Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4InitXscPAI.cc,v 1.9 2006/06/29 19:53:00 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02 $ >> 29 // 27 // 30 // 28 // G4InitXscPAI.cc -- class implementation fil 31 // G4InitXscPAI.cc -- class implementation file 29 // 32 // 30 // GEANT 4 class implementation file 33 // GEANT 4 class implementation file 31 // 34 // 32 // For information related to this code, pleas 35 // For information related to this code, please, contact 33 // the Geant4 Collaboration. 36 // the Geant4 Collaboration. 34 // 37 // 35 // R&D: Vladimir.Grichine@cern.ch 38 // R&D: Vladimir.Grichine@cern.ch 36 // 39 // 37 // History: 40 // History: 38 // 41 // 39 42 40 43 41 44 42 #include "G4InitXscPAI.hh" 45 #include "G4InitXscPAI.hh" 43 46 44 #include "globals.hh" 47 #include "globals.hh" 45 #include "G4PhysicalConstants.hh" << 46 #include "G4SystemOfUnits.hh" << 47 #include "G4ios.hh" 48 #include "G4ios.hh" 48 #include "G4Poisson.hh" 49 #include "G4Poisson.hh" 49 #include "G4Integrator.hh" 50 #include "G4Integrator.hh" 50 #include "G4Material.hh" 51 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 52 #include "G4MaterialCutsCouple.hh" 52 #include "G4SandiaTable.hh" 53 #include "G4SandiaTable.hh" 53 54 54 55 55 56 56 // Local class constants 57 // Local class constants 57 58 58 const G4double G4InitXscPAI::fDelta = 0 59 const G4double G4InitXscPAI::fDelta = 0.005 ; // energy shift from interval border 59 const G4int G4InitXscPAI::fPAIbin = 1 60 const G4int G4InitXscPAI::fPAIbin = 100 ; // size of energy transfer vectors 60 const G4double G4InitXscPAI::fSolidDensity = 0 61 const G4double G4InitXscPAI::fSolidDensity = 0.05*g/cm3 ; // ~gas-solid border 61 62 62 ////////////////////////////////////////////// 63 ////////////////////////////////////////////////////////////////// 63 // 64 // 64 // Constructor 65 // Constructor 65 // 66 // 66 67 67 using namespace std; 68 using namespace std; 68 69 69 G4InitXscPAI::G4InitXscPAI( const G4MaterialCu 70 G4InitXscPAI::G4InitXscPAI( const G4MaterialCutsCouple* matCC) 70 : fPAIxscVector(nullptr), << 71 : fPAIxscVector(NULL), 71 fPAIdEdxVector(nullptr), << 72 fPAIdEdxVector(NULL), 72 fPAIphotonVector(nullptr), << 73 fPAIphotonVector(NULL), 73 fPAIelectronVector(nullptr), << 74 fPAIelectronVector(NULL), 74 fChCosSqVector(nullptr), << 75 fChCosSqVector(NULL), 75 fChWidthVector(nullptr) << 76 fChWidthVector(NULL) 76 { 77 { 77 G4int i, j, matIndex; 78 G4int i, j, matIndex; 78 79 79 fDensity = matCC->GetMaterial()->Get 80 fDensity = matCC->GetMaterial()->GetDensity(); 80 fElectronDensity = matCC->GetMaterial()->Get 81 fElectronDensity = matCC->GetMaterial()->GetElectronDensity(); 81 matIndex = (G4int)matCC->GetMaterial << 82 matIndex = matCC->GetMaterial()->GetIndex(); 82 83 83 fSandia = new G4SandiaTable(matInde 84 fSandia = new G4SandiaTable(matIndex); 84 fIntervalNumber = fSandia->GetMaxInterval() 85 fIntervalNumber = fSandia->GetMaxInterval()-1; 85 86 86 fMatSandiaMatrix = new G4OrderedTable(); 87 fMatSandiaMatrix = new G4OrderedTable(); 87 88 88 for (i = 0; i < fIntervalNumber; ++i) << 89 for (i = 0; i < fIntervalNumber; i++) 89 { 90 { 90 fMatSandiaMatrix->push_back(new G4DataVect 91 fMatSandiaMatrix->push_back(new G4DataVector(5,0.)); 91 } 92 } 92 for (i = 0; i < fIntervalNumber; ++i) << 93 for (G4int i = 0; i < fIntervalNumber; i++) 93 { 94 { 94 (*(*fMatSandiaMatrix)[i])[0] = fSandia->Ge 95 (*(*fMatSandiaMatrix)[i])[0] = fSandia->GetSandiaMatTable(i,0); 95 96 96 for(j = 1; j < 5 ; ++j) << 97 for(j = 1; j < 5 ; j++) 97 { 98 { 98 (*(*fMatSandiaMatrix)[i])[j] = fSandia-> 99 (*(*fMatSandiaMatrix)[i])[j] = fSandia->GetSandiaMatTable(i,j)*fDensity; 99 } 100 } 100 } 101 } 101 KillCloseIntervals(); 102 KillCloseIntervals(); 102 Normalisation(); 103 Normalisation(); 103 fBetaGammaSq = fTmax = 0.0; << 104 104 fIntervalTmax = fCurrentInterval = 0; << 105 } 105 } 106 106 107 107 108 108 109 109 110 ////////////////////////////////////////////// 110 //////////////////////////////////////////////////////////////////////////// 111 // 111 // 112 // Destructor 112 // Destructor 113 113 114 G4InitXscPAI::~G4InitXscPAI() 114 G4InitXscPAI::~G4InitXscPAI() 115 { 115 { 116 delete fPAIxscVector; << 116 if(fPAIxscVector) delete fPAIxscVector; 117 delete fPAIdEdxVector; << 117 if(fPAIdEdxVector) delete fPAIdEdxVector; 118 delete fPAIphotonVector; << 118 if(fPAIphotonVector) delete fPAIphotonVector; 119 delete fPAIelectronVector; << 119 if(fPAIelectronVector) delete fPAIelectronVector; 120 delete fChCosSqVector; << 120 if(fChCosSqVector) delete fChCosSqVector; 121 delete fChWidthVector; << 121 if(fChWidthVector) delete fChWidthVector; 122 delete fSandia; << 123 delete fMatSandiaMatrix; << 124 } 122 } 125 123 126 ////////////////////////////////////////////// 124 //////////////////////////////////////////////////////////////////////// 127 // 125 // 128 // Kill close intervals, recalculate fInterval 126 // Kill close intervals, recalculate fIntervalNumber 129 127 130 void G4InitXscPAI::KillCloseIntervals() 128 void G4InitXscPAI::KillCloseIntervals() 131 { 129 { 132 G4int i, j, k; 130 G4int i, j, k; 133 G4double energy1, energy2; 131 G4double energy1, energy2; 134 132 135 for( i = 0 ; i < fIntervalNumber - 1 ; i++ ) 133 for( i = 0 ; i < fIntervalNumber - 1 ; i++ ) 136 { 134 { 137 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 135 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 138 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 136 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 139 137 140 if( energy2 - energy1 > 1.5*fDelta*(energy 138 if( energy2 - energy1 > 1.5*fDelta*(energy1 + energy2) ) continue ; 141 else 139 else 142 { 140 { 143 for(j = i; j < fIntervalNumber-1; j++) 141 for(j = i; j < fIntervalNumber-1; j++) 144 { 142 { 145 for( k = 0; k < 5; k++ ) 143 for( k = 0; k < 5; k++ ) 146 { 144 { 147 (*(*fMatSandiaMatrix)[j])[k] = (*(*f 145 (*(*fMatSandiaMatrix)[j])[k] = (*(*fMatSandiaMatrix)[j+1])[k]; 148 } 146 } 149 } 147 } 150 fIntervalNumber-- ; 148 fIntervalNumber-- ; 151 i-- ; 149 i-- ; 152 } 150 } 153 } 151 } 154 152 155 } 153 } 156 154 157 ////////////////////////////////////////////// 155 //////////////////////////////////////////////////////////////////////// 158 // 156 // 159 // Kill close intervals, recalculate fInterval 157 // Kill close intervals, recalculate fIntervalNumber 160 158 161 void G4InitXscPAI::Normalisation() 159 void G4InitXscPAI::Normalisation() 162 { 160 { 163 G4int i, j; 161 G4int i, j; 164 G4double energy1, energy2, /*delta,*/ cof; / << 162 G4double energy1, energy2, delta, cof; // , shift; 165 163 166 energy1 = (*(*fMatSandiaMatrix)[fIntervalNum 164 energy1 = (*(*fMatSandiaMatrix)[fIntervalNumber-1])[0]; 167 energy2 = 2.*(*(*fMatSandiaMatrix)[fInterval 165 energy2 = 2.*(*(*fMatSandiaMatrix)[fIntervalNumber-1])[0]; 168 166 169 167 170 cof = RutherfordIntegral(fIntervalNumber-1,e 168 cof = RutherfordIntegral(fIntervalNumber-1,energy1,energy2); 171 169 172 for( i = fIntervalNumber-2; i >= 0; i-- ) 170 for( i = fIntervalNumber-2; i >= 0; i-- ) 173 { 171 { 174 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 172 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 175 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 173 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 176 174 177 cof += RutherfordIntegral(i,energy1,energy 175 cof += RutherfordIntegral(i,energy1,energy2); 178 // G4cout<<"norm. cof = "<<cof<<G4endl; 176 // G4cout<<"norm. cof = "<<cof<<G4endl; 179 } 177 } 180 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fin 178 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2 ; 181 fNormalizationCof *= fElectronDensity; 179 fNormalizationCof *= fElectronDensity; 182 //delta = fNormalizationCof - cof; << 180 delta = fNormalizationCof - cof; 183 fNormalizationCof /= cof; 181 fNormalizationCof /= cof; 184 // G4cout<<"G4InitXscPAI::fNormalizationCof 182 // G4cout<<"G4InitXscPAI::fNormalizationCof/cof = "<<fNormalizationCof 185 // <<"; at delta ="<<delta<<G4endl ; 183 // <<"; at delta ="<<delta<<G4endl ; 186 184 187 for (i = 0; i < fIntervalNumber; i++) // ren << 185 for (G4int i = 0; i < fIntervalNumber; i++) // renormalisation on QM sum rule 188 { 186 { 189 for(j = 1; j < 5 ; j++) 187 for(j = 1; j < 5 ; j++) 190 { 188 { 191 (*(*fMatSandiaMatrix)[i])[j] *= fNormali 189 (*(*fMatSandiaMatrix)[i])[j] *= fNormalizationCof; 192 } 190 } 193 } 191 } 194 /* 192 /* 195 if(delta > 0) // shift the first energy inte 193 if(delta > 0) // shift the first energy interval 196 { 194 { 197 for(i=1;i<100;i++) 195 for(i=1;i<100;i++) 198 { 196 { 199 energy1 = (1.-i/100.)*(*(*fMatSandiaMatr 197 energy1 = (1.-i/100.)*(*(*fMatSandiaMatrix)[0])[0]; 200 energy2 = (*(*fMatSandiaMatrix)[0])[0]; 198 energy2 = (*(*fMatSandiaMatrix)[0])[0]; 201 shift = RutherfordIntegral(0,energy1,e 199 shift = RutherfordIntegral(0,energy1,energy2); 202 G4cout<<shift<<"\t"; 200 G4cout<<shift<<"\t"; 203 if(shift >= delta) break; 201 if(shift >= delta) break; 204 } 202 } 205 (*(*fMatSandiaMatrix)[0])[0] = energy1; 203 (*(*fMatSandiaMatrix)[0])[0] = energy1; 206 cof += shift; 204 cof += shift; 207 } 205 } 208 else if(delta < 0) 206 else if(delta < 0) 209 { 207 { 210 for(i=1;i<100;i++) 208 for(i=1;i<100;i++) 211 { 209 { 212 energy1 = (*(*fMatSandiaMatrix)[0])[0]; 210 energy1 = (*(*fMatSandiaMatrix)[0])[0]; 213 energy2 = (*(*fMatSandiaMatrix)[0])[0] + 211 energy2 = (*(*fMatSandiaMatrix)[0])[0] + 214 ( (*(*fMatSandiaMatrix)[0])[0] - 212 ( (*(*fMatSandiaMatrix)[0])[0] - (*(*fMatSandiaMatrix)[0])[0] )*i/100.; 215 shift = RutherfordIntegral(0,energy1,e 213 shift = RutherfordIntegral(0,energy1,energy2); 216 if( shift >= std::abs(delta) ) break; 214 if( shift >= std::abs(delta) ) break; 217 } 215 } 218 (*(*fMatSandiaMatrix)[0])[0] = energy2; 216 (*(*fMatSandiaMatrix)[0])[0] = energy2; 219 cof -= shift; 217 cof -= shift; 220 } 218 } 221 G4cout<<G4cout<<"G4InitXscPAI::fNormalizatio 219 G4cout<<G4cout<<"G4InitXscPAI::fNormalizationCof/cof = "<<fNormalizationCof/cof 222 <<"; at delta ="<<delta<<" and i = " 220 <<"; at delta ="<<delta<<" and i = "<<i<<G4endl ; 223 */ 221 */ 224 } 222 } 225 223 >> 224 >> 225 >> 226 >> 227 226 ////////////////////////////////////////////// 228 //////////////////////////////////////////////////////////////////// 227 // 229 // 228 // Integration over electrons that could be co 230 // Integration over electrons that could be considered 229 // quasi-free at energy transfer of interest 231 // quasi-free at energy transfer of interest 230 232 231 G4double G4InitXscPAI::RutherfordIntegral( G4i 233 G4double G4InitXscPAI::RutherfordIntegral( G4int k, 232 G4double x1, 234 G4double x1, 233 G4double x2 ) 235 G4double x2 ) 234 { 236 { 235 G4double c1, c2, c3, a1, a2, a3, a4 ; 237 G4double c1, c2, c3, a1, a2, a3, a4 ; 236 238 237 a1 = (*(*fMatSandiaMatrix)[k])[1]; 239 a1 = (*(*fMatSandiaMatrix)[k])[1]; 238 a2 = (*(*fMatSandiaMatrix)[k])[2]; 240 a2 = (*(*fMatSandiaMatrix)[k])[2]; 239 a3 = (*(*fMatSandiaMatrix)[k])[3]; 241 a3 = (*(*fMatSandiaMatrix)[k])[3]; 240 a4 = (*(*fMatSandiaMatrix)[k])[4]; 242 a4 = (*(*fMatSandiaMatrix)[k])[4]; 241 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<< 243 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl; 242 c1 = (x2 - x1)/x1/x2 ; 244 c1 = (x2 - x1)/x1/x2 ; 243 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2 ; 245 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2 ; 244 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x 246 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2 ; 245 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "< 247 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl; 246 248 247 return a1*log(x2/x1) + a2*c1 + a3*c2/2 + a 249 return a1*log(x2/x1) + a2*c1 + a3*c2/2 + a4*c3/3 ; 248 250 249 } // end of RutherfordIntegral 251 } // end of RutherfordIntegral 250 252 251 ////////////////////////////////////////////// 253 /////////////////////////////////////////////////////////////// 252 // 254 // 253 // Integrate photo-absorption cross-section f 255 // Integrate photo-absorption cross-section from I1 up to omega 254 256 255 G4double G4InitXscPAI::IntegralTerm(G4double o 257 G4double G4InitXscPAI::IntegralTerm(G4double omega) 256 { 258 { 257 G4int i; 259 G4int i; 258 G4double energy1, energy2, result = 0.; 260 G4double energy1, energy2, result = 0.; 259 261 260 for( i = 0; i <= fIntervalTmax; i++ ) 262 for( i = 0; i <= fIntervalTmax; i++ ) 261 { 263 { 262 if(i == fIntervalTmax) 264 if(i == fIntervalTmax) 263 { 265 { 264 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 266 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 265 result += RutherfordIntegral(i,energy1,o 267 result += RutherfordIntegral(i,energy1,omega); 266 } 268 } 267 else 269 else 268 { 270 { 269 if( omega <= (*(*fMatSandiaMatrix)[i+1]) 271 if( omega <= (*(*fMatSandiaMatrix)[i+1])[0]) 270 { 272 { 271 energy1 = (*(*fMatSandiaMatrix)[i])[0] 273 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 272 result += RutherfordIntegral(i,energy1 274 result += RutherfordIntegral(i,energy1,omega); 273 break; 275 break; 274 } 276 } 275 else 277 else 276 { 278 { 277 energy1 = (*(*fMatSandiaMatrix)[i])[0] 279 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 278 energy2 = (*(*fMatSandiaMatrix)[i+1])[ 280 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 279 result += RutherfordIntegral(i,energy1 281 result += RutherfordIntegral(i,energy1,energy2); 280 } 282 } 281 } 283 } 282 // G4cout<<"IntegralTerm<<"("<<omega<<")"< 284 // G4cout<<"IntegralTerm<<"("<<omega<<")"<<" = "<<result<<G4endl; 283 } 285 } 284 return result; 286 return result; 285 } 287 } 286 288 287 289 288 ////////////////////////////////////////////// 290 //////////////////////////////////////////////////////////////// 289 // 291 // 290 // Imaginary part of dielectric constant 292 // Imaginary part of dielectric constant 291 // (G4int k - interval number, G4double en1 - 293 // (G4int k - interval number, G4double en1 - energy point) 292 294 293 G4double G4InitXscPAI::ImPartDielectricConst( 295 G4double G4InitXscPAI::ImPartDielectricConst( G4int k , 294 G4double energy1 296 G4double energy1 ) 295 { 297 { 296 G4double energy2,energy3,energy4,a1,a2,a3,a 298 G4double energy2,energy3,energy4,a1,a2,a3,a4,result; 297 299 298 a1 = (*(*fMatSandiaMatrix)[k])[1]; 300 a1 = (*(*fMatSandiaMatrix)[k])[1]; 299 a2 = (*(*fMatSandiaMatrix)[k])[2]; 301 a2 = (*(*fMatSandiaMatrix)[k])[2]; 300 a3 = (*(*fMatSandiaMatrix)[k])[3]; 302 a3 = (*(*fMatSandiaMatrix)[k])[3]; 301 a4 = (*(*fMatSandiaMatrix)[k])[4]; 303 a4 = (*(*fMatSandiaMatrix)[k])[4]; 302 304 303 energy2 = energy1*energy1; 305 energy2 = energy1*energy1; 304 energy3 = energy2*energy1; 306 energy3 = energy2*energy1; 305 energy4 = energy3*energy1; 307 energy4 = energy3*energy1; 306 308 307 result = a1/energy1+a2/energy2+a3/energy3+ 309 result = a1/energy1+a2/energy2+a3/energy3+a4/energy4 ; 308 result *= hbarc/energy1 ; 310 result *= hbarc/energy1 ; 309 311 310 return result ; 312 return result ; 311 313 312 } // end of ImPartDielectricConst 314 } // end of ImPartDielectricConst 313 315 314 ////////////////////////////////////////////// 316 //////////////////////////////////////////////////////////////// 315 // 317 // 316 // Modulus squared of dielectric constant 318 // Modulus squared of dielectric constant 317 // (G4int k - interval number, G4double omega 319 // (G4int k - interval number, G4double omega - energy point) 318 320 319 G4double G4InitXscPAI::ModuleSqDielectricConst 321 G4double G4InitXscPAI::ModuleSqDielectricConst( G4int k , 320 G4double omega ) 322 G4double omega ) 321 { 323 { 322 G4double eIm2, eRe2, result; 324 G4double eIm2, eRe2, result; 323 325 324 result = ImPartDielectricConst(k,omega); 326 result = ImPartDielectricConst(k,omega); 325 eIm2 = result*result; 327 eIm2 = result*result; 326 328 327 result = RePartDielectricConst(omega); 329 result = RePartDielectricConst(omega); 328 eRe2 = result*result; 330 eRe2 = result*result; 329 331 330 result = eIm2 + eRe2; 332 result = eIm2 + eRe2; 331 333 332 return result ; 334 return result ; 333 } 335 } 334 336 335 337 336 ////////////////////////////////////////////// 338 ////////////////////////////////////////////////////////////////////////////// 337 // 339 // 338 // Real part of dielectric constant minus unit 340 // Real part of dielectric constant minus unit: epsilon_1 - 1 339 // (G4double enb - energy point) 341 // (G4double enb - energy point) 340 // 342 // 341 343 342 G4double G4InitXscPAI::RePartDielectricConst(G 344 G4double G4InitXscPAI::RePartDielectricConst(G4double enb) 343 { 345 { 344 G4int i; 346 G4int i; 345 G4double x0, x02, x03, x04, x05, x1, x2, a1 347 G4double x0, x02, x03, x04, x05, x1, x2, a1,a2,a3,a4,xx1 ,xx2 , xx12, 346 c1, c2, c3, cof1, cof2, xln1, xln2 348 c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result ; 347 349 348 x0 = enb ; 350 x0 = enb ; 349 result = 0 ; 351 result = 0 ; 350 352 351 for( i = 0; i < fIntervalNumber-1; i++) 353 for( i = 0; i < fIntervalNumber-1; i++) 352 { 354 { 353 x1 = (*(*fMatSandiaMatrix)[i])[0]; 355 x1 = (*(*fMatSandiaMatrix)[i])[0]; 354 x2 = (*(*fMatSandiaMatrix)[i+1])[0] ; 356 x2 = (*(*fMatSandiaMatrix)[i+1])[0] ; 355 357 356 a1 = (*(*fMatSandiaMatrix)[i])[1]; 358 a1 = (*(*fMatSandiaMatrix)[i])[1]; 357 a2 = (*(*fMatSandiaMatrix)[i])[2]; 359 a2 = (*(*fMatSandiaMatrix)[i])[2]; 358 a3 = (*(*fMatSandiaMatrix)[i])[3]; 360 a3 = (*(*fMatSandiaMatrix)[i])[3]; 359 a4 = (*(*fMatSandiaMatrix)[i])[4]; 361 a4 = (*(*fMatSandiaMatrix)[i])[4]; 360 362 361 if( std::abs(x0-x1) < 0.5*(x0+x1)*fDelta 363 if( std::abs(x0-x1) < 0.5*(x0+x1)*fDelta ) 362 { 364 { 363 if(x0 >= x1) x0 = x1*(1+fDelta); 365 if(x0 >= x1) x0 = x1*(1+fDelta); 364 else x0 = x1*(1-fDelta); 366 else x0 = x1*(1-fDelta); 365 } 367 } 366 if( std::abs(x0-x2) < 0.5*(x0+x2)*fDelta 368 if( std::abs(x0-x2) < 0.5*(x0+x2)*fDelta ) 367 { 369 { 368 if(x0 >= x2) x0 = x2*(1+fDelta); 370 if(x0 >= x2) x0 = x2*(1+fDelta); 369 else x0 = x2*(1-fDelta); 371 else x0 = x2*(1-fDelta); 370 } 372 } 371 xx1 = x1 - x0 ; 373 xx1 = x1 - x0 ; 372 xx2 = x2 - x0 ; 374 xx2 = x2 - x0 ; 373 xx12 = xx2/xx1 ; 375 xx12 = xx2/xx1 ; 374 376 375 if( xx12 < 0 ) xx12 = -xx12; 377 if( xx12 < 0 ) xx12 = -xx12; 376 378 377 xln1 = log(x2/x1) ; 379 xln1 = log(x2/x1) ; 378 xln2 = log(xx12) ; 380 xln2 = log(xx12) ; 379 xln3 = log((x2 + x0)/(x1 + x0)) ; 381 xln3 = log((x2 + x0)/(x1 + x0)) ; 380 382 381 x02 = x0*x0 ; 383 x02 = x0*x0 ; 382 x03 = x02*x0 ; 384 x03 = x02*x0 ; 383 x04 = x03*x0 ; 385 x04 = x03*x0 ; 384 x05 = x04*x0; 386 x05 = x04*x0; 385 387 386 c1 = (x2 - x1)/x1/x2 ; 388 c1 = (x2 - x1)/x1/x2 ; 387 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2 ; 389 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2 ; 388 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x 390 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2 ; 389 391 390 result -= (a1/x02 + a3/x04)*xln1 ; 392 result -= (a1/x02 + a3/x04)*xln1 ; 391 result -= (a2/x02 + a4/x04)*c1 ; 393 result -= (a2/x02 + a4/x04)*c1 ; 392 result -= a3*c2/2/x02 ; 394 result -= a3*c2/2/x02 ; 393 result -= a4*c3/3/x02 ; 395 result -= a4*c3/3/x02 ; 394 396 395 cof1 = a1/x02 + a3/x04 ; 397 cof1 = a1/x02 + a3/x04 ; 396 cof2 = a2/x03 + a4/x05 ; 398 cof2 = a2/x03 + a4/x05 ; 397 399 398 result += 0.5*(cof1 +cof2)*xln2 ; 400 result += 0.5*(cof1 +cof2)*xln2 ; 399 result += 0.5*(cof1 - cof2)*xln3 ; 401 result += 0.5*(cof1 - cof2)*xln3 ; 400 } 402 } 401 result *= 2*hbarc/pi ; 403 result *= 2*hbarc/pi ; 402 404 403 return result ; 405 return result ; 404 406 405 } // end of RePartDielectricConst 407 } // end of RePartDielectricConst 406 408 407 ////////////////////////////////////////////// 409 ////////////////////////////////////////////////////////////////////// 408 // 410 // 409 // PAI differential cross-section in terms of 411 // PAI differential cross-section in terms of 410 // simplified Allison's equation 412 // simplified Allison's equation 411 // 413 // 412 414 413 G4double G4InitXscPAI::DifPAIxSection( G4doubl 415 G4double G4InitXscPAI::DifPAIxSection( G4double omega ) 414 { 416 { 415 G4int i = fCurrentInterval; 417 G4int i = fCurrentInterval; 416 G4double betaGammaSq = fBetaGammaSq; 418 G4double betaGammaSq = fBetaGammaSq; 417 G4double integralTerm = IntegralTerm(omega); 419 G4double integralTerm = IntegralTerm(omega); 418 G4double be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,res 420 G4double be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,result ; 419 G4double epsilonRe = RePartDielectricConst(o 421 G4double epsilonRe = RePartDielectricConst(omega); 420 G4double epsilonIm = ImPartDielectricConst(i 422 G4double epsilonIm = ImPartDielectricConst(i,omega); 421 G4double be4 ; 423 G4double be4 ; 422 static const G4double betaBohr2 = fine_struc << 424 G4double betaBohr2 = fine_structure_const*fine_structure_const ; 423 static const G4double betaBohr4 = betaBohr2* << 425 G4double betaBohr4 = betaBohr2*betaBohr2*4.0 ; 424 be2 = betaGammaSq/(1 + betaGammaSq) ; 426 be2 = betaGammaSq/(1 + betaGammaSq) ; 425 be4 = be2*be2 ; 427 be4 = be2*be2 ; 426 428 427 cof = 1 ; 429 cof = 1 ; 428 x1 = log(2*electron_mass_c2/omega) ; 430 x1 = log(2*electron_mass_c2/omega) ; 429 431 430 if( betaGammaSq < 0.01 ) x2 = log(be2) ; 432 if( betaGammaSq < 0.01 ) x2 = log(be2) ; 431 else 433 else 432 { 434 { 433 x2 = -log( (1/betaGammaSq - epsilonRe)* 435 x2 = -log( (1/betaGammaSq - epsilonRe)* 434 (1/betaGammaSq - epsilonRe) + 436 (1/betaGammaSq - epsilonRe) + 435 epsilonIm*epsilonIm )/2 ; 437 epsilonIm*epsilonIm )/2 ; 436 } 438 } 437 if( epsilonIm == 0.0 || betaGammaSq < 0.01 439 if( epsilonIm == 0.0 || betaGammaSq < 0.01 ) 438 { 440 { 439 x6=0 ; 441 x6=0 ; 440 } 442 } 441 else 443 else 442 { 444 { 443 x3 = -epsilonRe + 1/betaGammaSq ; 445 x3 = -epsilonRe + 1/betaGammaSq ; 444 x5 = -1 - epsilonRe + be2*((1 +epsilonRe) 446 x5 = -1 - epsilonRe + be2*((1 +epsilonRe)*(1 + epsilonRe) + 445 epsilonIm*epsilonIm) ; 447 epsilonIm*epsilonIm) ; 446 448 447 x7 = atan2(epsilonIm,x3) ; 449 x7 = atan2(epsilonIm,x3) ; 448 x6 = x5 * x7 ; 450 x6 = x5 * x7 ; 449 } 451 } 450 // if(fImPartDielectricConst[i] == 0) x6 = 452 // if(fImPartDielectricConst[i] == 0) x6 = 0 ; 451 453 452 x4 = ((x1 + x2)*epsilonIm + x6)/hbarc ; 454 x4 = ((x1 + x2)*epsilonIm + x6)/hbarc ; 453 // if( x4 < 0.0 ) x4 = 0.0 ; 455 // if( x4 < 0.0 ) x4 = 0.0 ; 454 x8 = (1 + epsilonRe)*(1 + epsilonRe) + 456 x8 = (1 + epsilonRe)*(1 + epsilonRe) + 455 epsilonIm*epsilonIm; 457 epsilonIm*epsilonIm; 456 458 457 result = (x4 + cof*integralTerm/omega/omega 459 result = (x4 + cof*integralTerm/omega/omega) ; 458 if(result < 1.0e-8) result = 1.0e-8 ; 460 if(result < 1.0e-8) result = 1.0e-8 ; 459 result *= fine_structure_const/be2/pi ; 461 result *= fine_structure_const/be2/pi ; 460 // result *= (1-exp(-beta/betaBohr))*(1-e 462 // result *= (1-exp(-beta/betaBohr))*(1-exp(-beta/betaBohr)) ; 461 // result *= (1-exp(-be2/betaBohr2)) ; 463 // result *= (1-exp(-be2/betaBohr2)) ; 462 result *= (1-exp(-be4/betaBohr4)) ; 464 result *= (1-exp(-be4/betaBohr4)) ; 463 if(fDensity >= fSolidDensity) 465 if(fDensity >= fSolidDensity) 464 { 466 { 465 result /= x8 ; 467 result /= x8 ; 466 } 468 } 467 return result ; 469 return result ; 468 470 469 } // end of DifPAIxSection 471 } // end of DifPAIxSection 470 472 471 ////////////////////////////////////////////// 473 ////////////////////////////////////////////////////////////////////// 472 // 474 // 473 // Differential PAI dEdx(omega)=omega*dNdx(ome 475 // Differential PAI dEdx(omega)=omega*dNdx(omega) 474 // 476 // 475 477 476 G4double G4InitXscPAI::DifPAIdEdx( G4double om 478 G4double G4InitXscPAI::DifPAIdEdx( G4double omega ) 477 { 479 { 478 G4double dEdx = omega*DifPAIxSection(omega); 480 G4double dEdx = omega*DifPAIxSection(omega); 479 return dEdx; 481 return dEdx; 480 } 482 } 481 483 482 ////////////////////////////////////////////// 484 ////////////////////////////////////////////////////////////////////////// 483 // 485 // 484 // Calculation od dN/dx of collisions with cre 486 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons 485 487 486 G4double G4InitXscPAI::PAIdNdxCherenkov( G4dou 488 G4double G4InitXscPAI::PAIdNdxCherenkov( G4double omega ) 487 { 489 { 488 G4int i = fCurrentInterval; 490 G4int i = fCurrentInterval; 489 G4double betaGammaSq = fBetaGammaSq; 491 G4double betaGammaSq = fBetaGammaSq; 490 G4double epsilonRe = RePartDielectricConst(o 492 G4double epsilonRe = RePartDielectricConst(omega); 491 G4double epsilonIm = ImPartDielectricConst(i 493 G4double epsilonIm = ImPartDielectricConst(i,omega); 492 494 493 G4double /*cof,*/ logarithm, x3, x5, argumen << 495 G4double cof, logarithm, x3, x5, argument, modul2, dNdxC ; 494 G4double be2, be4; << 496 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr ; 495 497 496 //cof = 1.0 ; << 498 cof = 1.0 ; 497 static const G4double cofBetaBohr = 4.0 ; << 499 cofBetaBohr = 4.0 ; 498 static const G4double betaBohr2 = fine_str << 500 betaBohr2 = fine_structure_const*fine_structure_const ; 499 static const G4double betaBohr4 = betaBohr << 501 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr ; 500 502 501 be2 = betaGammaSq/(1 + betaGammaSq) ; 503 be2 = betaGammaSq/(1 + betaGammaSq) ; 502 be4 = be2*be2 ; 504 be4 = be2*be2 ; 503 505 504 if( betaGammaSq < 0.01 ) logarithm = log(1. 506 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq) ; // 0.0 ; 505 else 507 else 506 { 508 { 507 logarithm = -log( (1/betaGammaSq - epsil 509 logarithm = -log( (1/betaGammaSq - epsilonRe)* 508 (1/betaGammaSq - epsilonRe) 510 (1/betaGammaSq - epsilonRe) + 509 epsilonIm*epsilonIm )*0.5 ; 511 epsilonIm*epsilonIm )*0.5 ; 510 logarithm += log(1+1.0/betaGammaSq) ; 512 logarithm += log(1+1.0/betaGammaSq) ; 511 } 513 } 512 514 513 if( epsilonIm == 0.0 || betaGammaSq < 0.01 515 if( epsilonIm == 0.0 || betaGammaSq < 0.01 ) 514 { 516 { 515 argument = 0.0 ; 517 argument = 0.0 ; 516 } 518 } 517 else 519 else 518 { 520 { 519 x3 = -epsilonRe + 1.0/betaGammaSq ; 521 x3 = -epsilonRe + 1.0/betaGammaSq ; 520 x5 = -1.0 - epsilonRe + 522 x5 = -1.0 - epsilonRe + 521 be2*((1.0 +epsilonRe)*(1.0 + epsilon 523 be2*((1.0 +epsilonRe)*(1.0 + epsilonRe) + 522 epsilonIm*epsilonIm) ; 524 epsilonIm*epsilonIm) ; 523 if( x3 == 0.0 ) argument = 0.5*pi; 525 if( x3 == 0.0 ) argument = 0.5*pi; 524 else argument = atan2(epsilonI 526 else argument = atan2(epsilonIm,x3) ; 525 argument *= x5 ; 527 argument *= x5 ; 526 } 528 } 527 dNdxC = ( logarithm*epsilonIm + argument )/ 529 dNdxC = ( logarithm*epsilonIm + argument )/hbarc ; 528 530 529 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8 ; 531 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8 ; 530 532 531 dNdxC *= fine_structure_const/be2/pi ; 533 dNdxC *= fine_structure_const/be2/pi ; 532 534 533 dNdxC *= (1-exp(-be4/betaBohr4)) ; 535 dNdxC *= (1-exp(-be4/betaBohr4)) ; 534 536 535 if(fDensity >= fSolidDensity) 537 if(fDensity >= fSolidDensity) 536 { 538 { 537 modul2 = (1.0 + epsilonRe)*(1.0 + epsilo 539 modul2 = (1.0 + epsilonRe)*(1.0 + epsilonRe) + 538 epsilonIm*epsilonIm; 540 epsilonIm*epsilonIm; 539 dNdxC /= modul2 ; 541 dNdxC /= modul2 ; 540 } 542 } 541 return dNdxC ; 543 return dNdxC ; 542 544 543 } // end of PAIdNdxCerenkov 545 } // end of PAIdNdxCerenkov 544 546 545 ////////////////////////////////////////////// 547 ////////////////////////////////////////////////////////////////////////// 546 // 548 // 547 // Calculation od dN/dx of collisions with cre 549 // Calculation od dN/dx of collisions with creation of longitudinal EM 548 // excitations (plasmons, delta-electrons) 550 // excitations (plasmons, delta-electrons) 549 551 550 G4double G4InitXscPAI::PAIdNdxPlasmon( G4doubl 552 G4double G4InitXscPAI::PAIdNdxPlasmon( G4double omega ) 551 { 553 { 552 G4int i = fCurrentInterval; 554 G4int i = fCurrentInterval; 553 G4double betaGammaSq = fBetaGammaSq; 555 G4double betaGammaSq = fBetaGammaSq; 554 G4double integralTerm = IntegralTerm(omega); 556 G4double integralTerm = IntegralTerm(omega); 555 G4double epsilonRe = RePartDielectricConst(o 557 G4double epsilonRe = RePartDielectricConst(omega); 556 G4double epsilonIm = ImPartDielectricConst(i 558 G4double epsilonIm = ImPartDielectricConst(i,omega); 557 559 558 G4double cof, resonance, modul2, dNdxP ; 560 G4double cof, resonance, modul2, dNdxP ; 559 G4double be2, be4; << 561 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr ; 560 562 561 cof = 1 ; 563 cof = 1 ; 562 static const G4double cofBetaBohr = 4.0 ; << 564 cofBetaBohr = 4.0 ; 563 static const G4double betaBohr2 = fine_st << 565 betaBohr2 = fine_structure_const*fine_structure_const ; 564 static const G4double betaBohr4 = betaBoh << 566 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr ; 565 567 566 be2 = betaGammaSq/(1 + betaGammaSq) ; 568 be2 = betaGammaSq/(1 + betaGammaSq) ; 567 be4 = be2*be2 ; 569 be4 = be2*be2 ; 568 570 569 resonance = log(2*electron_mass_c2*be2/ome 571 resonance = log(2*electron_mass_c2*be2/omega) ; 570 resonance *= epsilonIm/hbarc ; 572 resonance *= epsilonIm/hbarc ; 571 573 572 574 573 dNdxP = ( resonance + cof*integralTerm/omeg 575 dNdxP = ( resonance + cof*integralTerm/omega/omega ) ; 574 576 575 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8 ; 577 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8 ; 576 578 577 dNdxP *= fine_structure_const/be2/pi ; 579 dNdxP *= fine_structure_const/be2/pi ; 578 dNdxP *= (1-exp(-be4/betaBohr4)) ; 580 dNdxP *= (1-exp(-be4/betaBohr4)) ; 579 581 580 if( fDensity >= fSolidDensity ) 582 if( fDensity >= fSolidDensity ) 581 { 583 { 582 modul2 = (1 + epsilonRe)*(1 + epsilonRe) 584 modul2 = (1 + epsilonRe)*(1 + epsilonRe) + 583 epsilonIm*epsilonIm; 585 epsilonIm*epsilonIm; 584 dNdxP /= modul2 ; 586 dNdxP /= modul2 ; 585 } 587 } 586 return dNdxP ; 588 return dNdxP ; 587 589 588 } // end of PAIdNdxPlasmon 590 } // end of PAIdNdxPlasmon 589 591 590 ////////////////////////////////////////////// 592 //////////////////////////////////////////////////////////////////////// 591 // 593 // 592 // Calculation of the PAI integral cross-secti 594 // Calculation of the PAI integral cross-section 593 // = specific primary ionisation, 1/cm 595 // = specific primary ionisation, 1/cm 594 // 596 // 595 597 596 void G4InitXscPAI::IntegralPAIxSection(G4doubl 598 void G4InitXscPAI::IntegralPAIxSection(G4double bg2, G4double Tmax) 597 { 599 { 598 G4int i,k,i1,i2; 600 G4int i,k,i1,i2; 599 G4double energy1, energy2, result = 0.; 601 G4double energy1, energy2, result = 0.; 600 602 601 fBetaGammaSq = bg2; 603 fBetaGammaSq = bg2; 602 fTmax = Tmax; 604 fTmax = Tmax; 603 605 604 delete fPAIxscVector; << 606 if(fPAIxscVector) delete fPAIxscVector; 605 607 606 fPAIxscVector = new G4PhysicsLogVector( (*(* 608 fPAIxscVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 607 fPAIxscVector->PutValue(fPAIbin-1,result); 609 fPAIxscVector->PutValue(fPAIbin-1,result); 608 610 609 for( i = fIntervalNumber - 1; i >= 0; i-- ) 611 for( i = fIntervalNumber - 1; i >= 0; i-- ) 610 { 612 { 611 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 613 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 612 } 614 } 613 if (i < 0) i = 0; // Tmax should be more tha 615 if (i < 0) i = 0; // Tmax should be more than 614 // first ionisation potent 616 // first ionisation potential 615 fIntervalTmax = i; 617 fIntervalTmax = i; 616 618 617 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 619 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 618 620 619 for( k = fPAIbin - 2; k >= 0; k-- ) 621 for( k = fPAIbin - 2; k >= 0; k-- ) 620 { 622 { 621 energy1 = fPAIxscVector->GetLowEdgeEnergy( 623 energy1 = fPAIxscVector->GetLowEdgeEnergy(k); 622 energy2 = fPAIxscVector->GetLowEdgeEnergy( 624 energy2 = fPAIxscVector->GetLowEdgeEnergy(k+1); 623 625 624 for( i = fIntervalTmax; i >= 0; i-- ) 626 for( i = fIntervalTmax; i >= 0; i-- ) 625 { 627 { 626 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 628 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 627 } 629 } 628 if(i < 0) i = 0; 630 if(i < 0) i = 0; 629 i2 = i; 631 i2 = i; 630 632 631 for( i = fIntervalTmax; i >= 0; i-- ) 633 for( i = fIntervalTmax; i >= 0; i-- ) 632 { 634 { 633 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 635 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 634 } 636 } 635 if(i < 0) i = 0; 637 if(i < 0) i = 0; 636 i1 = i; 638 i1 = i; 637 639 638 if( i1 == i2 ) 640 if( i1 == i2 ) 639 { 641 { 640 fCurrentInterval = i1; 642 fCurrentInterval = i1; 641 result += integral.Legendre10(this,&G4In 643 result += integral.Legendre10(this,&G4InitXscPAI::DifPAIxSection, 642 energy1,en 644 energy1,energy2); 643 fPAIxscVector->PutValue(k,result); 645 fPAIxscVector->PutValue(k,result); 644 } 646 } 645 else 647 else 646 { 648 { 647 for( i = i2; i >= i1; i-- ) 649 for( i = i2; i >= i1; i-- ) 648 { 650 { 649 fCurrentInterval = i; 651 fCurrentInterval = i; 650 652 651 if( i==i2 ) result += integral. 653 if( i==i2 ) result += integral.Legendre10(this, 652 &G4InitXscPAI::DifP 654 &G4InitXscPAI::DifPAIxSection, 653 (*(*fMatSandiaMatri 655 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 654 656 655 else if( i == i1 ) result += integral.Legend 657 else if( i == i1 ) result += integral.Legendre10(this, 656 &G4InitXscPAI::DifP 658 &G4InitXscPAI::DifPAIxSection,energy1, 657 (*(*fMatSandiaMatri 659 (*(*fMatSandiaMatrix)[i+1])[0]); 658 660 659 else result += integral. 661 else result += integral.Legendre10(this, 660 &G4InitXscPAI::DifP 662 &G4InitXscPAI::DifPAIxSection, 661 (*(*fMatSandiaMatrix)[i 663 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 662 } 664 } 663 fPAIxscVector->PutValue(k,result); 665 fPAIxscVector->PutValue(k,result); 664 } 666 } 665 // G4cout<<k<<"\t"<<result<<G4endl; 667 // G4cout<<k<<"\t"<<result<<G4endl; 666 } 668 } 667 return ; 669 return ; 668 } 670 } 669 671 670 672 671 ////////////////////////////////////////////// 673 //////////////////////////////////////////////////////////////////////// 672 // 674 // 673 // Calculation of the PAI integral dEdx 675 // Calculation of the PAI integral dEdx 674 // = mean energy loss per unit length, keV/cm 676 // = mean energy loss per unit length, keV/cm 675 // 677 // 676 678 677 void G4InitXscPAI::IntegralPAIdEdx(G4double bg 679 void G4InitXscPAI::IntegralPAIdEdx(G4double bg2, G4double Tmax) 678 { 680 { 679 G4int i,k,i1,i2; 681 G4int i,k,i1,i2; 680 G4double energy1, energy2, result = 0.; 682 G4double energy1, energy2, result = 0.; 681 683 682 fBetaGammaSq = bg2; 684 fBetaGammaSq = bg2; 683 fTmax = Tmax; 685 fTmax = Tmax; 684 686 685 delete fPAIdEdxVector; << 687 if(fPAIdEdxVector) delete fPAIdEdxVector; 686 688 687 fPAIdEdxVector = new G4PhysicsLogVector( (*( 689 fPAIdEdxVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 688 fPAIdEdxVector->PutValue(fPAIbin-1,result); 690 fPAIdEdxVector->PutValue(fPAIbin-1,result); 689 691 690 for( i = fIntervalNumber - 1; i >= 0; i-- ) 692 for( i = fIntervalNumber - 1; i >= 0; i-- ) 691 { 693 { 692 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 694 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 693 } 695 } 694 if (i < 0) i = 0; // Tmax should be more tha 696 if (i < 0) i = 0; // Tmax should be more than 695 // first ionisation potent 697 // first ionisation potential 696 fIntervalTmax = i; 698 fIntervalTmax = i; 697 699 698 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 700 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 699 701 700 for( k = fPAIbin - 2; k >= 0; k-- ) 702 for( k = fPAIbin - 2; k >= 0; k-- ) 701 { 703 { 702 energy1 = fPAIdEdxVector->GetLowEdgeEnergy 704 energy1 = fPAIdEdxVector->GetLowEdgeEnergy(k); 703 energy2 = fPAIdEdxVector->GetLowEdgeEnergy 705 energy2 = fPAIdEdxVector->GetLowEdgeEnergy(k+1); 704 706 705 for( i = fIntervalTmax; i >= 0; i-- ) 707 for( i = fIntervalTmax; i >= 0; i-- ) 706 { 708 { 707 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 709 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 708 } 710 } 709 if(i < 0) i = 0; 711 if(i < 0) i = 0; 710 i2 = i; 712 i2 = i; 711 713 712 for( i = fIntervalTmax; i >= 0; i-- ) 714 for( i = fIntervalTmax; i >= 0; i-- ) 713 { 715 { 714 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 716 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 715 } 717 } 716 if(i < 0) i = 0; 718 if(i < 0) i = 0; 717 i1 = i; 719 i1 = i; 718 720 719 if( i1 == i2 ) 721 if( i1 == i2 ) 720 { 722 { 721 fCurrentInterval = i1; 723 fCurrentInterval = i1; 722 result += integral.Legendre10(this,&G4In 724 result += integral.Legendre10(this,&G4InitXscPAI::DifPAIdEdx, 723 energy1,en 725 energy1,energy2); 724 fPAIdEdxVector->PutValue(k,result); 726 fPAIdEdxVector->PutValue(k,result); 725 } 727 } 726 else 728 else 727 { 729 { 728 for( i = i2; i >= i1; i-- ) 730 for( i = i2; i >= i1; i-- ) 729 { 731 { 730 fCurrentInterval = i; 732 fCurrentInterval = i; 731 733 732 if( i==i2 ) result += integral. 734 if( i==i2 ) result += integral.Legendre10(this, 733 &G4InitXscPAI::DifP 735 &G4InitXscPAI::DifPAIdEdx, 734 (*(*fMatSandiaMatri 736 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 735 737 736 else if( i == i1 ) result += integral.Legend 738 else if( i == i1 ) result += integral.Legendre10(this, 737 &G4InitXscPAI::DifP 739 &G4InitXscPAI::DifPAIdEdx,energy1, 738 (*(*fMatSandiaMatri 740 (*(*fMatSandiaMatrix)[i+1])[0]); 739 741 740 else result += integral. 742 else result += integral.Legendre10(this, 741 &G4InitXscPAI::DifP 743 &G4InitXscPAI::DifPAIdEdx, 742 (*(*fMatSandiaMatrix)[i 744 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 743 } 745 } 744 fPAIdEdxVector->PutValue(k,result); 746 fPAIdEdxVector->PutValue(k,result); 745 } 747 } 746 // G4cout<<k<<"\t"<<result<<G4endl; 748 // G4cout<<k<<"\t"<<result<<G4endl; 747 } 749 } 748 return ; 750 return ; 749 } 751 } 750 752 751 ////////////////////////////////////////////// 753 //////////////////////////////////////////////////////////////////////// 752 // 754 // 753 // Calculation of the PAI Cerenkov integral cr 755 // Calculation of the PAI Cerenkov integral cross-section 754 // fIntegralCrenkov[1] = specific Crenkov ioni 756 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm 755 // and fIntegralCerenkov[0] = mean Cerenkov lo 757 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm in keV/cm 756 758 757 void G4InitXscPAI::IntegralCherenkov(G4double 759 void G4InitXscPAI::IntegralCherenkov(G4double bg2, G4double Tmax) 758 { 760 { 759 G4int i,k,i1,i2; 761 G4int i,k,i1,i2; 760 G4double energy1, energy2, beta2, module2, c 762 G4double energy1, energy2, beta2, module2, cos2, width, result = 0.; 761 763 762 fBetaGammaSq = bg2; 764 fBetaGammaSq = bg2; 763 fTmax = Tmax; 765 fTmax = Tmax; 764 beta2 = bg2/(1+bg2); 766 beta2 = bg2/(1+bg2); 765 767 766 delete fPAIphotonVector; << 768 if(fPAIphotonVector) delete fPAIphotonVector; 767 delete fChCosSqVector; << 769 if(fChCosSqVector) delete fChCosSqVector; 768 delete fChWidthVector; << 770 if(fChWidthVector) delete fChWidthVector; 769 771 770 fPAIphotonVector = new G4PhysicsLogVector( ( 772 fPAIphotonVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 771 fChCosSqVector = new G4PhysicsLogVector( (*( 773 fChCosSqVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 772 fChWidthVector = new G4PhysicsLogVector( (*( 774 fChWidthVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 773 775 774 fPAIphotonVector->PutValue(fPAIbin-1,result) 776 fPAIphotonVector->PutValue(fPAIbin-1,result); 775 fChCosSqVector->PutValue(fPAIbin-1,1.); 777 fChCosSqVector->PutValue(fPAIbin-1,1.); 776 fChWidthVector->PutValue(fPAIbin-1,1e-7); 778 fChWidthVector->PutValue(fPAIbin-1,1e-7); 777 779 778 for( i = fIntervalNumber - 1; i >= 0; i-- ) 780 for( i = fIntervalNumber - 1; i >= 0; i-- ) 779 { 781 { 780 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 782 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 781 } 783 } 782 if (i < 0) i = 0; // Tmax should be more tha 784 if (i < 0) i = 0; // Tmax should be more than 783 // first ionisation potent 785 // first ionisation potential 784 fIntervalTmax = i; 786 fIntervalTmax = i; 785 787 786 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 788 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 787 789 788 for( k = fPAIbin - 2; k >= 0; k-- ) 790 for( k = fPAIbin - 2; k >= 0; k-- ) 789 { 791 { 790 energy1 = fPAIphotonVector->GetLowEdgeEner 792 energy1 = fPAIphotonVector->GetLowEdgeEnergy(k); 791 energy2 = fPAIphotonVector->GetLowEdgeEner 793 energy2 = fPAIphotonVector->GetLowEdgeEnergy(k+1); 792 794 793 for( i = fIntervalTmax; i >= 0; i-- ) 795 for( i = fIntervalTmax; i >= 0; i-- ) 794 { 796 { 795 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 797 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 796 } 798 } 797 if(i < 0) i = 0; 799 if(i < 0) i = 0; 798 i2 = i; 800 i2 = i; 799 801 800 for( i = fIntervalTmax; i >= 0; i-- ) 802 for( i = fIntervalTmax; i >= 0; i-- ) 801 { 803 { 802 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 804 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 803 } 805 } 804 if(i < 0) i = 0; 806 if(i < 0) i = 0; 805 i1 = i; 807 i1 = i; 806 808 807 module2 = ModuleSqDielectricConst(i1,energ 809 module2 = ModuleSqDielectricConst(i1,energy1); 808 cos2 = RePartDielectricConst(energy1)/m 810 cos2 = RePartDielectricConst(energy1)/module2/beta2; 809 width = ImPartDielectricConst(i1,energy1 811 width = ImPartDielectricConst(i1,energy1)/module2/beta2; 810 812 811 fChCosSqVector->PutValue(k,cos2); 813 fChCosSqVector->PutValue(k,cos2); 812 fChWidthVector->PutValue(k,width); 814 fChWidthVector->PutValue(k,width); 813 815 814 if( i1 == i2 ) 816 if( i1 == i2 ) 815 { 817 { 816 fCurrentInterval = i1; 818 fCurrentInterval = i1; 817 result += integral.Legendre10(this,&G4In 819 result += integral.Legendre10(this,&G4InitXscPAI::PAIdNdxCherenkov, 818 energy1,en 820 energy1,energy2); 819 fPAIphotonVector->PutValue(k,result); 821 fPAIphotonVector->PutValue(k,result); 820 822 821 } 823 } 822 else 824 else 823 { 825 { 824 for( i = i2; i >= i1; i-- ) 826 for( i = i2; i >= i1; i-- ) 825 { 827 { 826 fCurrentInterval = i; 828 fCurrentInterval = i; 827 829 828 if( i==i2 ) result += integral. 830 if( i==i2 ) result += integral.Legendre10(this, 829 &G4InitXscPAI::PAId 831 &G4InitXscPAI::PAIdNdxCherenkov, 830 (*(*fMatSandiaMatri 832 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 831 833 832 else if( i == i1 ) result += integral.Legend 834 else if( i == i1 ) result += integral.Legendre10(this, 833 &G4InitXscPAI::PAId 835 &G4InitXscPAI::PAIdNdxCherenkov,energy1, 834 (*(*fMatSandiaMatri 836 (*(*fMatSandiaMatrix)[i+1])[0]); 835 837 836 else result += integral. 838 else result += integral.Legendre10(this, 837 &G4InitXscPAI::PAId 839 &G4InitXscPAI::PAIdNdxCherenkov, 838 (*(*fMatSandiaMatrix)[i 840 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 839 } 841 } 840 fPAIphotonVector->PutValue(k,result); 842 fPAIphotonVector->PutValue(k,result); 841 } 843 } 842 // G4cout<<k<<"\t"<<result<<G4endl; 844 // G4cout<<k<<"\t"<<result<<G4endl; 843 } 845 } 844 return; 846 return; 845 } // end of IntegralCerenkov 847 } // end of IntegralCerenkov 846 848 847 ////////////////////////////////////////////// 849 //////////////////////////////////////////////////////////////////////// 848 // 850 // 849 // Calculation of the PAI Plasmon integral cro 851 // Calculation of the PAI Plasmon integral cross-section 850 // fIntegralPlasmon[1] = splasmon primary ioni 852 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm 851 // and fIntegralPlasmon[0] = mean plasmon loss 853 // and fIntegralPlasmon[0] = mean plasmon loss per cm in keV/cm 852 854 853 void G4InitXscPAI::IntegralPlasmon(G4double bg 855 void G4InitXscPAI::IntegralPlasmon(G4double bg2, G4double Tmax) 854 { 856 { 855 G4int i,k,i1,i2; 857 G4int i,k,i1,i2; 856 G4double energy1, energy2, result = 0.; 858 G4double energy1, energy2, result = 0.; 857 859 858 fBetaGammaSq = bg2; 860 fBetaGammaSq = bg2; 859 fTmax = Tmax; 861 fTmax = Tmax; 860 862 861 delete fPAIelectronVector; << 863 if(fPAIelectronVector) delete fPAIelectronVector; 862 864 863 fPAIelectronVector = new G4PhysicsLogVector( 865 fPAIelectronVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 864 fPAIelectronVector->PutValue(fPAIbin-1,resul 866 fPAIelectronVector->PutValue(fPAIbin-1,result); 865 867 866 for( i = fIntervalNumber - 1; i >= 0; i-- ) 868 for( i = fIntervalNumber - 1; i >= 0; i-- ) 867 { 869 { 868 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 870 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 869 } 871 } 870 if (i < 0) i = 0; // Tmax should be more tha 872 if (i < 0) i = 0; // Tmax should be more than 871 // first ionisation potent 873 // first ionisation potential 872 fIntervalTmax = i; 874 fIntervalTmax = i; 873 875 874 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 876 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 875 877 876 for( k = fPAIbin - 2; k >= 0; k-- ) 878 for( k = fPAIbin - 2; k >= 0; k-- ) 877 { 879 { 878 energy1 = fPAIelectronVector->GetLowEdgeEn 880 energy1 = fPAIelectronVector->GetLowEdgeEnergy(k); 879 energy2 = fPAIelectronVector->GetLowEdgeEn 881 energy2 = fPAIelectronVector->GetLowEdgeEnergy(k+1); 880 882 881 for( i = fIntervalTmax; i >= 0; i-- ) 883 for( i = fIntervalTmax; i >= 0; i-- ) 882 { 884 { 883 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 885 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 884 } 886 } 885 if(i < 0) i = 0; 887 if(i < 0) i = 0; 886 i2 = i; 888 i2 = i; 887 889 888 for( i = fIntervalTmax; i >= 0; i-- ) 890 for( i = fIntervalTmax; i >= 0; i-- ) 889 { 891 { 890 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 892 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 891 } 893 } 892 if(i < 0) i = 0; 894 if(i < 0) i = 0; 893 i1 = i; 895 i1 = i; 894 896 895 if( i1 == i2 ) 897 if( i1 == i2 ) 896 { 898 { 897 fCurrentInterval = i1; 899 fCurrentInterval = i1; 898 result += integral.Legendre10(this,&G4In 900 result += integral.Legendre10(this,&G4InitXscPAI::PAIdNdxPlasmon, 899 energy1,en 901 energy1,energy2); 900 fPAIelectronVector->PutValue(k,result); 902 fPAIelectronVector->PutValue(k,result); 901 } 903 } 902 else 904 else 903 { 905 { 904 for( i = i2; i >= i1; i-- ) 906 for( i = i2; i >= i1; i-- ) 905 { 907 { 906 fCurrentInterval = i; 908 fCurrentInterval = i; 907 909 908 if( i==i2 ) result += integral. 910 if( i==i2 ) result += integral.Legendre10(this, 909 &G4InitXscPAI::PAId 911 &G4InitXscPAI::PAIdNdxPlasmon, 910 (*(*fMatSandiaMatri 912 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 911 913 912 else if( i == i1 ) result += integral.Legend 914 else if( i == i1 ) result += integral.Legendre10(this, 913 &G4InitXscPAI::PAId 915 &G4InitXscPAI::PAIdNdxPlasmon,energy1, 914 (*(*fMatSandiaMatri 916 (*(*fMatSandiaMatrix)[i+1])[0]); 915 917 916 else result += integral. 918 else result += integral.Legendre10(this, 917 &G4InitXscPAI::PAId 919 &G4InitXscPAI::PAIdNdxPlasmon, 918 (*(*fMatSandiaMatrix)[i 920 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 919 } 921 } 920 fPAIelectronVector->PutValue(k,result); 922 fPAIelectronVector->PutValue(k,result); 921 } 923 } 922 // G4cout<<k<<"\t"<<result<<G4endl; 924 // G4cout<<k<<"\t"<<result<<G4endl; 923 } 925 } 924 return; 926 return; 925 } // end of IntegralPlasmon 927 } // end of IntegralPlasmon 926 928 927 929 928 ////////////////////////////////////////////// 930 ///////////////////////////////////////////////////////////////////////// 929 // 931 // 930 // 932 // 931 933 932 G4double G4InitXscPAI::GetPhotonLambda( G4doub 934 G4double G4InitXscPAI::GetPhotonLambda( G4double omega ) 933 { 935 { 934 G4int i ; 936 G4int i ; 935 G4double omega2, omega3, omega4, a1, a2, a3, 937 G4double omega2, omega3, omega4, a1, a2, a3, a4, lambda ; 936 938 937 omega2 = omega*omega ; 939 omega2 = omega*omega ; 938 omega3 = omega2*omega ; 940 omega3 = omega2*omega ; 939 omega4 = omega2*omega2 ; 941 omega4 = omega2*omega2 ; 940 942 941 for(i = 0; i < fIntervalNumber;i++) 943 for(i = 0; i < fIntervalNumber;i++) 942 { 944 { 943 if( omega < (*(*fMatSandiaMatrix)[i])[0] ) 945 if( omega < (*(*fMatSandiaMatrix)[i])[0] ) break ; 944 } 946 } 945 if( i == 0 ) 947 if( i == 0 ) 946 { 948 { 947 G4cout<<"Warning: energy in G4InitXscPAI:: 949 G4cout<<"Warning: energy in G4InitXscPAI::GetPhotonLambda < I1"<<G4endl; 948 } 950 } 949 else i-- ; 951 else i-- ; 950 952 951 a1 = (*(*fMatSandiaMatrix)[i])[1]; 953 a1 = (*(*fMatSandiaMatrix)[i])[1]; 952 a2 = (*(*fMatSandiaMatrix)[i])[2]; 954 a2 = (*(*fMatSandiaMatrix)[i])[2]; 953 a3 = (*(*fMatSandiaMatrix)[i])[3]; 955 a3 = (*(*fMatSandiaMatrix)[i])[3]; 954 a4 = (*(*fMatSandiaMatrix)[i])[4]; 956 a4 = (*(*fMatSandiaMatrix)[i])[4]; 955 957 956 lambda = 1./(a1/omega + a2/omega2 + a3/omega 958 lambda = 1./(a1/omega + a2/omega2 + a3/omega3 + a4/omega4); 957 959 958 return lambda ; 960 return lambda ; 959 } 961 } 960 962 961 ////////////////////////////////////////////// 963 ///////////////////////////////////////////////////////////////////////// 962 // 964 // 963 // 965 // 964 966 965 ////////////////////////////////////////////// 967 ///////////////////////////////////////////////////////////////////////// 966 // 968 // 967 // 969 // 968 970 969 G4double G4InitXscPAI::GetStepEnergyLoss( G4do 971 G4double G4InitXscPAI::GetStepEnergyLoss( G4double step ) 970 { 972 { 971 G4double loss = 0.0 ; 973 G4double loss = 0.0 ; 972 loss *= step; 974 loss *= step; 973 975 974 return loss ; 976 return loss ; 975 } 977 } 976 978 977 ////////////////////////////////////////////// 979 ///////////////////////////////////////////////////////////////////////// 978 // 980 // 979 // 981 // 980 982 981 G4double G4InitXscPAI::GetStepCerenkovLoss( G4 983 G4double G4InitXscPAI::GetStepCerenkovLoss( G4double step ) 982 { 984 { 983 G4double loss = 0.0 ; 985 G4double loss = 0.0 ; 984 loss *= step; 986 loss *= step; 985 987 986 return loss ; 988 return loss ; 987 } 989 } 988 990 989 ////////////////////////////////////////////// 991 ///////////////////////////////////////////////////////////////////////// 990 // 992 // 991 // 993 // 992 994 993 G4double G4InitXscPAI::GetStepPlasmonLoss( G4d 995 G4double G4InitXscPAI::GetStepPlasmonLoss( G4double step ) 994 { 996 { 995 997 996 998 997 G4double loss = 0.0 ; 999 G4double loss = 0.0 ; 998 loss *= step; 1000 loss *= step; 999 return loss ; 1001 return loss ; 1000 } 1002 } 1001 1003 1002 1004 1003 // 1005 // 1004 // end of G4InitXscPAI implementation file 1006 // end of G4InitXscPAI implementation file 1005 // 1007 // 1006 ///////////////////////////////////////////// 1008 //////////////////////////////////////////////////////////////////////////// 1007 1009 1008 1010