Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4KleinNishinaModel 33 // File name: G4KleinNishinaModel 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of G4KleinNishinaCompton 35 // 36 // 36 // Creation date: 13.06.2010 37 // Creation date: 13.06.2010 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // Class Description: 41 // Class Description: 41 // 42 // 42 // ------------------------------------------- 43 // ------------------------------------------------------------------- 43 // 44 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 47 47 #include "G4KleinNishinaModel.hh" 48 #include "G4KleinNishinaModel.hh" 48 #include "G4PhysicalConstants.hh" 49 #include "G4PhysicalConstants.hh" 49 #include "G4SystemOfUnits.hh" 50 #include "G4SystemOfUnits.hh" 50 #include "G4Electron.hh" 51 #include "G4Electron.hh" 51 #include "G4Gamma.hh" 52 #include "G4Gamma.hh" 52 #include "Randomize.hh" 53 #include "Randomize.hh" 53 #include "G4RandomDirection.hh" 54 #include "G4RandomDirection.hh" 54 #include "G4DataVector.hh" 55 #include "G4DataVector.hh" 55 #include "G4ParticleChangeForGamma.hh" 56 #include "G4ParticleChangeForGamma.hh" 56 #include "G4VAtomDeexcitation.hh" 57 #include "G4VAtomDeexcitation.hh" 57 #include "G4AtomicShells.hh" 58 #include "G4AtomicShells.hh" 58 #include "G4LossTableManager.hh" 59 #include "G4LossTableManager.hh" 59 #include "G4Log.hh" << 60 #include "G4Exp.hh" << 61 60 62 //....oooOO0OOooo........oooOO0OOooo........oo 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 63 62 64 using namespace std; 63 using namespace std; 65 64 66 G4KleinNishinaModel::G4KleinNishinaModel(const 65 G4KleinNishinaModel::G4KleinNishinaModel(const G4String& nam) 67 : G4VEmModel(nam), << 66 : G4VEmModel(nam) 68 lv1(0.,0.,0.,0.), << 69 lv2(0.,0.,0.,0.), << 70 bst(0.,0.,0.) << 71 { 67 { 72 theGamma = G4Gamma::Gamma(); 68 theGamma = G4Gamma::Gamma(); 73 theElectron = G4Electron::Electron(); 69 theElectron = G4Electron::Electron(); 74 lowestSecondaryEnergy = 10*eV; << 70 lowestGammaEnergy = 1.0*eV; 75 limitFactor = 4; 71 limitFactor = 4; 76 fProbabilities.resize(9,0.0); 72 fProbabilities.resize(9,0.0); 77 SetDeexcitationFlag(true); 73 SetDeexcitationFlag(true); 78 fParticleChange = nullptr; << 74 fParticleChange = 0; 79 fAtomDeexcitation = nullptr; << 75 fAtomDeexcitation = 0; 80 } 76 } 81 77 82 //....oooOO0OOooo........oooOO0OOooo........oo 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 83 79 84 G4KleinNishinaModel::~G4KleinNishinaModel() = << 80 G4KleinNishinaModel::~G4KleinNishinaModel() >> 81 {} 85 82 86 //....oooOO0OOooo........oooOO0OOooo........oo 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 87 84 88 void G4KleinNishinaModel::Initialise(const G4P 85 void G4KleinNishinaModel::Initialise(const G4ParticleDefinition* p, 89 const G4D << 86 const G4DataVector& cuts) 90 { 87 { 91 fAtomDeexcitation = G4LossTableManager::Inst 88 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation(); 92 if(IsMaster()) { InitialiseElementSelectors( << 89 InitialiseElementSelectors(p, cuts); 93 if(nullptr == fParticleChange) { << 90 if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); } 94 fParticleChange = GetParticleChangeForGamm << 95 } << 96 } << 97 << 98 //....oooOO0OOooo........oooOO0OOooo........oo << 99 << 100 void G4KleinNishinaModel::InitialiseLocal(cons << 101 G4VE << 102 { << 103 SetElementSelectors(masterModel->GetElementS << 104 } 91 } 105 92 106 //....oooOO0OOooo........oooOO0OOooo........oo 93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 107 94 108 G4double 95 G4double 109 G4KleinNishinaModel::ComputeCrossSectionPerAto 96 G4KleinNishinaModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 110 << 97 G4double GammaEnergy, 111 << 98 G4double Z, G4double, 112 << 99 G4double, G4double) 113 { 100 { 114 G4double xSection = 0.0 ; 101 G4double xSection = 0.0 ; 115 if (gammaEnergy <= LowEnergyLimit()) { retur << 102 if ( Z < 0.9999 || GammaEnergy < 0.1*keV) { return xSection; } 116 103 117 static const G4double a = 20.0 , b = 230.0 , 104 static const G4double a = 20.0 , b = 230.0 , c = 440.0; 118 << 119 static const G4double << 120 d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLH << 121 d3= 6.7527 *CLHEP::barn, d4=-1.9798e+1*CLH << 122 e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLH << 123 e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLH << 124 f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLH << 125 f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLH << 126 105 >> 106 static const G4double >> 107 d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527 *barn, d4=-1.9798e+1*barn, >> 108 e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn, >> 109 f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn; >> 110 127 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = 111 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z), 128 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = 112 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z); 129 113 130 G4double T0 = 15.0*keV; 114 G4double T0 = 15.0*keV; 131 if (Z < 1.5) { T0 = 40.0*keV; } 115 if (Z < 1.5) { T0 = 40.0*keV; } 132 116 133 G4double X = max(gammaEnergy, T0) / electr << 117 G4double X = max(GammaEnergy, T0) / electron_mass_c2; 134 xSection = p1Z*G4Log(1.+2.*X)/X << 118 xSection = p1Z*std::log(1.+2.*X)/X 135 + (p2Z + p3Z*X + p4Z*X*X)/(1. + 119 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X); 136 << 120 137 // modification for low energy. (special ca 121 // modification for low energy. (special case for Hydrogen) 138 static const G4double dT0 = keV; << 122 if (GammaEnergy < T0) { 139 if (gammaEnergy < T0) { << 123 G4double dT0 = keV; 140 X = (T0+dT0) / electron_mass_c2 ; 124 X = (T0+dT0) / electron_mass_c2 ; 141 G4double sigma = p1Z*G4Log(1.+2*X)/X << 125 G4double sigma = p1Z*log(1.+2*X)/X 142 + (p2Z + p3Z*X + p4Z*X*X)/ 126 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X); 143 G4double c1 = -T0*(sigma-xSection)/(xSec 127 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0); 144 G4double c2 = 0.150; 128 G4double c2 = 0.150; 145 if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); << 129 if (Z > 1.5) { c2 = 0.375-0.0556*log(Z); } 146 G4double y = G4Log(gammaEnergy/T0); << 130 G4double y = log(GammaEnergy/T0); 147 xSection *= G4Exp(-y*(c1+c2*y)); << 131 xSection *= exp(-y*(c1+c2*y)); 148 } 132 } 149 133 150 if(xSection < 0.0) { xSection = 0.0; } 134 if(xSection < 0.0) { xSection = 0.0; } 151 // G4cout << "e= " << GammaEnergy << " Z= " 135 // G4cout << "e= " << GammaEnergy << " Z= " << Z 152 // << " cross= " << xSection << G4endl; 136 // << " cross= " << xSection << G4endl; 153 return xSection; 137 return xSection; 154 } 138 } 155 139 156 //....oooOO0OOooo........oooOO0OOooo........oo 140 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 157 141 158 void G4KleinNishinaModel::SampleSecondaries( 142 void G4KleinNishinaModel::SampleSecondaries( 159 std::vector<G4Dyn << 143 std::vector<G4DynamicParticle*>* fvect, 160 const G4MaterialC << 144 const G4MaterialCutsCouple* couple, 161 const G4DynamicPa << 145 const G4DynamicParticle* aDynamicGamma, 162 G4double, << 146 G4double, 163 G4double) << 147 G4double) 164 { 148 { 165 // primary gamma 149 // primary gamma 166 G4double energy = aDynamicGamma->GetKineticE 150 G4double energy = aDynamicGamma->GetKineticEnergy(); 167 << 168 // do nothing below the threshold << 169 if(energy <= LowEnergyLimit()) { return; } << 170 << 171 G4ThreeVector direction = aDynamicGamma->Get 151 G4ThreeVector direction = aDynamicGamma->GetMomentumDirection(); 172 152 173 // select atom 153 // select atom 174 const G4Element* elm = SelectRandomAtom(coup 154 const G4Element* elm = SelectRandomAtom(couple, theGamma, energy); 175 155 176 // select shell first 156 // select shell first 177 G4int nShells = elm->GetNbOfAtomicShells(); 157 G4int nShells = elm->GetNbOfAtomicShells(); 178 if(nShells > (G4int)fProbabilities.size()) { 158 if(nShells > (G4int)fProbabilities.size()) { fProbabilities.resize(nShells); } 179 G4double totprob = 0.0; 159 G4double totprob = 0.0; 180 G4int i; 160 G4int i; 181 for(i=0; i<nShells; ++i) { 161 for(i=0; i<nShells; ++i) { 182 //G4double bindingEnergy = elm->GetAtomicS 162 //G4double bindingEnergy = elm->GetAtomicShell(i); 183 totprob += elm->GetNbOfShellElectrons(i); 163 totprob += elm->GetNbOfShellElectrons(i); 184 //totprob += elm->GetNbOfShellElectrons(i) 164 //totprob += elm->GetNbOfShellElectrons(i)/(bindingEnergy*bindingEnergy); 185 fProbabilities[i] = totprob; 165 fProbabilities[i] = totprob; 186 } 166 } >> 167 //if(totprob == 0.0) { return; } 187 168 188 // Loop on sampling 169 // Loop on sampling 189 static const G4int nlooplim = 1000; << 170 // const G4int nlooplim = 100; 190 G4int nloop = 0; << 171 //G4int nloop = 0; 191 172 192 G4double bindingEnergy, ePotEnergy, eKinEner 173 G4double bindingEnergy, ePotEnergy, eKinEnergy; 193 G4double gamEnergy0, gamEnergy1; 174 G4double gamEnergy0, gamEnergy1; 194 175 195 CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 176 //static const G4double eminus2 = 1.0 - exp(-2.0); 196 G4double rndm[4]; << 197 177 198 do { 178 do { 199 ++nloop; << 179 //++nloop; 200 << 180 G4double xprob = totprob*G4UniformRand(); 201 // 4 random numbers to select e- << 202 rndmEngineMod->flatArray(4, rndm); << 203 G4double xprob = totprob*rndm[0]; << 204 181 205 // select shell 182 // select shell 206 for(i=0; i<nShells; ++i) { if(xprob <= fPr 183 for(i=0; i<nShells; ++i) { if(xprob <= fProbabilities[i]) { break; } } 207 184 208 bindingEnergy = elm->GetAtomicShell(i); 185 bindingEnergy = elm->GetAtomicShell(i); >> 186 // ePotEnergy = bindingEnergy; >> 187 // gamEnergy0 = energy; 209 lv1.set(0.0,0.0,energy,energy); 188 lv1.set(0.0,0.0,energy,energy); 210 /* << 189 211 G4cout << "nShells= " << nShells << " i= " << 190 //G4cout << "nShells= " << nShells << " i= " << i 212 << " Egamma= " << energy << " Ebind= " << 191 // << " Egamma= " << energy << " Ebind= " << bindingEnergy 213 << G4endl; << 192 // << " Elim= " << limitEnergy 214 */ << 193 // << G4endl; >> 194 215 // for rest frame of the electron 195 // for rest frame of the electron 216 G4double x = -G4Log(rndm[1]); << 196 G4double x = -log(G4UniformRand()); 217 eKinEnergy = bindingEnergy*x; 197 eKinEnergy = bindingEnergy*x; 218 ePotEnergy = bindingEnergy*(1.0 + x); 198 ePotEnergy = bindingEnergy*(1.0 + x); 219 199 220 // for rest frame of the electron 200 // for rest frame of the electron 221 G4double eTotMomentum = sqrt(eKinEnergy*(e 201 G4double eTotMomentum = sqrt(eKinEnergy*(eKinEnergy + 2*electron_mass_c2)); 222 G4double phi = rndm[2]*twopi; << 202 G4double phi = G4UniformRand()*twopi; 223 G4double costet = 2*rndm[3] - 1; << 203 G4double costet = 2*G4UniformRand() - 1; 224 G4double sintet = sqrt((1 - costet)*(1 + c 204 G4double sintet = sqrt((1 - costet)*(1 + costet)); 225 lv2.set(eTotMomentum*sintet*cos(phi),eTotM 205 lv2.set(eTotMomentum*sintet*cos(phi),eTotMomentum*sintet*sin(phi), 226 eTotMomentum*costet,eKinEnergy + e << 206 eTotMomentum*costet,eKinEnergy + electron_mass_c2); 227 bst = lv2.boostVector(); 207 bst = lv2.boostVector(); 228 lv1.boost(-bst); 208 lv1.boost(-bst); 229 209 230 gamEnergy0 = lv1.e(); 210 gamEnergy0 = lv1.e(); 231 211 232 // In the rest frame of the electron 212 // In the rest frame of the electron 233 // The scattered gamma energy is sampled a 213 // The scattered gamma energy is sampled according to Klein-Nishina formula 234 // The random number techniques of Butcher 214 // The random number techniques of Butcher & Messel are used 235 // (Nuc Phys 20(1960),15). 215 // (Nuc Phys 20(1960),15). 236 G4double E0_m = gamEnergy0/electron_mass_c 216 G4double E0_m = gamEnergy0/electron_mass_c2; 237 217 238 //G4cout << "Nloop= "<< nloop << " Ecm(keV << 239 // 218 // 240 // sample the energy rate of the scattered 219 // sample the energy rate of the scattered gamma 241 // 220 // 242 221 243 G4double epsilon, epsilonsq, onecost, sint 222 G4double epsilon, epsilonsq, onecost, sint2, greject ; 244 223 245 G4double eps0 = 1./(1 + 2*E0_m); 224 G4double eps0 = 1./(1 + 2*E0_m); 246 G4double epsilon0sq = eps0*eps0; 225 G4double epsilon0sq = eps0*eps0; 247 G4double alpha1 = - G4Log(eps0); << 226 G4double alpha1 = - log(eps0); 248 G4double alpha2 = alpha1 + 0.5*(1 - ep << 227 G4double alpha2 = 0.5*(1 - epsilon0sq); 249 228 250 do { 229 do { 251 ++nloop; << 230 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) { 252 // false interaction if too many iterati << 231 epsilon = exp(-alpha1*G4UniformRand()); // epsilon0**r 253 if(nloop > nlooplim) { return; } << 232 epsilonsq = epsilon*epsilon; 254 << 255 // 3 random numbers to sample scattering << 256 rndmEngineMod->flatArray(3, rndm); << 257 << 258 if ( alpha1 > alpha2*rndm[0] ) { << 259 epsilon = G4Exp(-alpha1*rndm[1]); << 260 epsilonsq = epsilon*epsilon; << 261 233 262 } else { 234 } else { 263 epsilonsq = epsilon0sq + (1.- epsilon0 << 235 epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand(); 264 epsilon = sqrt(epsilonsq); << 236 epsilon = sqrt(epsilonsq); 265 } 237 } 266 238 267 onecost = (1.- epsilon)/(epsilon*E0_m); 239 onecost = (1.- epsilon)/(epsilon*E0_m); 268 sint2 = onecost*(2.-onecost); 240 sint2 = onecost*(2.-onecost); 269 greject = 1. - epsilon*sint2/(1.+ epsilo 241 greject = 1. - epsilon*sint2/(1.+ epsilonsq); 270 242 271 // Loop checking, 03-Aug-2015, Vladimir << 243 } while (greject < G4UniformRand()); 272 } while (greject < rndm[2]); << 273 gamEnergy1 = epsilon*gamEnergy0; 244 gamEnergy1 = epsilon*gamEnergy0; 274 245 275 // before scattering total 4-momentum in e 246 // before scattering total 4-momentum in e- system 276 lv2.set(0.0,0.0,0.0,electron_mass_c2); 247 lv2.set(0.0,0.0,0.0,electron_mass_c2); 277 lv2 += lv1; 248 lv2 += lv1; 278 249 279 // 250 // 280 // scattered gamma angles. ( Z - axis alon 251 // scattered gamma angles. ( Z - axis along the parent gamma) 281 // 252 // 282 if(sint2 < 0.0) { sint2 = 0.0; } 253 if(sint2 < 0.0) { sint2 = 0.0; } 283 costet = 1. - onecost; 254 costet = 1. - onecost; 284 sintet = sqrt(sint2); 255 sintet = sqrt(sint2); 285 phi = twopi * rndmEngineMod->flat(); << 256 phi = twopi * G4UniformRand(); 286 257 287 // e- recoil 258 // e- recoil 288 // 259 // 289 // in rest frame of the electron 260 // in rest frame of the electron 290 G4ThreeVector gamDir = lv1.vect().unit(); 261 G4ThreeVector gamDir = lv1.vect().unit(); 291 G4ThreeVector v = G4ThreeVector(sintet*cos 262 G4ThreeVector v = G4ThreeVector(sintet*cos(phi),sintet*sin(phi),costet); 292 v.rotateUz(gamDir); 263 v.rotateUz(gamDir); 293 lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(), 264 lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(),gamEnergy1*v.z(),gamEnergy1); 294 lv2 -= lv1; 265 lv2 -= lv1; 295 //G4cout<<"Egam(keV)= " << lv1.e()/keV << 266 //G4cout<<"Egam= "<<lv1.e()<<" Ee= "<< lv2.e()-electron_mass_c2 << G4endl; 296 // <<" Ee(keV)= " << (lv2.e()-ele << 297 lv2.boost(bst); 267 lv2.boost(bst); 298 eKinEnergy = lv2.e() - electron_mass_c2 - 268 eKinEnergy = lv2.e() - electron_mass_c2 - ePotEnergy; 299 //G4cout << "Nloop= " << nloop << " eKinEn << 269 //G4cout << "eKinEnergy= " << eKinEnergy << G4endl; 300 270 301 // Loop checking, 03-Aug-2015, Vladimir Iv << 302 } while ( eKinEnergy < 0.0 ); 271 } while ( eKinEnergy < 0.0 ); 303 272 304 // 273 // 305 // update G4VParticleChange for the scattere 274 // update G4VParticleChange for the scattered gamma 306 // 275 // 307 276 308 lv1.boost(bst); 277 lv1.boost(bst); 309 gamEnergy1 = lv1.e(); 278 gamEnergy1 = lv1.e(); 310 if(gamEnergy1 > lowestSecondaryEnergy) { << 279 if(gamEnergy1 > lowestGammaEnergy) { 311 G4ThreeVector gamDirection1 = lv1.vect().u 280 G4ThreeVector gamDirection1 = lv1.vect().unit(); 312 gamDirection1.rotateUz(direction); 281 gamDirection1.rotateUz(direction); 313 fParticleChange->ProposeMomentumDirection( 282 fParticleChange->ProposeMomentumDirection(gamDirection1); 314 } else { 283 } else { 315 fParticleChange->ProposeTrackStatus(fStopA 284 fParticleChange->ProposeTrackStatus(fStopAndKill); 316 gamEnergy1 = 0.0; 285 gamEnergy1 = 0.0; 317 } 286 } 318 fParticleChange->SetProposedKineticEnergy(ga 287 fParticleChange->SetProposedKineticEnergy(gamEnergy1); 319 288 320 // 289 // 321 // kinematic of the scattered electron 290 // kinematic of the scattered electron 322 // 291 // 323 292 324 if(eKinEnergy > lowestSecondaryEnergy) { << 293 if(eKinEnergy > lowestGammaEnergy) { 325 G4ThreeVector eDirection = lv2.vect().unit 294 G4ThreeVector eDirection = lv2.vect().unit(); 326 eDirection.rotateUz(direction); 295 eDirection.rotateUz(direction); 327 auto dp = new G4DynamicParticle(theElectro << 296 G4DynamicParticle* dp = >> 297 new G4DynamicParticle(theElectron,eDirection,eKinEnergy); 328 fvect->push_back(dp); 298 fvect->push_back(dp); 329 } else { eKinEnergy = 0.0; } 299 } else { eKinEnergy = 0.0; } 330 300 331 G4double edep = energy - gamEnergy1 - eKinEn 301 G4double edep = energy - gamEnergy1 - eKinEnergy; 332 G4double esec = 0.0; << 333 302 334 // sample deexcitation 303 // sample deexcitation 335 // 304 // 336 if(nullptr != fAtomDeexcitation) { << 305 if(fAtomDeexcitation) { 337 G4int index = couple->GetIndex(); 306 G4int index = couple->GetIndex(); 338 if(fAtomDeexcitation->CheckDeexcitationAct 307 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) { 339 G4int Z = elm->GetZasInt(); << 308 G4int Z = G4lrint(elm->GetZ()); 340 auto as = (G4AtomicShellEnumerator)(i); << 309 G4AtomicShellEnumerator as = G4AtomicShellEnumerator(i); 341 const G4AtomicShell* shell = fAtomDeexci 310 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as); 342 G4int nbefore = (G4int)fvect->size(); << 311 size_t nbefore = fvect->size(); 343 fAtomDeexcitation->GenerateParticles(fve 312 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index); 344 G4int nafter = (G4int)fvect->size(); << 313 size_t nafter = fvect->size(); 345 //G4cout << "N1= " << nbefore << " N2= << 314 if(nafter > nbefore) { 346 for (G4int j=nbefore; j<nafter; ++j) { << 315 for (size_t j=nbefore; j<nafter; ++j) { 347 G4double e = ((*fvect)[j])->GetKinetic << 316 edep -= ((*fvect)[j])->GetKineticEnergy(); 348 if(esec + e > edep) { << 317 } 349 // correct energy in order to have e << 350 e = edep - esec; << 351 ((*fvect)[j])->SetKineticEnergy(e); << 352 esec += e; << 353 /* << 354 G4cout << "### G4KleinNishinaModel << 355 << " Esec(eV)= " << esec/eV << 356 << " E["<< j << "](eV)= " < << 357 << " N= " << nafter << 358 << " Z= " << Z << " shell= << 359 << " Ebind(keV)= " << bind << 360 << " Eshell(keV)= " << she << 361 << G4endl; << 362 */ << 363 // delete the rest of secondaries (s << 364 for (G4int jj=nafter-1; jj>j; --jj) << 365 delete (*fvect)[jj]; << 366 fvect->pop_back(); << 367 } << 368 break; << 369 } << 370 esec += e; << 371 } 318 } 372 edep -= esec; << 373 } 319 } 374 } 320 } 375 if(std::abs(energy - gamEnergy1 - eKinEnergy << 376 G4cout << "### G4KleinNishinaModel dE(eV)= << 377 << (energy - gamEnergy1 - eKinEnerg << 378 << " shell= " << i << 379 << " E(keV)= " << energy/keV << 380 << " Ebind(keV)= " << bindingEnerg << 381 << " Eg(keV)= " << gamEnergy1/keV << 382 << " Ee(keV)= " << eKinEnergy/keV << 383 << " Esec(keV)= " << esec/keV << 384 << " Edep(keV)= " << edep/keV << 385 << G4endl; << 386 } << 387 // energy balance 321 // energy balance 388 if(edep > 0.0) { << 322 if(edep < 0.0) { edep = 0.0; } 389 fParticleChange->ProposeLocalEnergyDeposit << 323 fParticleChange->ProposeLocalEnergyDeposit(edep); 390 } << 391 } 324 } 392 325 393 //....oooOO0OOooo........oooOO0OOooo........oo 326 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 394 327 395 328