCoupleVector.push_back(cutC 181 fMaterialCutsCoupleVector.push_back(cutCouple); 174 fModelData->Initialise(cutCouple, this); 182 fModelData->Initialise(cutCouple, this); 175 } 183 } 176 } 184 } 177 } 185 } 178 } 186 } 179 InitialiseElementSelectors(p, cuts); 187 InitialiseElementSelectors(p, cuts); 180 } 188 } 181 } 189 } 182 190 183 ////////////////////////////////////////////// 191 ///////////////////////////////////////////////////////////////////////// 184 192 185 void G4PAIModel::InitialiseLocal(const G4Parti << 193 void G4PAIModel::InitialiseLocal(const G4ParticleDefinition* p, 186 G4VEmModel* masterModel) 194 G4VEmModel* masterModel) 187 { 195 { >> 196 SetParticle(p); 188 fModelData = static_cast<G4PAIModel*>(master 197 fModelData = static_cast<G4PAIModel*>(masterModel)->GetPAIModelData(); 189 fMaterialCutsCoupleVector = 198 fMaterialCutsCoupleVector = 190 static_cast<G4PAIModel*>(masterModel)->Get 199 static_cast<G4PAIModel*>(masterModel)->GetVectorOfCouples(); 191 SetElementSelectors(masterModel->GetElementS 200 SetElementSelectors(masterModel->GetElementSelectors()); 192 } 201 } 193 202 194 ////////////////////////////////////////////// 203 ////////////////////////////////////////////////////////////////////////////// 195 204 196 G4double G4PAIModel::MinEnergyCut(const G4Part 205 G4double G4PAIModel::MinEnergyCut(const G4ParticleDefinition*, 197 const G4MaterialCutsCouple*) 206 const G4MaterialCutsCouple*) 198 { 207 { 199 return fLowestTcut; 208 return fLowestTcut; 200 } 209 } 201 210 202 ////////////////////////////////////////////// 211 ////////////////////////////////////////////////////////////////////////////// 203 212 204 G4double G4PAIModel::ComputeDEDXPerVolume(cons 213 G4double G4PAIModel::ComputeDEDXPerVolume(const G4Material*, 205 const G4ParticleDefinition* p, 214 const G4ParticleDefinition* p, 206 G4double kineticEnergy, 215 G4double kineticEnergy, 207 G4double cutEnergy) 216 G4double cutEnergy) 208 { 217 { >> 218 //G4cout << "===1=== " << CurrentCouple() >> 219 // << " idx= " << CurrentCouple()->GetIndex() >> 220 // << " " << fMaterialCutsCoupleVector[0] >> 221 // << G4endl; 209 G4int coupleIndex = FindCoupleIndex(CurrentC 222 G4int coupleIndex = FindCoupleIndex(CurrentCouple()); >> 223 //G4cout << "===2=== " << coupleIndex << G4endl; 210 if(0 > coupleIndex) { return 0.0; } 224 if(0 > coupleIndex) { return 0.0; } 211 225 212 G4double cut = std::min(MaxSecondaryEnergy(p 226 G4double cut = std::min(MaxSecondaryEnergy(p, kineticEnergy), cutEnergy); >> 227 213 G4double scaledTkin = kineticEnergy*fRatio; 228 G4double scaledTkin = kineticEnergy*fRatio; 214 G4double dedx = fChargeSquare*fModelData->DE << 229 215 return dedx; << 230 return fChargeSquare*fModelData->DEDXPerVolume(coupleIndex, scaledTkin, >> 231 cut); 216 } 232 } 217 233 218 ////////////////////////////////////////////// 234 ///////////////////////////////////////////////////////////////////////// 219 235 220 G4double G4PAIModel::CrossSectionPerVolume( co 236 G4double G4PAIModel::CrossSectionPerVolume( const G4Material*, 221 const G4ParticleDefinition* p, 237 const G4ParticleDefinition* p, 222 G4double kineticEnergy, 238 G4double kineticEnergy, 223 G4double cutEnergy, 239 G4double cutEnergy, 224 G4double maxEnergy ) 240 G4double maxEnergy ) 225 { 241 { >> 242 //G4cout << "===3=== " << CurrentCouple() >> 243 // << " idx= " << CurrentCouple()->GetIndex() >> 244 // << " " << fMaterialCutsCoupleVector[0] >> 245 // << G4endl; 226 G4int coupleIndex = FindCoupleIndex(CurrentC 246 G4int coupleIndex = FindCoupleIndex(CurrentCouple()); >> 247 //G4cout << "===4=== " << coupleIndex << G4endl; 227 if(0 > coupleIndex) { return 0.0; } 248 if(0 > coupleIndex) { return 0.0; } 228 249 229 G4double tmax = std::min(MaxSecondaryEnergy( 250 G4double tmax = std::min(MaxSecondaryEnergy(p, kineticEnergy), maxEnergy); 230 if(tmax <= cutEnergy) { return 0.0; } 251 if(tmax <= cutEnergy) { return 0.0; } 231 252 232 G4double scaledTkin = kineticEnergy*fRatio; 253 G4double scaledTkin = kineticEnergy*fRatio; 233 G4double xs = fChargeSquare*fModelData->Cros << 254 234 scal << 255 return fChargeSquare*fModelData->CrossSectionPerVolume(coupleIndex, 235 return xs; << 256 scaledTkin, >> 257 cutEnergy, >> 258 tmax); 236 } 259 } 237 260 238 ////////////////////////////////////////////// 261 /////////////////////////////////////////////////////////////////////////// 239 // 262 // 240 // It is analog of PostStepDoIt in terms of se 263 // It is analog of PostStepDoIt in terms of secondary electron. 241 // 264 // 242 265 243 void G4PAIModel::SampleSecondaries(std::vector 266 void G4PAIModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 244 const G4MaterialCutsCouple* matCC, 267 const G4MaterialCutsCouple* matCC, 245 const G4DynamicParticle* dp, 268 const G4DynamicParticle* dp, 246 G4double tmin, 269 G4double tmin, 247 G4double maxEnergy) 270 G4double maxEnergy) 248 { 271 { 249 G4int coupleIndex = FindCoupleIndex(matCC); 272 G4int coupleIndex = FindCoupleIndex(matCC); 250 273 251 //G4cout << "G4PAIModel::SampleSecondaries: 274 //G4cout << "G4PAIModel::SampleSecondaries: coupleIndex= "<<coupleIndex<<G4endl; 252 if(0 > coupleIndex) { return; } 275 if(0 > coupleIndex) { return; } 253 276 254 SetParticle(dp->GetDefinition()); 277 SetParticle(dp->GetDefinition()); 255 G4double kineticEnergy = dp->GetKineticEnerg 278 G4double kineticEnergy = dp->GetKineticEnergy(); 256 279 257 G4double tmax = MaxSecondaryEnergy(fParticle 280 G4double tmax = MaxSecondaryEnergy(fParticle, kineticEnergy); 258 if(maxEnergy < tmax) { tmax = maxEnergy; } 281 if(maxEnergy < tmax) { tmax = maxEnergy; } 259 if(tmin >= tmax) { return; } 282 if(tmin >= tmax) { return; } 260 283 261 G4ThreeVector direction= dp->GetMomentumDire 284 G4ThreeVector direction= dp->GetMomentumDirection(); 262 G4double scaledTkin = kineticEnergy*fRati 285 G4double scaledTkin = kineticEnergy*fRatio; 263 G4double totalEnergy = kineticEnergy + fMa 286 G4double totalEnergy = kineticEnergy + fMass; 264 G4double totalMomentum = sqrt(kineticEnergy* 287 G4double totalMomentum = sqrt(kineticEnergy*(totalEnergy+fMass)); 265 288 266 G4double deltaTkin = 289 G4double deltaTkin = 267 fModelData->SamplePostStepTransfer(coupleI 290 fModelData->SamplePostStepTransfer(coupleIndex, scaledTkin, tmin, tmax); 268 291 269 //G4cout<<"G4PAIModel::SampleSecondaries; de 292 //G4cout<<"G4PAIModel::SampleSecondaries; deltaKIn = "<<deltaTkin/keV 270 // <<" keV "<< " Escaled(MeV)= " << scaledT 293 // <<" keV "<< " Escaled(MeV)= " << scaledTkin << G4endl; 271 294 272 if( !(deltaTkin <= 0.) && !(deltaTkin > 0)) 295 if( !(deltaTkin <= 0.) && !(deltaTkin > 0)) { 273 G4cout<<"G4PAIModel::SampleSecondaries; de 296 G4cout<<"G4PAIModel::SampleSecondaries; deltaKIn = "<<deltaTkin/keV 274 <<" keV "<< " Escaled(MeV)= " << scaledTki 297 <<" keV "<< " Escaled(MeV)= " << scaledTkin << G4endl; 275 return; 298 return; 276 } 299 } 277 if( deltaTkin <= 0.) { return; } 300 if( deltaTkin <= 0.) { return; } 278 301 279 if( deltaTkin > tmax) { deltaTkin = tmax; } 302 if( deltaTkin > tmax) { deltaTkin = tmax; } 280 303 281 const G4Element* anElement = SelectTargetAto << 304 const G4Element* anElement = SelectRandomAtom(matCC,fParticle,kineticEnergy); 282 << 305 G4int Z = G4lrint(anElement->GetZ()); 283 << 284 G4int Z = anElement->GetZasInt(); << 285 306 286 auto deltaRay = new G4DynamicParticle(fElect << 307 G4DynamicParticle* deltaRay = new G4DynamicParticle(fElectron, 287 GetAngularDistribution()->SampleDirectio 308 GetAngularDistribution()->SampleDirection(dp, deltaTkin, 288 Z, matCC->GetMaterial()), 309 Z, matCC->GetMaterial()), 289 deltaTkin); 310 deltaTkin); 290 311 291 // primary change 312 // primary change 292 kineticEnergy -= deltaTkin; 313 kineticEnergy -= deltaTkin; 293 G4ThreeVector dir = totalMomentum*direction 314 G4ThreeVector dir = totalMomentum*direction - deltaRay->GetMomentum(); 294 direction = dir.unit(); 315 direction = dir.unit(); 295 fParticleChange->SetProposedKineticEnergy(ki 316 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 296 fParticleChange->SetProposedMomentumDirectio 317 fParticleChange->SetProposedMomentumDirection(direction); 297 318 298 vdp->push_back(deltaRay); 319 vdp->push_back(deltaRay); 299 } 320 } 300 321 301 ////////////////////////////////////////////// 322 /////////////////////////////////////////////////////////////////////// 302 323 303 G4double G4PAIModel::SampleFluctuations(const << 324 G4double G4PAIModel::SampleFluctuations( const G4MaterialCutsCouple* matCC, 304 const << 325 const G4DynamicParticle* aParticle, 305 const << 326 G4double tmax, G4double step, 306 const G4double, << 327 G4double eloss) 307 const << 308 const G4double eloss) << 309 { 328 { 310 G4int coupleIndex = FindCoupleIndex(matCC); 329 G4int coupleIndex = FindCoupleIndex(matCC); 311 if(0 > coupleIndex) { return eloss; } 330 if(0 > coupleIndex) { return eloss; } 312 331 313 SetParticle(aParticle->GetDefinition()); 332 SetParticle(aParticle->GetDefinition()); 314 333 315 /* 334 /* 316 G4cout << "G4PAIModel::SampleFluctuations st 335 G4cout << "G4PAIModel::SampleFluctuations step(mm)= "<< step/mm 317 << " Eloss(keV)= " << eloss/keV << " in " 336 << " Eloss(keV)= " << eloss/keV << " in " 318 << matCC->Getmaterial()->GetName() << G4end 337 << matCC->Getmaterial()->GetName() << G4endl; 319 */ 338 */ 320 339 321 G4double Tkin = aParticle->GetKineticE 340 G4double Tkin = aParticle->GetKineticEnergy(); 322 G4double scaledTkin = Tkin*fRatio; 341 G4double scaledTkin = Tkin*fRatio; 323 342 324 G4double loss = fModelData->SampleAlongStepT 343 G4double loss = fModelData->SampleAlongStepTransfer(coupleIndex, Tkin, 325 scaledTkin, tcut, << 344 scaledTkin, tmax, 326 step*fChargeSquare); 345 step*fChargeSquare); 327 346 328 // G4cout<<"PAIModel AlongStepLoss = "<<loss 347 // G4cout<<"PAIModel AlongStepLoss = "<<loss/keV<<" keV, on step = " 329 //<<step/mm<<" mm"<<G4endl; 348 //<<step/mm<<" mm"<<G4endl; 330 return loss; 349 return loss; 331 350 332 } 351 } 333 352 334 ////////////////////////////////////////////// 353 ////////////////////////////////////////////////////////////////////// 335 // 354 // 336 // Returns the statistical estimation of the e 355 // Returns the statistical estimation of the energy loss distribution variance 337 // 356 // 338 357 339 358 340 G4double G4PAIModel::Dispersion( const G4Mater 359 G4double G4PAIModel::Dispersion( const G4Material* material, 341 const G4Dynam 360 const G4DynamicParticle* aParticle, 342 const G4double tcut, << 361 G4double tmax, 343 const G4double tmax, << 362 G4double step ) 344 const G4double step ) << 345 { 363 { 346 G4double particleMass = aParticle->GetMass( 364 G4double particleMass = aParticle->GetMass(); 347 G4double electronDensity = material->GetElec 365 G4double electronDensity = material->GetElectronDensity(); 348 G4double kineticEnergy = aParticle->GetKinet 366 G4double kineticEnergy = aParticle->GetKineticEnergy(); 349 G4double q = aParticle->GetCharge()/eplus; 367 G4double q = aParticle->GetCharge()/eplus; 350 G4double etot = kineticEnergy + particleMass 368 G4double etot = kineticEnergy + particleMass; 351 G4double beta2 = kineticEnergy*(kineticEnerg 369 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*particleMass)/(etot*etot); 352 G4double siga = (tmax/beta2 - 0.5*tcut) * t << 370 G4double siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * step 353 * electronDensity * q * q; 371 * electronDensity * q * q; 354 372 355 return siga; 373 return siga; 356 } 374 } 357 375 358 ////////////////////////////////////////////// 376 ///////////////////////////////////////////////////////////////////// 359 377 360 G4double G4PAIModel::MaxSecondaryEnergy( const 378 G4double G4PAIModel::MaxSecondaryEnergy( const G4ParticleDefinition* p, 361 G4double kinEnergy) 379 G4double kinEnergy) 362 { 380 { 363 SetParticle(p); 381 SetParticle(p); 364 G4double tmax = kinEnergy; 382 G4double tmax = kinEnergy; 365 if(p == fElectron) { tmax *= 0.5; } 383 if(p == fElectron) { tmax *= 0.5; } 366 else if(p != fPositron) { 384 else if(p != fPositron) { 367 G4double ratio= electron_mass_c2/fMass; 385 G4double ratio= electron_mass_c2/fMass; 368 G4double gamma= kinEnergy/fMass + 1.0; 386 G4double gamma= kinEnergy/fMass + 1.0; 369 tmax = 2.0*electron_mass_c2*(gamma*gamma - 387 tmax = 2.0*electron_mass_c2*(gamma*gamma - 1.) / 370 (1. + 2.0*gamma*ratio + rati 388 (1. + 2.0*gamma*ratio + ratio*ratio); 371 } 389 } 372 return tmax; 390 return tmax; 373 } 391 } 374 392 375 ////////////////////////////////////////////// 393 /////////////////////////////////////////////////////////////// 376 394 377 void G4PAIModel::DefineForRegion(const G4Regio 395 void G4PAIModel::DefineForRegion(const G4Region* r) 378 { 396 { 379 fPAIRegionVector.push_back(r); 397 fPAIRegionVector.push_back(r); 380 } 398 } 381 399 382 ////////////////////////////////////////////// 400 /////////////////////////////////////////////////////////////// 383 401 384 402