Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4KleinNishinaModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4KleinNishinaModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4KleinNishinaModel.cc (Version 9.4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4KleinNishinaModel.cc,v 1.4 2010/11/21 16:08:37 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-04 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4KleinNishinaModel              34 // File name:     G4KleinNishinaModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of G4KleinNishinaCompton
 35 //                                                 37 //
 36 // Creation date: 13.06.2010                       38 // Creation date: 13.06.2010
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications:
 39 //                                                 41 //
 40 // Class Description:                              42 // Class Description:
 41 //                                                 43 //
 42 // -------------------------------------------     44 // -------------------------------------------------------------------
 43 //                                                 45 //
 44 //....oooOO0OOooo........oooOO0OOooo........oo     46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 45 //....oooOO0OOooo........oooOO0OOooo........oo     47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 46                                                    48 
 47 #include "G4KleinNishinaModel.hh"                  49 #include "G4KleinNishinaModel.hh"
 48 #include "G4PhysicalConstants.hh"              << 
 49 #include "G4SystemOfUnits.hh"                  << 
 50 #include "G4Electron.hh"                           50 #include "G4Electron.hh"
 51 #include "G4Gamma.hh"                              51 #include "G4Gamma.hh"
 52 #include "Randomize.hh"                            52 #include "Randomize.hh"
 53 #include "G4RandomDirection.hh"                    53 #include "G4RandomDirection.hh"
 54 #include "G4DataVector.hh"                         54 #include "G4DataVector.hh"
 55 #include "G4ParticleChangeForGamma.hh"             55 #include "G4ParticleChangeForGamma.hh"
 56 #include "G4VAtomDeexcitation.hh"                  56 #include "G4VAtomDeexcitation.hh"
 57 #include "G4AtomicShells.hh"                   << 
 58 #include "G4LossTableManager.hh"                   57 #include "G4LossTableManager.hh"
 59 #include "G4Log.hh"                            << 
 60 #include "G4Exp.hh"                            << 
 61                                                    58 
 62 //....oooOO0OOooo........oooOO0OOooo........oo     59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 63                                                    60 
 64 using namespace std;                               61 using namespace std;
 65                                                    62 
 66 G4KleinNishinaModel::G4KleinNishinaModel(const     63 G4KleinNishinaModel::G4KleinNishinaModel(const G4String& nam)
 67   : G4VEmModel(nam),                           <<  64   : G4VEmModel(nam),isInitialized(false)
 68     lv1(0.,0.,0.,0.),                          << 
 69     lv2(0.,0.,0.,0.),                          << 
 70     bst(0.,0.,0.)                              << 
 71 {                                                  65 {
 72   theGamma = G4Gamma::Gamma();                     66   theGamma = G4Gamma::Gamma();
 73   theElectron = G4Electron::Electron();            67   theElectron = G4Electron::Electron();
 74   lowestSecondaryEnergy = 10*eV;               <<  68   lowestGammaEnergy = 1.0*eV;
 75   limitFactor       = 4;                       << 
 76   fProbabilities.resize(9,0.0);                    69   fProbabilities.resize(9,0.0);
 77   SetDeexcitationFlag(true);                   << 
 78   fParticleChange = nullptr;                   << 
 79   fAtomDeexcitation = nullptr;                 << 
 80 }                                                  70 }
 81                                                    71 
 82 //....oooOO0OOooo........oooOO0OOooo........oo     72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 83                                                    73 
 84 G4KleinNishinaModel::~G4KleinNishinaModel() =  <<  74 G4KleinNishinaModel::~G4KleinNishinaModel()
                                                   >>  75 {}
 85                                                    76 
 86 //....oooOO0OOooo........oooOO0OOooo........oo     77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 87                                                    78 
 88 void G4KleinNishinaModel::Initialise(const G4P     79 void G4KleinNishinaModel::Initialise(const G4ParticleDefinition* p,
 89                                      const G4D <<  80              const G4DataVector& cuts)
 90 {                                                  81 {
 91   fAtomDeexcitation = G4LossTableManager::Inst     82   fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
 92   if(IsMaster()) { InitialiseElementSelectors( <<  83   InitialiseElementSelectors(p, cuts);
 93   if(nullptr == fParticleChange) {             << 
 94     fParticleChange = GetParticleChangeForGamm << 
 95   }                                            << 
 96 }                                              << 
 97                                                << 
 98 //....oooOO0OOooo........oooOO0OOooo........oo << 
 99                                                    84 
100 void G4KleinNishinaModel::InitialiseLocal(cons <<  85   if (isInitialized) { return; }
101                                           G4VE <<  86   fParticleChange = GetParticleChangeForGamma();
102 {                                              <<  87   isInitialized = true;
103   SetElementSelectors(masterModel->GetElementS << 
104 }                                                  88 }
105                                                    89 
106 //....oooOO0OOooo........oooOO0OOooo........oo     90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107                                                    91 
108 G4double                                           92 G4double 
109 G4KleinNishinaModel::ComputeCrossSectionPerAto     93 G4KleinNishinaModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
110                                                <<  94             G4double GammaEnergy,
111                                                <<  95             G4double Z, G4double,
112                                                <<  96             G4double, G4double)
113 {                                                  97 {
114   G4double xSection = 0.0 ;                    <<  98   G4double CrossSection = 0.0 ;
115   if (gammaEnergy <= LowEnergyLimit()) { retur <<  99   if ( Z < 0.9999 || GammaEnergy < 0.1*keV) { return CrossSection; }
116                                                   100 
117   static const G4double a = 20.0 , b = 230.0 ,    101   static const G4double a = 20.0 , b = 230.0 , c = 440.0;
118                                                << 
119 static const G4double                          << 
120   d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLH << 
121   d3= 6.7527   *CLHEP::barn, d4=-1.9798e+1*CLH << 
122   e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLH << 
123   e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLH << 
124   f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLH << 
125   f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLH << 
126                                                   102   
                                                   >> 103   static const G4double
                                                   >> 104     d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527   *barn, d4=-1.9798e+1*barn,
                                                   >> 105     e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
                                                   >> 106     f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;
                                                   >> 107      
127   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z =    108   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
128            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z =    109            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
129                                                   110 
130   G4double T0  = 15.0*keV;                        111   G4double T0  = 15.0*keV; 
131   if (Z < 1.5) { T0 = 40.0*keV; }                 112   if (Z < 1.5) { T0 = 40.0*keV; } 
132                                                   113 
133   G4double X   = max(gammaEnergy, T0) / electr << 114   G4double X   = max(GammaEnergy, T0) / electron_mass_c2;
134   xSection = p1Z*G4Log(1.+2.*X)/X              << 115   CrossSection = p1Z*std::log(1.+2.*X)/X
135                + (p2Z + p3Z*X + p4Z*X*X)/(1. +    116                + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
136                                                << 117     
137   //  modification for low energy. (special ca    118   //  modification for low energy. (special case for Hydrogen)
138   static const G4double dT0 = keV;             << 119   if (GammaEnergy < T0) {
139   if (gammaEnergy < T0) {                      << 120     G4double dT0 = keV;
140     X = (T0+dT0) / electron_mass_c2 ;             121     X = (T0+dT0) / electron_mass_c2 ;
141     G4double sigma = p1Z*G4Log(1.+2*X)/X       << 122     G4double sigma = p1Z*log(1.+2*X)/X
142                     + (p2Z + p3Z*X + p4Z*X*X)/    123                     + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
143     G4double   c1 = -T0*(sigma-xSection)/(xSec << 124     G4double   c1 = -T0*(sigma-CrossSection)/(CrossSection*dT0);             
144     G4double   c2 = 0.150;                        125     G4double   c2 = 0.150; 
145     if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); << 126     if (Z > 1.5) { c2 = 0.375-0.0556*log(Z); }
146     G4double    y = G4Log(gammaEnergy/T0);     << 127     G4double    y = log(GammaEnergy/T0);
147     xSection *= G4Exp(-y*(c1+c2*y));           << 128     CrossSection *= exp(-y*(c1+c2*y));          
148   }                                               129   }
149                                                << 
150   if(xSection < 0.0) { xSection = 0.0; }       << 
151   //  G4cout << "e= " << GammaEnergy << " Z= "    130   //  G4cout << "e= " << GammaEnergy << " Z= " << Z 
152   //  << " cross= " << xSection << G4endl;     << 131   //  << " cross= " << CrossSection << G4endl;
153   return xSection;                             << 132   return CrossSection;
154 }                                                 133 }
155                                                   134 
156 //....oooOO0OOooo........oooOO0OOooo........oo    135 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
157                                                   136 
158 void G4KleinNishinaModel::SampleSecondaries(      137 void G4KleinNishinaModel::SampleSecondaries(
159                              std::vector<G4Dyn << 138            std::vector<G4DynamicParticle*>* fvect,
160                              const G4MaterialC << 139            const G4MaterialCutsCouple* couple,
161                              const G4DynamicPa << 140            const G4DynamicParticle* aDynamicGamma,
162                              G4double,         << 141            G4double,
163                              G4double)         << 142            G4double)
164 {                                                 143 {
165   // primary gamma                             << 
166   G4double energy = aDynamicGamma->GetKineticE    144   G4double energy = aDynamicGamma->GetKineticEnergy();
167                                                << 
168   // do nothing below the threshold            << 
169   if(energy <= LowEnergyLimit()) { return; }   << 
170                                                << 
171   G4ThreeVector direction = aDynamicGamma->Get    145   G4ThreeVector direction = aDynamicGamma->GetMomentumDirection();
172                                                   146 
173   // select atom                                  147   // select atom
174   const G4Element* elm = SelectRandomAtom(coup    148   const G4Element* elm = SelectRandomAtom(couple, theGamma, energy);
175                                                   149 
176   // select shell first                           150   // select shell first
                                                   >> 151   G4int Z = (G4int)elm->GetZ();
177   G4int nShells = elm->GetNbOfAtomicShells();     152   G4int nShells = elm->GetNbOfAtomicShells();
178   if(nShells > (G4int)fProbabilities.size()) {    153   if(nShells > (G4int)fProbabilities.size()) { fProbabilities.resize(nShells); }
179   G4double totprob = 0.0;                         154   G4double totprob = 0.0;
180   G4int i;                                     << 155   G4int i = 0;
181   for(i=0; i<nShells; ++i) {                   << 156   for(; i<nShells; ++i) {
182     //G4double bindingEnergy = elm->GetAtomicS << 157     G4double prob = 0.0;
183     totprob += elm->GetNbOfShellElectrons(i);  << 158     if(energy > elm->GetAtomicShell(i)) { 
184     //totprob += elm->GetNbOfShellElectrons(i) << 159       prob = (G4double)elm->GetNbOfShellElectrons(i);
                                                   >> 160     }
                                                   >> 161     totprob += prob;
185     fProbabilities[i] = totprob;                  162     fProbabilities[i] = totprob; 
186   }                                               163   }
                                                   >> 164   if(totprob == 0.0) { return; }
187                                                   165 
188   // Loop on sampling                          << 166   G4LorentzVector lv1, lv2, lv3;
189   static const G4int nlooplim = 1000;          << 167   G4LorentzVector lv0(energy*direction.x(),energy*direction.y(),
190   G4int nloop = 0;                             << 168           energy*direction.z(),energy);
191                                                << 169   G4double eKinEnergy = 0.0;
192   G4double bindingEnergy, ePotEnergy, eKinEner << 170   G4double gamEnergy1 = 0.0;
193   G4double gamEnergy0, gamEnergy1;             << 
194                                                << 
195   CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 
196   G4double rndm[4];                            << 
197                                                   171 
                                                   >> 172   // Loop on sampling
                                                   >> 173   G4double bindingEnergy;
198   do {                                            174   do {
199     ++nloop;                                   << 175     G4double xprob = totprob*G4UniformRand();
200                                                   176 
201     // 4 random numbers to select e-           << 177     for(i=0; i<nShells; ++i) { if(xprob <= fProbabilities[i]) {break;} }
202     rndmEngineMod->flatArray(4, rndm);         << 178     if( i == nShells ) { return; }
203     G4double xprob = totprob*rndm[0];          << 
204                                                << 
205     // select shell                            << 
206     for(i=0; i<nShells; ++i) { if(xprob <= fPr << 
207                                                   179    
208     bindingEnergy = elm->GetAtomicShell(i);    << 180     bindingEnergy  = elm->GetAtomicShell(i);
209     lv1.set(0.0,0.0,energy,energy);            << 181     G4double tkin =  bindingEnergy*0.5;
210     /*                                         << 182     G4double eEnergy = tkin + electron_mass_c2;
211     G4cout << "nShells= " << nShells << " i= " << 183     G4double eTotMomentum = sqrt(tkin*(tkin + electron_mass_c2*2));
212        << " Egamma= " << energy << " Ebind= "  << 184     G4ThreeVector eDir = G4RandomDirection();
213        << G4endl;                              << 185     lv1 = lv0;
214     */                                         << 186     lv2.set(eTotMomentum*eDir.x(),eTotMomentum*eDir.y(),
215     // for rest frame of the electron          << 187       eTotMomentum*eDir.z(),eEnergy);
216     G4double x = -G4Log(rndm[1]);              << 188     G4ThreeVector bst = lv2.boostVector();
217     eKinEnergy = bindingEnergy*x;              << 
218     ePotEnergy = bindingEnergy*(1.0 + x);      << 
219                                                << 
220     // for rest frame of the electron          << 
221     G4double eTotMomentum = sqrt(eKinEnergy*(e << 
222     G4double phi = rndm[2]*twopi;              << 
223     G4double costet = 2*rndm[3] - 1;           << 
224     G4double sintet = sqrt((1 - costet)*(1 + c << 
225     lv2.set(eTotMomentum*sintet*cos(phi),eTotM << 
226             eTotMomentum*costet,eKinEnergy + e << 
227     bst = lv2.boostVector();                   << 
228     lv1.boost(-bst);                              189     lv1.boost(-bst);
229                                                   190 
230     gamEnergy0 = lv1.e();                      << 191     // In the rest frame of an electron
231                                                << 192     // The scattered gamma energy is sampled according to Klein - Nishina formula.
232     // In the rest frame of the electron       << 
233     // The scattered gamma energy is sampled a << 
234     // The random number techniques of Butcher    193     // The random number techniques of Butcher & Messel are used 
235     // (Nuc Phys 20(1960),15).                 << 194     // (Nuc Phys 20(1960),15).
236     G4double E0_m = gamEnergy0/electron_mass_c << 195  
                                                   >> 196     G4double gamEnergy0 = lv1.e();
                                                   >> 197     G4double E0_m = gamEnergy0 / electron_mass_c2 ;
                                                   >> 198 
                                                   >> 199     G4ThreeVector gamDirection0 = (lv1.vect()).unit();
237                                                   200 
238     //G4cout << "Nloop= "<< nloop << " Ecm(keV << 
239     //                                            201     //
240     // sample the energy rate of the scattered    202     // sample the energy rate of the scattered gamma 
241     //                                            203     //
242                                                   204 
243     G4double epsilon, epsilonsq, onecost, sint    205     G4double epsilon, epsilonsq, onecost, sint2, greject ;
244                                                   206 
245     G4double eps0       = 1./(1 + 2*E0_m);     << 207     G4double epsilon0   = 1./(1. + 2.*E0_m);
246     G4double epsilon0sq = eps0*eps0;           << 208     G4double epsilon0sq = epsilon0*epsilon0;
247     G4double alpha1     = - G4Log(eps0);       << 209     G4double alpha1     = - log(epsilon0);
248     G4double alpha2     = alpha1 + 0.5*(1 - ep << 210     G4double alpha2     = 0.5*(1.- epsilon0sq);
249                                                   211 
250     do {                                          212     do {
251       ++nloop;                                 << 213       if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) {
252       // false interaction if too many iterati << 214   epsilon   = exp(-alpha1*G4UniformRand());   // epsilon0**r
253       if(nloop > nlooplim) { return; }         << 215   epsilonsq = epsilon*epsilon; 
254                                                << 
255       // 3 random numbers to sample scattering << 
256       rndmEngineMod->flatArray(3, rndm);       << 
257                                                << 
258       if ( alpha1 > alpha2*rndm[0] ) {         << 
259         epsilon   = G4Exp(-alpha1*rndm[1]);    << 
260         epsilonsq = epsilon*epsilon;           << 
261                                                   216 
262       } else {                                    217       } else {
263         epsilonsq = epsilon0sq + (1.- epsilon0 << 218   epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
264         epsilon   = sqrt(epsilonsq);           << 219   epsilon   = sqrt(epsilonsq);
265       }                                        << 220       };
266                                                   221 
267       onecost = (1.- epsilon)/(epsilon*E0_m);     222       onecost = (1.- epsilon)/(epsilon*E0_m);
268       sint2   = onecost*(2.-onecost);             223       sint2   = onecost*(2.-onecost);
269       greject = 1. - epsilon*sint2/(1.+ epsilo    224       greject = 1. - epsilon*sint2/(1.+ epsilonsq);
270                                                   225 
271       // Loop checking, 03-Aug-2015, Vladimir  << 226     } while (greject < G4UniformRand());
272     } while (greject < rndm[2]);               << 
273     gamEnergy1 = epsilon*gamEnergy0;           << 
274                                                << 
275     // before scattering total 4-momentum in e << 
276     lv2.set(0.0,0.0,0.0,electron_mass_c2);     << 
277     lv2 += lv1;                                << 
278                                                   227  
279     //                                            228     //
280     // scattered gamma angles. ( Z - axis alon    229     // scattered gamma angles. ( Z - axis along the parent gamma)
281     //                                            230     //
282     if(sint2 < 0.0) { sint2 = 0.0; }           << 
283     costet = 1. - onecost;                     << 
284     sintet = sqrt(sint2);                      << 
285     phi  = twopi * rndmEngineMod->flat();      << 
286                                                   231 
287     // e- recoil                               << 232     G4double cosTeta = 1. - onecost; 
                                                   >> 233     G4double sinTeta = sqrt (sint2);
                                                   >> 234     G4double Phi     = twopi * G4UniformRand();
                                                   >> 235     G4double dirx = sinTeta*cos(Phi), diry = sinTeta*sin(Phi), dirz = cosTeta;
                                                   >> 236 
288     //                                            237     //
289     // in  rest frame of the electron          << 238     // update G4VParticleChange for the scattered gamma
290     G4ThreeVector gamDir = lv1.vect().unit();  << 239     //
291     G4ThreeVector v = G4ThreeVector(sintet*cos << 240    
292     v.rotateUz(gamDir);                        << 241     G4ThreeVector gamDirection1 ( dirx,diry,dirz );
293     lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(), << 242     gamDirection1.rotateUz(gamDirection0);
                                                   >> 243     gamEnergy1 = epsilon*gamEnergy0;
                                                   >> 244 
                                                   >> 245     // before scattering
                                                   >> 246     lv2.set(0.0,0.0,0.0,electron_mass_c2);
                                                   >> 247     lv2 += lv1;
                                                   >> 248  
                                                   >> 249     // after scattering
                                                   >> 250     lv1.set(gamEnergy1*gamDirection1.x(),gamEnergy1*gamDirection1.y(),
                                                   >> 251       gamEnergy1*gamDirection1.z(),gamEnergy1);
294     lv2 -= lv1;                                   252     lv2 -= lv1;
295     //G4cout<<"Egam(keV)= " << lv1.e()/keV     << 
296     //          <<" Ee(keV)= " << (lv2.e()-ele << 
297     lv2.boost(bst);                               253     lv2.boost(bst);
298     eKinEnergy = lv2.e() - electron_mass_c2 -  << 254     lv1.boost(bst);
299     //G4cout << "Nloop= " << nloop << " eKinEn << 255     eKinEnergy = lv2.e() - electron_mass_c2 - bindingEnergy;
300                                                << 
301     // Loop checking, 03-Aug-2015, Vladimir Iv << 
302   } while ( eKinEnergy < 0.0 );                   256   } while ( eKinEnergy < 0.0 );
303                                                   257 
304   //                                           << 258   // gamma kinematics
305   // update G4VParticleChange for the scattere << 
306   //                                           << 
307                                                << 
308   lv1.boost(bst);                              << 
309   gamEnergy1 = lv1.e();                           259   gamEnergy1 = lv1.e();
310   if(gamEnergy1 > lowestSecondaryEnergy) {     << 260   G4double edep = bindingEnergy;
311     G4ThreeVector gamDirection1 = lv1.vect().u << 261   if(gamEnergy1 > lowestGammaEnergy) {
312     gamDirection1.rotateUz(direction);         << 262     fParticleChange->SetProposedKineticEnergy(gamEnergy1);
313     fParticleChange->ProposeMomentumDirection( << 263     fParticleChange->ProposeMomentumDirection((lv1.vect()).unit());
314   } else {                                        264   } else { 
315     fParticleChange->ProposeTrackStatus(fStopA    265     fParticleChange->ProposeTrackStatus(fStopAndKill);
316     gamEnergy1 = 0.0;                          << 266     fParticleChange->SetProposedKineticEnergy(0.0);
                                                   >> 267     edep += gamEnergy1;
317   }                                               268   }
318   fParticleChange->SetProposedKineticEnergy(ga << 
319                                                << 
320   //                                              269   //
321   // kinematic of the scattered electron          270   // kinematic of the scattered electron
322   //                                              271   //
323                                                << 272   if(eKinEnergy > DBL_MIN) {
324   if(eKinEnergy > lowestSecondaryEnergy) {     << 273     G4ThreeVector eDirection = (lv2.vect()).unit();
325     G4ThreeVector eDirection = lv2.vect().unit << 274     G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
326     eDirection.rotateUz(direction);            << 
327     auto dp = new G4DynamicParticle(theElectro << 
328     fvect->push_back(dp);                         275     fvect->push_back(dp);
329   } else { eKinEnergy = 0.0; }                 << 276   }
330                                                << 
331   G4double edep = energy - gamEnergy1 - eKinEn << 
332   G4double esec = 0.0;                         << 
333                                                << 
334   // sample deexcitation                          277   // sample deexcitation
335   //                                              278   //
336   if(nullptr != fAtomDeexcitation) {           << 279   if(fAtomDeexcitation) {
337     G4int index = couple->GetIndex();             280     G4int index = couple->GetIndex();
338     if(fAtomDeexcitation->CheckDeexcitationAct    281     if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
339       G4int Z = elm->GetZasInt();              << 282       G4AtomicShellEnumerator as = G4AtomicShellEnumerator(i);
340       auto as = (G4AtomicShellEnumerator)(i);  << 283       const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);    
341       const G4AtomicShell* shell = fAtomDeexci << 284       size_t nbefore = fvect->size();
342       G4int nbefore = (G4int)fvect->size();    << 
343       fAtomDeexcitation->GenerateParticles(fve    285       fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
344       G4int nafter = (G4int)fvect->size();     << 286       size_t nafter = fvect->size();
345       //G4cout << "N1= " << nbefore << "  N2=  << 287       if(nafter > nbefore) {
346       for (G4int j=nbefore; j<nafter; ++j) {   << 288   for (size_t i=nbefore; i<nafter; ++i) {
347         G4double e = ((*fvect)[j])->GetKinetic << 289     edep -= ((*fvect)[i])->GetKineticEnergy();
348         if(esec + e > edep) {                  << 290   } 
349           // correct energy in order to have e << 
350           e = edep - esec;                     << 
351           ((*fvect)[j])->SetKineticEnergy(e);  << 
352           esec += e;                           << 
353           /*                                   << 
354             G4cout << "### G4KleinNishinaModel << 
355                    << " Esec(eV)= " << esec/eV << 
356                    << " E["<< j << "](eV)= " < << 
357                    << " N= " << nafter         << 
358                    << " Z= " << Z << " shell=  << 
359                    << "  Ebind(keV)= " << bind << 
360                    << "  Eshell(keV)= " << she << 
361                    << G4endl;                  << 
362           */                                   << 
363           // delete the rest of secondaries (s << 
364           for (G4int jj=nafter-1; jj>j; --jj)  << 
365             delete (*fvect)[jj];               << 
366             fvect->pop_back();                 << 
367           }                                    << 
368           break;                               << 
369         }                                      << 
370         esec += e;                             << 
371       }                                           291       }
372       edep -= esec;                            << 
373     }                                             292     }
374   }                                               293   }
375   if(std::abs(energy - gamEnergy1 - eKinEnergy << 
376     G4cout << "### G4KleinNishinaModel dE(eV)= << 
377            << (energy - gamEnergy1 - eKinEnerg << 
378            << " shell= " << i                  << 
379            << "  E(keV)= " << energy/keV       << 
380            << "  Ebind(keV)= " << bindingEnerg << 
381            << "  Eg(keV)= " << gamEnergy1/keV  << 
382            << "  Ee(keV)= " << eKinEnergy/keV  << 
383            << "  Esec(keV)= " << esec/keV      << 
384            << "  Edep(keV)= " << edep/keV      << 
385            << G4endl;                          << 
386   }                                            << 
387   // energy balance                               294   // energy balance
388   if(edep > 0.0) {                             << 295   fParticleChange->ProposeLocalEnergyDeposit(edep);
389     fParticleChange->ProposeLocalEnergyDeposit << 
390   }                                            << 
391 }                                                 296 }
392                                                   297 
393 //....oooOO0OOooo........oooOO0OOooo........oo    298 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
394                                                   299 
395                                                   300