Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4KleinNishinaModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4KleinNishinaModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4KleinNishinaModel.cc (Version 10.0.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4KleinNishinaModel.cc 74309 2013-10-03 06:42:30Z gcosmo $
 26 //                                                 27 //
 27 // -------------------------------------------     28 // -------------------------------------------------------------------
 28 //                                                 29 //
 29 // GEANT4 Class file                               30 // GEANT4 Class file
 30 //                                                 31 //
 31 //                                                 32 //
 32 // File name:     G4KleinNishinaModel              33 // File name:     G4KleinNishinaModel
 33 //                                                 34 //
 34 // Author:        Vladimir Ivanchenko on base      35 // Author:        Vladimir Ivanchenko on base of G4KleinNishinaCompton
 35 //                                                 36 //
 36 // Creation date: 13.06.2010                       37 // Creation date: 13.06.2010
 37 //                                                 38 //
 38 // Modifications:                                  39 // Modifications:
 39 //                                                 40 //
 40 // Class Description:                              41 // Class Description:
 41 //                                                 42 //
 42 // -------------------------------------------     43 // -------------------------------------------------------------------
 43 //                                                 44 //
 44 //....oooOO0OOooo........oooOO0OOooo........oo     45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 45 //....oooOO0OOooo........oooOO0OOooo........oo     46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 46                                                    47 
 47 #include "G4KleinNishinaModel.hh"                  48 #include "G4KleinNishinaModel.hh"
 48 #include "G4PhysicalConstants.hh"                  49 #include "G4PhysicalConstants.hh"
 49 #include "G4SystemOfUnits.hh"                      50 #include "G4SystemOfUnits.hh"
 50 #include "G4Electron.hh"                           51 #include "G4Electron.hh"
 51 #include "G4Gamma.hh"                              52 #include "G4Gamma.hh"
 52 #include "Randomize.hh"                            53 #include "Randomize.hh"
 53 #include "G4RandomDirection.hh"                    54 #include "G4RandomDirection.hh"
 54 #include "G4DataVector.hh"                         55 #include "G4DataVector.hh"
 55 #include "G4ParticleChangeForGamma.hh"             56 #include "G4ParticleChangeForGamma.hh"
 56 #include "G4VAtomDeexcitation.hh"                  57 #include "G4VAtomDeexcitation.hh"
 57 #include "G4AtomicShells.hh"                       58 #include "G4AtomicShells.hh"
 58 #include "G4LossTableManager.hh"                   59 #include "G4LossTableManager.hh"
 59 #include "G4Log.hh"                                60 #include "G4Log.hh"
 60 #include "G4Exp.hh"                                61 #include "G4Exp.hh"
 61                                                    62 
 62 //....oooOO0OOooo........oooOO0OOooo........oo     63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 63                                                    64 
 64 using namespace std;                               65 using namespace std;
 65                                                    66 
                                                   >>  67 static const G4double
                                                   >>  68     d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527   *barn, d4=-1.9798e+1*barn,
                                                   >>  69     e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
                                                   >>  70     f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;     
                                                   >>  71 
 66 G4KleinNishinaModel::G4KleinNishinaModel(const     72 G4KleinNishinaModel::G4KleinNishinaModel(const G4String& nam)
 67   : G4VEmModel(nam),                           <<  73   : G4VEmModel(nam)
 68     lv1(0.,0.,0.,0.),                          << 
 69     lv2(0.,0.,0.,0.),                          << 
 70     bst(0.,0.,0.)                              << 
 71 {                                                  74 {
 72   theGamma = G4Gamma::Gamma();                     75   theGamma = G4Gamma::Gamma();
 73   theElectron = G4Electron::Electron();            76   theElectron = G4Electron::Electron();
 74   lowestSecondaryEnergy = 10*eV;               <<  77   lowestGammaEnergy = 1.0*eV;
 75   limitFactor       = 4;                           78   limitFactor       = 4;
 76   fProbabilities.resize(9,0.0);                    79   fProbabilities.resize(9,0.0);
 77   SetDeexcitationFlag(true);                       80   SetDeexcitationFlag(true);
 78   fParticleChange = nullptr;                   <<  81   fParticleChange = 0;
 79   fAtomDeexcitation = nullptr;                 <<  82   fAtomDeexcitation = 0;
 80 }                                                  83 }
 81                                                    84 
 82 //....oooOO0OOooo........oooOO0OOooo........oo     85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 83                                                    86 
 84 G4KleinNishinaModel::~G4KleinNishinaModel() =  <<  87 G4KleinNishinaModel::~G4KleinNishinaModel()
                                                   >>  88 {}
 85                                                    89 
 86 //....oooOO0OOooo........oooOO0OOooo........oo     90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 87                                                    91 
 88 void G4KleinNishinaModel::Initialise(const G4P     92 void G4KleinNishinaModel::Initialise(const G4ParticleDefinition* p,
 89                                      const G4D <<  93              const G4DataVector& cuts)
 90 {                                                  94 {
 91   fAtomDeexcitation = G4LossTableManager::Inst     95   fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
 92   if(IsMaster()) { InitialiseElementSelectors(     96   if(IsMaster()) { InitialiseElementSelectors(p, cuts); }
 93   if(nullptr == fParticleChange) {             <<  97   if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); }
 94     fParticleChange = GetParticleChangeForGamm << 
 95   }                                            << 
 96 }                                                  98 }
 97                                                    99 
 98 //....oooOO0OOooo........oooOO0OOooo........oo    100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 99                                                   101 
100 void G4KleinNishinaModel::InitialiseLocal(cons    102 void G4KleinNishinaModel::InitialiseLocal(const G4ParticleDefinition*,
101                                           G4VE << 103             G4VEmModel* masterModel)
102 {                                                 104 {
103   SetElementSelectors(masterModel->GetElementS    105   SetElementSelectors(masterModel->GetElementSelectors());
104 }                                                 106 }
105                                                   107 
106 //....oooOO0OOooo........oooOO0OOooo........oo    108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107                                                   109 
108 G4double                                          110 G4double 
109 G4KleinNishinaModel::ComputeCrossSectionPerAto    111 G4KleinNishinaModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
110                                                << 112             G4double GammaEnergy,
111                                                << 113             G4double Z, G4double,
112                                                << 114             G4double, G4double)
113 {                                                 115 {
114   G4double xSection = 0.0 ;                       116   G4double xSection = 0.0 ;
115   if (gammaEnergy <= LowEnergyLimit()) { retur << 117   if ( Z < 0.9999 || GammaEnergy < 0.1*keV) { return xSection; }
116                                                   118 
117   static const G4double a = 20.0 , b = 230.0 ,    119   static const G4double a = 20.0 , b = 230.0 , c = 440.0;
118                                                << 
119 static const G4double                          << 
120   d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLH << 
121   d3= 6.7527   *CLHEP::barn, d4=-1.9798e+1*CLH << 
122   e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLH << 
123   e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLH << 
124   f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLH << 
125   f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLH << 
126                                                   120   
127   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z =    121   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
128            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z =    122            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
129                                                   123 
130   G4double T0  = 15.0*keV;                        124   G4double T0  = 15.0*keV; 
131   if (Z < 1.5) { T0 = 40.0*keV; }                 125   if (Z < 1.5) { T0 = 40.0*keV; } 
132                                                   126 
133   G4double X   = max(gammaEnergy, T0) / electr << 127   G4double X   = max(GammaEnergy, T0) / electron_mass_c2;
134   xSection = p1Z*G4Log(1.+2.*X)/X                 128   xSection = p1Z*G4Log(1.+2.*X)/X
135                + (p2Z + p3Z*X + p4Z*X*X)/(1. +    129                + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
136                                                << 130     
137   //  modification for low energy. (special ca    131   //  modification for low energy. (special case for Hydrogen)
138   static const G4double dT0 = keV;             << 132   if (GammaEnergy < T0) {
139   if (gammaEnergy < T0) {                      << 133     G4double dT0 = keV;
140     X = (T0+dT0) / electron_mass_c2 ;             134     X = (T0+dT0) / electron_mass_c2 ;
141     G4double sigma = p1Z*G4Log(1.+2*X)/X          135     G4double sigma = p1Z*G4Log(1.+2*X)/X
142                     + (p2Z + p3Z*X + p4Z*X*X)/    136                     + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
143     G4double   c1 = -T0*(sigma-xSection)/(xSec    137     G4double   c1 = -T0*(sigma-xSection)/(xSection*dT0);             
144     G4double   c2 = 0.150;                        138     G4double   c2 = 0.150; 
145     if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z);    139     if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); }
146     G4double    y = G4Log(gammaEnergy/T0);     << 140     G4double    y = G4Log(GammaEnergy/T0);
147     xSection *= G4Exp(-y*(c1+c2*y));              141     xSection *= G4Exp(-y*(c1+c2*y));          
148   }                                               142   }
149                                                   143 
150   if(xSection < 0.0) { xSection = 0.0; }          144   if(xSection < 0.0) { xSection = 0.0; }
151   //  G4cout << "e= " << GammaEnergy << " Z= "    145   //  G4cout << "e= " << GammaEnergy << " Z= " << Z 
152   //  << " cross= " << xSection << G4endl;        146   //  << " cross= " << xSection << G4endl;
153   return xSection;                                147   return xSection;
154 }                                                 148 }
155                                                   149 
156 //....oooOO0OOooo........oooOO0OOooo........oo    150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
157                                                   151 
158 void G4KleinNishinaModel::SampleSecondaries(      152 void G4KleinNishinaModel::SampleSecondaries(
159                              std::vector<G4Dyn << 153            std::vector<G4DynamicParticle*>* fvect,
160                              const G4MaterialC << 154            const G4MaterialCutsCouple* couple,
161                              const G4DynamicPa << 155            const G4DynamicParticle* aDynamicGamma,
162                              G4double,         << 156            G4double,
163                              G4double)         << 157            G4double)
164 {                                                 158 {
165   // primary gamma                                159   // primary gamma
166   G4double energy = aDynamicGamma->GetKineticE    160   G4double energy = aDynamicGamma->GetKineticEnergy();
167                                                << 
168   // do nothing below the threshold            << 
169   if(energy <= LowEnergyLimit()) { return; }   << 
170                                                << 
171   G4ThreeVector direction = aDynamicGamma->Get    161   G4ThreeVector direction = aDynamicGamma->GetMomentumDirection();
172                                                   162 
173   // select atom                                  163   // select atom
174   const G4Element* elm = SelectRandomAtom(coup    164   const G4Element* elm = SelectRandomAtom(couple, theGamma, energy);
175                                                   165 
176   // select shell first                           166   // select shell first
177   G4int nShells = elm->GetNbOfAtomicShells();     167   G4int nShells = elm->GetNbOfAtomicShells();
178   if(nShells > (G4int)fProbabilities.size()) {    168   if(nShells > (G4int)fProbabilities.size()) { fProbabilities.resize(nShells); }
179   G4double totprob = 0.0;                         169   G4double totprob = 0.0;
180   G4int i;                                        170   G4int i;
181   for(i=0; i<nShells; ++i) {                      171   for(i=0; i<nShells; ++i) {
182     //G4double bindingEnergy = elm->GetAtomicS    172     //G4double bindingEnergy = elm->GetAtomicShell(i);
183     totprob += elm->GetNbOfShellElectrons(i);     173     totprob += elm->GetNbOfShellElectrons(i);
184     //totprob += elm->GetNbOfShellElectrons(i)    174     //totprob += elm->GetNbOfShellElectrons(i)/(bindingEnergy*bindingEnergy);
185     fProbabilities[i] = totprob;                  175     fProbabilities[i] = totprob; 
186   }                                               176   }
                                                   >> 177   //if(totprob == 0.0) { return; }
187                                                   178 
188   // Loop on sampling                             179   // Loop on sampling
189   static const G4int nlooplim = 1000;          << 180   //  const G4int nlooplim = 100;
190   G4int nloop = 0;                             << 181   //G4int nloop = 0;
191                                                   182 
192   G4double bindingEnergy, ePotEnergy, eKinEner    183   G4double bindingEnergy, ePotEnergy, eKinEnergy;
193   G4double gamEnergy0, gamEnergy1;                184   G4double gamEnergy0, gamEnergy1;
194                                                   185 
195   CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 186   //static const G4double eminus2 =  1.0 - G4Exp(-2.0);
196   G4double rndm[4];                            << 
197                                                   187 
198   do {                                            188   do {
199     ++nloop;                                   << 189     //++nloop;
200                                                << 190     G4double xprob = totprob*G4UniformRand();
201     // 4 random numbers to select e-           << 
202     rndmEngineMod->flatArray(4, rndm);         << 
203     G4double xprob = totprob*rndm[0];          << 
204                                                   191 
205     // select shell                               192     // select shell
206     for(i=0; i<nShells; ++i) { if(xprob <= fPr    193     for(i=0; i<nShells; ++i) { if(xprob <= fProbabilities[i]) { break; } }
207                                                   194    
208     bindingEnergy = elm->GetAtomicShell(i);       195     bindingEnergy = elm->GetAtomicShell(i);
                                                   >> 196     //    ePotEnergy    = bindingEnergy;
                                                   >> 197     //    gamEnergy0 = energy;
209     lv1.set(0.0,0.0,energy,energy);               198     lv1.set(0.0,0.0,energy,energy);
210     /*                                         << 199 
211     G4cout << "nShells= " << nShells << " i= " << 200     //G4cout << "nShells= " << nShells << " i= " << i 
212        << " Egamma= " << energy << " Ebind= "  << 201     //   << " Egamma= " << energy << " Ebind= " << bindingEnergy
213        << G4endl;                              << 202     //   << " Elim= " << limitEnergy 
214     */                                         << 203     //   << G4endl;
                                                   >> 204 
215     // for rest frame of the electron             205     // for rest frame of the electron
216     G4double x = -G4Log(rndm[1]);              << 206     G4double x = -G4Log(G4UniformRand());
217     eKinEnergy = bindingEnergy*x;                 207     eKinEnergy = bindingEnergy*x;
218     ePotEnergy = bindingEnergy*(1.0 + x);         208     ePotEnergy = bindingEnergy*(1.0 + x);
219                                                   209 
220     // for rest frame of the electron             210     // for rest frame of the electron
221     G4double eTotMomentum = sqrt(eKinEnergy*(e    211     G4double eTotMomentum = sqrt(eKinEnergy*(eKinEnergy + 2*electron_mass_c2));
222     G4double phi = rndm[2]*twopi;              << 212     G4double phi = G4UniformRand()*twopi;
223     G4double costet = 2*rndm[3] - 1;           << 213     G4double costet = 2*G4UniformRand() - 1;
224     G4double sintet = sqrt((1 - costet)*(1 + c    214     G4double sintet = sqrt((1 - costet)*(1 + costet));
225     lv2.set(eTotMomentum*sintet*cos(phi),eTotM    215     lv2.set(eTotMomentum*sintet*cos(phi),eTotMomentum*sintet*sin(phi),
226             eTotMomentum*costet,eKinEnergy + e << 216       eTotMomentum*costet,eKinEnergy + electron_mass_c2);
227     bst = lv2.boostVector();                      217     bst = lv2.boostVector();
228     lv1.boost(-bst);                              218     lv1.boost(-bst);
229                                                   219 
230     gamEnergy0 = lv1.e();                         220     gamEnergy0 = lv1.e();
231                                                   221    
232     // In the rest frame of the electron          222     // In the rest frame of the electron
233     // The scattered gamma energy is sampled a    223     // The scattered gamma energy is sampled according to Klein-Nishina formula
234     // The random number techniques of Butcher    224     // The random number techniques of Butcher & Messel are used 
235     // (Nuc Phys 20(1960),15).                    225     // (Nuc Phys 20(1960),15). 
236     G4double E0_m = gamEnergy0/electron_mass_c    226     G4double E0_m = gamEnergy0/electron_mass_c2;
237                                                   227 
238     //G4cout << "Nloop= "<< nloop << " Ecm(keV << 
239     //                                            228     //
240     // sample the energy rate of the scattered    229     // sample the energy rate of the scattered gamma 
241     //                                            230     //
242                                                   231 
243     G4double epsilon, epsilonsq, onecost, sint    232     G4double epsilon, epsilonsq, onecost, sint2, greject ;
244                                                   233 
245     G4double eps0       = 1./(1 + 2*E0_m);        234     G4double eps0       = 1./(1 + 2*E0_m);
246     G4double epsilon0sq = eps0*eps0;              235     G4double epsilon0sq = eps0*eps0;
247     G4double alpha1     = - G4Log(eps0);          236     G4double alpha1     = - G4Log(eps0);
248     G4double alpha2     = alpha1 + 0.5*(1 - ep << 237     G4double alpha2     = 0.5*(1 - epsilon0sq);
249                                                   238 
250     do {                                          239     do {
251       ++nloop;                                 << 240       if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) {
252       // false interaction if too many iterati << 241   epsilon   = G4Exp(-alpha1*G4UniformRand());   // epsilon0**r
253       if(nloop > nlooplim) { return; }         << 242   epsilonsq = epsilon*epsilon; 
254                                                << 
255       // 3 random numbers to sample scattering << 
256       rndmEngineMod->flatArray(3, rndm);       << 
257                                                << 
258       if ( alpha1 > alpha2*rndm[0] ) {         << 
259         epsilon   = G4Exp(-alpha1*rndm[1]);    << 
260         epsilonsq = epsilon*epsilon;           << 
261                                                   243 
262       } else {                                    244       } else {
263         epsilonsq = epsilon0sq + (1.- epsilon0 << 245   epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
264         epsilon   = sqrt(epsilonsq);           << 246   epsilon   = sqrt(epsilonsq);
265       }                                           247       }
266                                                   248 
267       onecost = (1.- epsilon)/(epsilon*E0_m);     249       onecost = (1.- epsilon)/(epsilon*E0_m);
268       sint2   = onecost*(2.-onecost);             250       sint2   = onecost*(2.-onecost);
269       greject = 1. - epsilon*sint2/(1.+ epsilo    251       greject = 1. - epsilon*sint2/(1.+ epsilonsq);
270                                                   252 
271       // Loop checking, 03-Aug-2015, Vladimir  << 253     } while (greject < G4UniformRand());
272     } while (greject < rndm[2]);               << 
273     gamEnergy1 = epsilon*gamEnergy0;              254     gamEnergy1 = epsilon*gamEnergy0;
274                                                   255  
275     // before scattering total 4-momentum in e    256     // before scattering total 4-momentum in e- system
276     lv2.set(0.0,0.0,0.0,electron_mass_c2);        257     lv2.set(0.0,0.0,0.0,electron_mass_c2);
277     lv2 += lv1;                                   258     lv2 += lv1;
278                                                   259  
279     //                                            260     //
280     // scattered gamma angles. ( Z - axis alon    261     // scattered gamma angles. ( Z - axis along the parent gamma)
281     //                                            262     //
282     if(sint2 < 0.0) { sint2 = 0.0; }              263     if(sint2 < 0.0) { sint2 = 0.0; }
283     costet = 1. - onecost;                        264     costet = 1. - onecost; 
284     sintet = sqrt(sint2);                         265     sintet = sqrt(sint2);
285     phi  = twopi * rndmEngineMod->flat();      << 266     phi  = twopi * G4UniformRand();
286                                                   267 
287     // e- recoil                                  268     // e- recoil
288     //                                            269     //
289     // in  rest frame of the electron             270     // in  rest frame of the electron
290     G4ThreeVector gamDir = lv1.vect().unit();     271     G4ThreeVector gamDir = lv1.vect().unit();
291     G4ThreeVector v = G4ThreeVector(sintet*cos    272     G4ThreeVector v = G4ThreeVector(sintet*cos(phi),sintet*sin(phi),costet);
292     v.rotateUz(gamDir);                           273     v.rotateUz(gamDir);
293     lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(),    274     lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(),gamEnergy1*v.z(),gamEnergy1);
294     lv2 -= lv1;                                   275     lv2 -= lv1;
295     //G4cout<<"Egam(keV)= " << lv1.e()/keV     << 276     //G4cout<<"Egam= "<<lv1.e()<<" Ee= "<< lv2.e()-electron_mass_c2 << G4endl;
296     //          <<" Ee(keV)= " << (lv2.e()-ele << 
297     lv2.boost(bst);                               277     lv2.boost(bst);
298     eKinEnergy = lv2.e() - electron_mass_c2 -     278     eKinEnergy = lv2.e() - electron_mass_c2 - ePotEnergy;   
299     //G4cout << "Nloop= " << nloop << " eKinEn << 279     //G4cout << "eKinEnergy= " << eKinEnergy << G4endl;
300                                                   280 
301     // Loop checking, 03-Aug-2015, Vladimir Iv << 
302   } while ( eKinEnergy < 0.0 );                   281   } while ( eKinEnergy < 0.0 );
303                                                   282 
304   //                                              283   //
305   // update G4VParticleChange for the scattere    284   // update G4VParticleChange for the scattered gamma
306   //                                              285   //
307                                                   286    
308   lv1.boost(bst);                                 287   lv1.boost(bst);
309   gamEnergy1 = lv1.e();                           288   gamEnergy1 = lv1.e();
310   if(gamEnergy1 > lowestSecondaryEnergy) {     << 289   if(gamEnergy1 > lowestGammaEnergy) {
311     G4ThreeVector gamDirection1 = lv1.vect().u    290     G4ThreeVector gamDirection1 = lv1.vect().unit();
312     gamDirection1.rotateUz(direction);            291     gamDirection1.rotateUz(direction);
313     fParticleChange->ProposeMomentumDirection(    292     fParticleChange->ProposeMomentumDirection(gamDirection1);
314   } else {                                        293   } else { 
315     fParticleChange->ProposeTrackStatus(fStopA    294     fParticleChange->ProposeTrackStatus(fStopAndKill);
316     gamEnergy1 = 0.0;                             295     gamEnergy1 = 0.0;
317   }                                               296   }
318   fParticleChange->SetProposedKineticEnergy(ga    297   fParticleChange->SetProposedKineticEnergy(gamEnergy1);
319                                                   298 
320   //                                              299   //
321   // kinematic of the scattered electron          300   // kinematic of the scattered electron
322   //                                              301   //
323                                                   302 
324   if(eKinEnergy > lowestSecondaryEnergy) {     << 303   if(eKinEnergy > lowestGammaEnergy) {
325     G4ThreeVector eDirection = lv2.vect().unit    304     G4ThreeVector eDirection = lv2.vect().unit();
326     eDirection.rotateUz(direction);               305     eDirection.rotateUz(direction);
327     auto dp = new G4DynamicParticle(theElectro << 306     G4DynamicParticle* dp = 
                                                   >> 307       new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
328     fvect->push_back(dp);                         308     fvect->push_back(dp);
329   } else { eKinEnergy = 0.0; }                    309   } else { eKinEnergy = 0.0; }
330                                                   310 
331   G4double edep = energy - gamEnergy1 - eKinEn    311   G4double edep = energy - gamEnergy1 - eKinEnergy;
332   G4double esec = 0.0;                            312   G4double esec = 0.0;
333                                                   313   
334   // sample deexcitation                          314   // sample deexcitation
335   //                                              315   //
336   if(nullptr != fAtomDeexcitation) {           << 316   if(fAtomDeexcitation) {
337     G4int index = couple->GetIndex();             317     G4int index = couple->GetIndex();
338     if(fAtomDeexcitation->CheckDeexcitationAct    318     if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
339       G4int Z = elm->GetZasInt();              << 319       G4int Z = G4lrint(elm->GetZ());
340       auto as = (G4AtomicShellEnumerator)(i);  << 320       G4AtomicShellEnumerator as = G4AtomicShellEnumerator(i);
341       const G4AtomicShell* shell = fAtomDeexci    321       const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
342       G4int nbefore = (G4int)fvect->size();    << 322       size_t nbefore = fvect->size();
343       fAtomDeexcitation->GenerateParticles(fve    323       fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
344       G4int nafter = (G4int)fvect->size();     << 324       size_t nafter = fvect->size();
345       //G4cout << "N1= " << nbefore << "  N2=  << 325       if(nafter > nbefore) {
346       for (G4int j=nbefore; j<nafter; ++j) {   << 326   for (size_t j=nbefore; j<nafter; ++j) {
347         G4double e = ((*fvect)[j])->GetKinetic << 327     G4double e = ((*fvect)[j])->GetKineticEnergy();
348         if(esec + e > edep) {                  << 328     if(esec + e > edep) {
349           // correct energy in order to have e << 329       /*   
350           e = edep - esec;                     << 330       G4cout << "### G4KleinNishinaModel Edep(eV)= " << edep/eV 
351           ((*fvect)[j])->SetKineticEnergy(e);  << 331        << " Esec(eV)= " << esec/eV 
352           esec += e;                           << 332        << " E["<< j << "](eV)= " << e/eV
353           /*                                   << 333        << " N= " << nafter
354             G4cout << "### G4KleinNishinaModel << 334        << " Z= " << Z << " shell= " << i 
355                    << " Esec(eV)= " << esec/eV << 335        << "  Ebind(keV)= " << bindingEnergy/keV 
356                    << " E["<< j << "](eV)= " < << 336        << "  Eshell(keV)= " << shell->BindingEnergy()/keV 
357                    << " N= " << nafter         << 337        << G4endl;
358                    << " Z= " << Z << " shell=  << 338       */
359                    << "  Ebind(keV)= " << bind << 339       for (size_t jj=j; jj<nafter; ++jj) { delete (*fvect)[jj]; }
360                    << "  Eshell(keV)= " << she << 340       for (size_t jj=j; jj<nafter; ++jj) { fvect->pop_back(); }
361                    << G4endl;                  << 341       break;        
362           */                                   << 342     }
363           // delete the rest of secondaries (s << 343     esec += e;
364           for (G4int jj=nafter-1; jj>j; --jj)  << 344   } 
365             delete (*fvect)[jj];               << 
366             fvect->pop_back();                 << 
367           }                                    << 
368           break;                               << 
369         }                                      << 
370         esec += e;                             << 
371       }                                           345       }
372       edep -= esec;                               346       edep -= esec;
373     }                                             347     }
374   }                                               348   }
375   if(std::abs(energy - gamEnergy1 - eKinEnergy << 349   if(fabs(energy - gamEnergy1 - eKinEnergy - esec - edep) > eV) {
376     G4cout << "### G4KleinNishinaModel dE(eV)=    350     G4cout << "### G4KleinNishinaModel dE(eV)= " 
377            << (energy - gamEnergy1 - eKinEnerg << 351      << (energy - gamEnergy1 - eKinEnergy - esec - edep)/eV 
378            << " shell= " << i                  << 352      << " shell= " << i 
379            << "  E(keV)= " << energy/keV       << 353      << "  E(keV)= " << energy/keV 
380            << "  Ebind(keV)= " << bindingEnerg << 354      << "  Ebind(keV)= " << bindingEnergy/keV 
381            << "  Eg(keV)= " << gamEnergy1/keV  << 355      << "  Eg(keV)= " << gamEnergy1/keV 
382            << "  Ee(keV)= " << eKinEnergy/keV  << 356      << "  Ee(keV)= " << eKinEnergy/keV 
383            << "  Esec(keV)= " << esec/keV      << 357      << "  Esec(keV)= " << esec/keV 
384            << "  Edep(keV)= " << edep/keV      << 358      << "  Edep(keV)= " << edep/keV 
385            << G4endl;                          << 359      << G4endl;
386   }                                               360   }
387   // energy balance                               361   // energy balance
388   if(edep > 0.0) {                                362   if(edep > 0.0) { 
389     fParticleChange->ProposeLocalEnergyDeposit    363     fParticleChange->ProposeLocalEnergyDeposit(edep);
390   }                                               364   }
391 }                                                 365 }
392                                                   366 
393 //....oooOO0OOooo........oooOO0OOooo........oo    367 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
394                                                   368 
395                                                   369