Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4InitXscPAI.cc,v 1.7 2004/12/01 19:37:14 vnivanch Exp $ >> 25 // GEANT4 tag $Name: geant4-07-00-patch-01 $ >> 26 // 27 // 27 // 28 // G4InitXscPAI.cc -- class implementation fil 28 // G4InitXscPAI.cc -- class implementation file 29 // 29 // 30 // GEANT 4 class implementation file 30 // GEANT 4 class implementation file 31 // 31 // 32 // For information related to this code, pleas 32 // For information related to this code, please, contact 33 // the Geant4 Collaboration. 33 // the Geant4 Collaboration. 34 // 34 // 35 // R&D: Vladimir.Grichine@cern.ch 35 // R&D: Vladimir.Grichine@cern.ch 36 // 36 // 37 // History: 37 // History: 38 // 38 // 39 39 40 40 41 41 42 #include "G4InitXscPAI.hh" 42 #include "G4InitXscPAI.hh" 43 43 44 #include "globals.hh" 44 #include "globals.hh" 45 #include "G4PhysicalConstants.hh" << 46 #include "G4SystemOfUnits.hh" << 47 #include "G4ios.hh" 45 #include "G4ios.hh" 48 #include "G4Poisson.hh" 46 #include "G4Poisson.hh" 49 #include "G4Integrator.hh" 47 #include "G4Integrator.hh" 50 #include "G4Material.hh" 48 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 49 #include "G4MaterialCutsCouple.hh" 52 #include "G4SandiaTable.hh" 50 #include "G4SandiaTable.hh" 53 51 54 52 55 53 56 // Local class constants 54 // Local class constants 57 55 58 const G4double G4InitXscPAI::fDelta = 0 56 const G4double G4InitXscPAI::fDelta = 0.005 ; // energy shift from interval border 59 const G4int G4InitXscPAI::fPAIbin = 1 57 const G4int G4InitXscPAI::fPAIbin = 100 ; // size of energy transfer vectors 60 const G4double G4InitXscPAI::fSolidDensity = 0 58 const G4double G4InitXscPAI::fSolidDensity = 0.05*g/cm3 ; // ~gas-solid border 61 59 62 ////////////////////////////////////////////// 60 ////////////////////////////////////////////////////////////////// 63 // 61 // 64 // Constructor 62 // Constructor 65 // 63 // 66 64 67 using namespace std; 65 using namespace std; 68 66 69 G4InitXscPAI::G4InitXscPAI( const G4MaterialCu 67 G4InitXscPAI::G4InitXscPAI( const G4MaterialCutsCouple* matCC) 70 : fPAIxscVector(nullptr), << 68 : fPAIxscVector(NULL), 71 fPAIdEdxVector(nullptr), << 69 fPAIdEdxVector(NULL), 72 fPAIphotonVector(nullptr), << 70 fPAIphotonVector(NULL), 73 fPAIelectronVector(nullptr), << 71 fPAIelectronVector(NULL), 74 fChCosSqVector(nullptr), << 72 fChCosSqVector(NULL), 75 fChWidthVector(nullptr) << 73 fChWidthVector(NULL) 76 { 74 { 77 G4int i, j, matIndex; 75 G4int i, j, matIndex; 78 76 79 fDensity = matCC->GetMaterial()->Get 77 fDensity = matCC->GetMaterial()->GetDensity(); 80 fElectronDensity = matCC->GetMaterial()->Get 78 fElectronDensity = matCC->GetMaterial()->GetElectronDensity(); 81 matIndex = (G4int)matCC->GetMaterial << 79 matIndex = matCC->GetMaterial()->GetIndex(); 82 80 83 fSandia = new G4SandiaTable(matInde 81 fSandia = new G4SandiaTable(matIndex); 84 fIntervalNumber = fSandia->GetMaxInterval() 82 fIntervalNumber = fSandia->GetMaxInterval()-1; 85 83 86 fMatSandiaMatrix = new G4OrderedTable(); 84 fMatSandiaMatrix = new G4OrderedTable(); 87 85 88 for (i = 0; i < fIntervalNumber; ++i) << 86 for (i = 0; i < fIntervalNumber; i++) 89 { 87 { 90 fMatSandiaMatrix->push_back(new G4DataVect 88 fMatSandiaMatrix->push_back(new G4DataVector(5,0.)); 91 } 89 } 92 for (i = 0; i < fIntervalNumber; ++i) << 90 for (G4int i = 0; i < fIntervalNumber; i++) 93 { 91 { 94 (*(*fMatSandiaMatrix)[i])[0] = fSandia->Ge 92 (*(*fMatSandiaMatrix)[i])[0] = fSandia->GetSandiaMatTable(i,0); 95 93 96 for(j = 1; j < 5 ; ++j) << 94 for(j = 1; j < 5 ; j++) 97 { 95 { 98 (*(*fMatSandiaMatrix)[i])[j] = fSandia-> 96 (*(*fMatSandiaMatrix)[i])[j] = fSandia->GetSandiaMatTable(i,j)*fDensity; 99 } 97 } 100 } 98 } 101 KillCloseIntervals(); 99 KillCloseIntervals(); 102 Normalisation(); 100 Normalisation(); 103 fBetaGammaSq = fTmax = 0.0; << 101 104 fIntervalTmax = fCurrentInterval = 0; << 105 } 102 } 106 103 107 104 108 105 109 106 110 ////////////////////////////////////////////// 107 //////////////////////////////////////////////////////////////////////////// 111 // 108 // 112 // Destructor 109 // Destructor 113 110 114 G4InitXscPAI::~G4InitXscPAI() 111 G4InitXscPAI::~G4InitXscPAI() 115 { 112 { 116 delete fPAIxscVector; << 113 if(fPAIxscVector) delete fPAIxscVector; 117 delete fPAIdEdxVector; << 114 if(fPAIdEdxVector) delete fPAIdEdxVector; 118 delete fPAIphotonVector; << 115 if(fPAIphotonVector) delete fPAIphotonVector; 119 delete fPAIelectronVector; << 116 if(fPAIelectronVector) delete fPAIelectronVector; 120 delete fChCosSqVector; << 117 if(fChCosSqVector) delete fChCosSqVector; 121 delete fChWidthVector; << 118 if(fChWidthVector) delete fChWidthVector; 122 delete fSandia; << 123 delete fMatSandiaMatrix; << 124 } 119 } 125 120 126 ////////////////////////////////////////////// 121 //////////////////////////////////////////////////////////////////////// 127 // 122 // 128 // Kill close intervals, recalculate fInterval 123 // Kill close intervals, recalculate fIntervalNumber 129 124 130 void G4InitXscPAI::KillCloseIntervals() 125 void G4InitXscPAI::KillCloseIntervals() 131 { 126 { 132 G4int i, j, k; 127 G4int i, j, k; 133 G4double energy1, energy2; 128 G4double energy1, energy2; 134 129 135 for( i = 0 ; i < fIntervalNumber - 1 ; i++ ) 130 for( i = 0 ; i < fIntervalNumber - 1 ; i++ ) 136 { 131 { 137 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 132 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 138 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 133 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 139 134 140 if( energy2 - energy1 > 1.5*fDelta*(energy 135 if( energy2 - energy1 > 1.5*fDelta*(energy1 + energy2) ) continue ; 141 else 136 else 142 { 137 { 143 for(j = i; j < fIntervalNumber-1; j++) 138 for(j = i; j < fIntervalNumber-1; j++) 144 { 139 { 145 for( k = 0; k < 5; k++ ) 140 for( k = 0; k < 5; k++ ) 146 { 141 { 147 (*(*fMatSandiaMatrix)[j])[k] = (*(*f 142 (*(*fMatSandiaMatrix)[j])[k] = (*(*fMatSandiaMatrix)[j+1])[k]; 148 } 143 } 149 } 144 } 150 fIntervalNumber-- ; 145 fIntervalNumber-- ; 151 i-- ; 146 i-- ; 152 } 147 } 153 } 148 } 154 149 155 } 150 } 156 151 157 ////////////////////////////////////////////// 152 //////////////////////////////////////////////////////////////////////// 158 // 153 // 159 // Kill close intervals, recalculate fInterval 154 // Kill close intervals, recalculate fIntervalNumber 160 155 161 void G4InitXscPAI::Normalisation() 156 void G4InitXscPAI::Normalisation() 162 { 157 { 163 G4int i, j; 158 G4int i, j; 164 G4double energy1, energy2, /*delta,*/ cof; / << 159 G4double energy1, energy2, delta, cof; // , shift; 165 160 166 energy1 = (*(*fMatSandiaMatrix)[fIntervalNum 161 energy1 = (*(*fMatSandiaMatrix)[fIntervalNumber-1])[0]; 167 energy2 = 2.*(*(*fMatSandiaMatrix)[fInterval 162 energy2 = 2.*(*(*fMatSandiaMatrix)[fIntervalNumber-1])[0]; 168 163 169 164 170 cof = RutherfordIntegral(fIntervalNumber-1,e 165 cof = RutherfordIntegral(fIntervalNumber-1,energy1,energy2); 171 166 172 for( i = fIntervalNumber-2; i >= 0; i-- ) 167 for( i = fIntervalNumber-2; i >= 0; i-- ) 173 { 168 { 174 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 169 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 175 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 170 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 176 171 177 cof += RutherfordIntegral(i,energy1,energy 172 cof += RutherfordIntegral(i,energy1,energy2); 178 // G4cout<<"norm. cof = "<<cof<<G4endl; 173 // G4cout<<"norm. cof = "<<cof<<G4endl; 179 } 174 } 180 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fin 175 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2 ; 181 fNormalizationCof *= fElectronDensity; 176 fNormalizationCof *= fElectronDensity; 182 //delta = fNormalizationCof - cof; << 177 delta = fNormalizationCof - cof; 183 fNormalizationCof /= cof; 178 fNormalizationCof /= cof; 184 // G4cout<<"G4InitXscPAI::fNormalizationCof 179 // G4cout<<"G4InitXscPAI::fNormalizationCof/cof = "<<fNormalizationCof 185 // <<"; at delta ="<<delta<<G4endl ; 180 // <<"; at delta ="<<delta<<G4endl ; 186 181 187 for (i = 0; i < fIntervalNumber; i++) // ren << 182 for (G4int i = 0; i < fIntervalNumber; i++) // renormalisation on QM sum rule 188 { 183 { 189 for(j = 1; j < 5 ; j++) 184 for(j = 1; j < 5 ; j++) 190 { 185 { 191 (*(*fMatSandiaMatrix)[i])[j] *= fNormali 186 (*(*fMatSandiaMatrix)[i])[j] *= fNormalizationCof; 192 } 187 } 193 } 188 } 194 /* 189 /* 195 if(delta > 0) // shift the first energy inte 190 if(delta > 0) // shift the first energy interval 196 { 191 { 197 for(i=1;i<100;i++) 192 for(i=1;i<100;i++) 198 { 193 { 199 energy1 = (1.-i/100.)*(*(*fMatSandiaMatr 194 energy1 = (1.-i/100.)*(*(*fMatSandiaMatrix)[0])[0]; 200 energy2 = (*(*fMatSandiaMatrix)[0])[0]; 195 energy2 = (*(*fMatSandiaMatrix)[0])[0]; 201 shift = RutherfordIntegral(0,energy1,e 196 shift = RutherfordIntegral(0,energy1,energy2); 202 G4cout<<shift<<"\t"; 197 G4cout<<shift<<"\t"; 203 if(shift >= delta) break; 198 if(shift >= delta) break; 204 } 199 } 205 (*(*fMatSandiaMatrix)[0])[0] = energy1; 200 (*(*fMatSandiaMatrix)[0])[0] = energy1; 206 cof += shift; 201 cof += shift; 207 } 202 } 208 else if(delta < 0) 203 else if(delta < 0) 209 { 204 { 210 for(i=1;i<100;i++) 205 for(i=1;i<100;i++) 211 { 206 { 212 energy1 = (*(*fMatSandiaMatrix)[0])[0]; 207 energy1 = (*(*fMatSandiaMatrix)[0])[0]; 213 energy2 = (*(*fMatSandiaMatrix)[0])[0] + 208 energy2 = (*(*fMatSandiaMatrix)[0])[0] + 214 ( (*(*fMatSandiaMatrix)[0])[0] - 209 ( (*(*fMatSandiaMatrix)[0])[0] - (*(*fMatSandiaMatrix)[0])[0] )*i/100.; 215 shift = RutherfordIntegral(0,energy1,e 210 shift = RutherfordIntegral(0,energy1,energy2); 216 if( shift >= std::abs(delta) ) break; << 211 if( shift >= fabs(delta) ) break; 217 } 212 } 218 (*(*fMatSandiaMatrix)[0])[0] = energy2; 213 (*(*fMatSandiaMatrix)[0])[0] = energy2; 219 cof -= shift; 214 cof -= shift; 220 } 215 } 221 G4cout<<G4cout<<"G4InitXscPAI::fNormalizatio 216 G4cout<<G4cout<<"G4InitXscPAI::fNormalizationCof/cof = "<<fNormalizationCof/cof 222 <<"; at delta ="<<delta<<" and i = " 217 <<"; at delta ="<<delta<<" and i = "<<i<<G4endl ; 223 */ 218 */ 224 } 219 } 225 220 >> 221 >> 222 >> 223 >> 224 226 ////////////////////////////////////////////// 225 //////////////////////////////////////////////////////////////////// 227 // 226 // 228 // Integration over electrons that could be co 227 // Integration over electrons that could be considered 229 // quasi-free at energy transfer of interest 228 // quasi-free at energy transfer of interest 230 229 231 G4double G4InitXscPAI::RutherfordIntegral( G4i 230 G4double G4InitXscPAI::RutherfordIntegral( G4int k, 232 G4double x1, 231 G4double x1, 233 G4double x2 ) 232 G4double x2 ) 234 { 233 { 235 G4double c1, c2, c3, a1, a2, a3, a4 ; 234 G4double c1, c2, c3, a1, a2, a3, a4 ; 236 235 237 a1 = (*(*fMatSandiaMatrix)[k])[1]; 236 a1 = (*(*fMatSandiaMatrix)[k])[1]; 238 a2 = (*(*fMatSandiaMatrix)[k])[2]; 237 a2 = (*(*fMatSandiaMatrix)[k])[2]; 239 a3 = (*(*fMatSandiaMatrix)[k])[3]; 238 a3 = (*(*fMatSandiaMatrix)[k])[3]; 240 a4 = (*(*fMatSandiaMatrix)[k])[4]; 239 a4 = (*(*fMatSandiaMatrix)[k])[4]; 241 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<< 240 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl; 242 c1 = (x2 - x1)/x1/x2 ; 241 c1 = (x2 - x1)/x1/x2 ; 243 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2 ; 242 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2 ; 244 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x 243 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2 ; 245 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "< 244 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl; 246 245 247 return a1*log(x2/x1) + a2*c1 + a3*c2/2 + a 246 return a1*log(x2/x1) + a2*c1 + a3*c2/2 + a4*c3/3 ; 248 247 249 } // end of RutherfordIntegral 248 } // end of RutherfordIntegral 250 249 251 ////////////////////////////////////////////// 250 /////////////////////////////////////////////////////////////// 252 // 251 // 253 // Integrate photo-absorption cross-section f 252 // Integrate photo-absorption cross-section from I1 up to omega 254 253 255 G4double G4InitXscPAI::IntegralTerm(G4double o 254 G4double G4InitXscPAI::IntegralTerm(G4double omega) 256 { 255 { 257 G4int i; 256 G4int i; 258 G4double energy1, energy2, result = 0.; 257 G4double energy1, energy2, result = 0.; 259 258 260 for( i = 0; i <= fIntervalTmax; i++ ) 259 for( i = 0; i <= fIntervalTmax; i++ ) 261 { 260 { 262 if(i == fIntervalTmax) 261 if(i == fIntervalTmax) 263 { 262 { 264 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 263 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 265 result += RutherfordIntegral(i,energy1,o 264 result += RutherfordIntegral(i,energy1,omega); 266 } 265 } 267 else 266 else 268 { 267 { 269 if( omega <= (*(*fMatSandiaMatrix)[i+1]) 268 if( omega <= (*(*fMatSandiaMatrix)[i+1])[0]) 270 { 269 { 271 energy1 = (*(*fMatSandiaMatrix)[i])[0] 270 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 272 result += RutherfordIntegral(i,energy1 271 result += RutherfordIntegral(i,energy1,omega); 273 break; 272 break; 274 } 273 } 275 else 274 else 276 { 275 { 277 energy1 = (*(*fMatSandiaMatrix)[i])[0] 276 energy1 = (*(*fMatSandiaMatrix)[i])[0]; 278 energy2 = (*(*fMatSandiaMatrix)[i+1])[ 277 energy2 = (*(*fMatSandiaMatrix)[i+1])[0]; 279 result += RutherfordIntegral(i,energy1 278 result += RutherfordIntegral(i,energy1,energy2); 280 } 279 } 281 } 280 } 282 // G4cout<<"IntegralTerm<<"("<<omega<<")"< 281 // G4cout<<"IntegralTerm<<"("<<omega<<")"<<" = "<<result<<G4endl; 283 } 282 } 284 return result; 283 return result; 285 } 284 } 286 285 287 286 288 ////////////////////////////////////////////// 287 //////////////////////////////////////////////////////////////// 289 // 288 // 290 // Imaginary part of dielectric constant 289 // Imaginary part of dielectric constant 291 // (G4int k - interval number, G4double en1 - 290 // (G4int k - interval number, G4double en1 - energy point) 292 291 293 G4double G4InitXscPAI::ImPartDielectricConst( 292 G4double G4InitXscPAI::ImPartDielectricConst( G4int k , 294 G4double energy1 293 G4double energy1 ) 295 { 294 { 296 G4double energy2,energy3,energy4,a1,a2,a3,a 295 G4double energy2,energy3,energy4,a1,a2,a3,a4,result; 297 296 298 a1 = (*(*fMatSandiaMatrix)[k])[1]; 297 a1 = (*(*fMatSandiaMatrix)[k])[1]; 299 a2 = (*(*fMatSandiaMatrix)[k])[2]; 298 a2 = (*(*fMatSandiaMatrix)[k])[2]; 300 a3 = (*(*fMatSandiaMatrix)[k])[3]; 299 a3 = (*(*fMatSandiaMatrix)[k])[3]; 301 a4 = (*(*fMatSandiaMatrix)[k])[4]; 300 a4 = (*(*fMatSandiaMatrix)[k])[4]; 302 301 303 energy2 = energy1*energy1; 302 energy2 = energy1*energy1; 304 energy3 = energy2*energy1; 303 energy3 = energy2*energy1; 305 energy4 = energy3*energy1; 304 energy4 = energy3*energy1; 306 305 307 result = a1/energy1+a2/energy2+a3/energy3+ 306 result = a1/energy1+a2/energy2+a3/energy3+a4/energy4 ; 308 result *= hbarc/energy1 ; 307 result *= hbarc/energy1 ; 309 308 310 return result ; 309 return result ; 311 310 312 } // end of ImPartDielectricConst 311 } // end of ImPartDielectricConst 313 312 314 ////////////////////////////////////////////// 313 //////////////////////////////////////////////////////////////// 315 // 314 // 316 // Modulus squared of dielectric constant 315 // Modulus squared of dielectric constant 317 // (G4int k - interval number, G4double omega 316 // (G4int k - interval number, G4double omega - energy point) 318 317 319 G4double G4InitXscPAI::ModuleSqDielectricConst 318 G4double G4InitXscPAI::ModuleSqDielectricConst( G4int k , 320 G4double omega ) 319 G4double omega ) 321 { 320 { 322 G4double eIm2, eRe2, result; 321 G4double eIm2, eRe2, result; 323 322 324 result = ImPartDielectricConst(k,omega); 323 result = ImPartDielectricConst(k,omega); 325 eIm2 = result*result; 324 eIm2 = result*result; 326 325 327 result = RePartDielectricConst(omega); 326 result = RePartDielectricConst(omega); 328 eRe2 = result*result; 327 eRe2 = result*result; 329 328 330 result = eIm2 + eRe2; 329 result = eIm2 + eRe2; 331 330 332 return result ; 331 return result ; 333 } 332 } 334 333 335 334 336 ////////////////////////////////////////////// 335 ////////////////////////////////////////////////////////////////////////////// 337 // 336 // 338 // Real part of dielectric constant minus unit 337 // Real part of dielectric constant minus unit: epsilon_1 - 1 339 // (G4double enb - energy point) 338 // (G4double enb - energy point) 340 // 339 // 341 340 342 G4double G4InitXscPAI::RePartDielectricConst(G 341 G4double G4InitXscPAI::RePartDielectricConst(G4double enb) 343 { 342 { 344 G4int i; 343 G4int i; 345 G4double x0, x02, x03, x04, x05, x1, x2, a1 344 G4double x0, x02, x03, x04, x05, x1, x2, a1,a2,a3,a4,xx1 ,xx2 , xx12, 346 c1, c2, c3, cof1, cof2, xln1, xln2 345 c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result ; 347 346 348 x0 = enb ; 347 x0 = enb ; 349 result = 0 ; 348 result = 0 ; 350 349 351 for( i = 0; i < fIntervalNumber-1; i++) 350 for( i = 0; i < fIntervalNumber-1; i++) 352 { 351 { 353 x1 = (*(*fMatSandiaMatrix)[i])[0]; 352 x1 = (*(*fMatSandiaMatrix)[i])[0]; 354 x2 = (*(*fMatSandiaMatrix)[i+1])[0] ; 353 x2 = (*(*fMatSandiaMatrix)[i+1])[0] ; 355 354 356 a1 = (*(*fMatSandiaMatrix)[i])[1]; 355 a1 = (*(*fMatSandiaMatrix)[i])[1]; 357 a2 = (*(*fMatSandiaMatrix)[i])[2]; 356 a2 = (*(*fMatSandiaMatrix)[i])[2]; 358 a3 = (*(*fMatSandiaMatrix)[i])[3]; 357 a3 = (*(*fMatSandiaMatrix)[i])[3]; 359 a4 = (*(*fMatSandiaMatrix)[i])[4]; 358 a4 = (*(*fMatSandiaMatrix)[i])[4]; 360 359 361 if( std::abs(x0-x1) < 0.5*(x0+x1)*fDelta << 360 if( fabs(x0-x1) < 0.5*(x0+x1)*fDelta ) 362 { 361 { 363 if(x0 >= x1) x0 = x1*(1+fDelta); 362 if(x0 >= x1) x0 = x1*(1+fDelta); 364 else x0 = x1*(1-fDelta); 363 else x0 = x1*(1-fDelta); 365 } 364 } 366 if( std::abs(x0-x2) < 0.5*(x0+x2)*fDelta << 365 if( fabs(x0-x2) < 0.5*(x0+x2)*fDelta ) 367 { 366 { 368 if(x0 >= x2) x0 = x2*(1+fDelta); 367 if(x0 >= x2) x0 = x2*(1+fDelta); 369 else x0 = x2*(1-fDelta); 368 else x0 = x2*(1-fDelta); 370 } 369 } 371 xx1 = x1 - x0 ; 370 xx1 = x1 - x0 ; 372 xx2 = x2 - x0 ; 371 xx2 = x2 - x0 ; 373 xx12 = xx2/xx1 ; 372 xx12 = xx2/xx1 ; 374 373 375 if( xx12 < 0 ) xx12 = -xx12; 374 if( xx12 < 0 ) xx12 = -xx12; 376 375 377 xln1 = log(x2/x1) ; 376 xln1 = log(x2/x1) ; 378 xln2 = log(xx12) ; 377 xln2 = log(xx12) ; 379 xln3 = log((x2 + x0)/(x1 + x0)) ; 378 xln3 = log((x2 + x0)/(x1 + x0)) ; 380 379 381 x02 = x0*x0 ; 380 x02 = x0*x0 ; 382 x03 = x02*x0 ; 381 x03 = x02*x0 ; 383 x04 = x03*x0 ; 382 x04 = x03*x0 ; 384 x05 = x04*x0; 383 x05 = x04*x0; 385 384 386 c1 = (x2 - x1)/x1/x2 ; 385 c1 = (x2 - x1)/x1/x2 ; 387 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2 ; 386 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2 ; 388 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x 387 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2 ; 389 388 390 result -= (a1/x02 + a3/x04)*xln1 ; 389 result -= (a1/x02 + a3/x04)*xln1 ; 391 result -= (a2/x02 + a4/x04)*c1 ; 390 result -= (a2/x02 + a4/x04)*c1 ; 392 result -= a3*c2/2/x02 ; 391 result -= a3*c2/2/x02 ; 393 result -= a4*c3/3/x02 ; 392 result -= a4*c3/3/x02 ; 394 393 395 cof1 = a1/x02 + a3/x04 ; 394 cof1 = a1/x02 + a3/x04 ; 396 cof2 = a2/x03 + a4/x05 ; 395 cof2 = a2/x03 + a4/x05 ; 397 396 398 result += 0.5*(cof1 +cof2)*xln2 ; 397 result += 0.5*(cof1 +cof2)*xln2 ; 399 result += 0.5*(cof1 - cof2)*xln3 ; 398 result += 0.5*(cof1 - cof2)*xln3 ; 400 } 399 } 401 result *= 2*hbarc/pi ; 400 result *= 2*hbarc/pi ; 402 401 403 return result ; 402 return result ; 404 403 405 } // end of RePartDielectricConst 404 } // end of RePartDielectricConst 406 405 407 ////////////////////////////////////////////// 406 ////////////////////////////////////////////////////////////////////// 408 // 407 // 409 // PAI differential cross-section in terms of 408 // PAI differential cross-section in terms of 410 // simplified Allison's equation 409 // simplified Allison's equation 411 // 410 // 412 411 413 G4double G4InitXscPAI::DifPAIxSection( G4doubl 412 G4double G4InitXscPAI::DifPAIxSection( G4double omega ) 414 { 413 { 415 G4int i = fCurrentInterval; 414 G4int i = fCurrentInterval; 416 G4double betaGammaSq = fBetaGammaSq; 415 G4double betaGammaSq = fBetaGammaSq; 417 G4double integralTerm = IntegralTerm(omega); 416 G4double integralTerm = IntegralTerm(omega); 418 G4double be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,res 417 G4double be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,result ; 419 G4double epsilonRe = RePartDielectricConst(o 418 G4double epsilonRe = RePartDielectricConst(omega); 420 G4double epsilonIm = ImPartDielectricConst(i 419 G4double epsilonIm = ImPartDielectricConst(i,omega); 421 G4double be4 ; 420 G4double be4 ; 422 static const G4double betaBohr2 = fine_struc << 421 G4double betaBohr2 = fine_structure_const*fine_structure_const ; 423 static const G4double betaBohr4 = betaBohr2* << 422 G4double betaBohr4 = betaBohr2*betaBohr2*4.0 ; 424 be2 = betaGammaSq/(1 + betaGammaSq) ; 423 be2 = betaGammaSq/(1 + betaGammaSq) ; 425 be4 = be2*be2 ; 424 be4 = be2*be2 ; 426 425 427 cof = 1 ; 426 cof = 1 ; 428 x1 = log(2*electron_mass_c2/omega) ; 427 x1 = log(2*electron_mass_c2/omega) ; 429 428 430 if( betaGammaSq < 0.01 ) x2 = log(be2) ; 429 if( betaGammaSq < 0.01 ) x2 = log(be2) ; 431 else 430 else 432 { 431 { 433 x2 = -log( (1/betaGammaSq - epsilonRe)* 432 x2 = -log( (1/betaGammaSq - epsilonRe)* 434 (1/betaGammaSq - epsilonRe) + 433 (1/betaGammaSq - epsilonRe) + 435 epsilonIm*epsilonIm )/2 ; 434 epsilonIm*epsilonIm )/2 ; 436 } 435 } 437 if( epsilonIm == 0.0 || betaGammaSq < 0.01 436 if( epsilonIm == 0.0 || betaGammaSq < 0.01 ) 438 { 437 { 439 x6=0 ; 438 x6=0 ; 440 } 439 } 441 else 440 else 442 { 441 { 443 x3 = -epsilonRe + 1/betaGammaSq ; 442 x3 = -epsilonRe + 1/betaGammaSq ; 444 x5 = -1 - epsilonRe + be2*((1 +epsilonRe) 443 x5 = -1 - epsilonRe + be2*((1 +epsilonRe)*(1 + epsilonRe) + 445 epsilonIm*epsilonIm) ; 444 epsilonIm*epsilonIm) ; 446 445 447 x7 = atan2(epsilonIm,x3) ; 446 x7 = atan2(epsilonIm,x3) ; 448 x6 = x5 * x7 ; 447 x6 = x5 * x7 ; 449 } 448 } 450 // if(fImPartDielectricConst[i] == 0) x6 = 449 // if(fImPartDielectricConst[i] == 0) x6 = 0 ; 451 450 452 x4 = ((x1 + x2)*epsilonIm + x6)/hbarc ; 451 x4 = ((x1 + x2)*epsilonIm + x6)/hbarc ; 453 // if( x4 < 0.0 ) x4 = 0.0 ; 452 // if( x4 < 0.0 ) x4 = 0.0 ; 454 x8 = (1 + epsilonRe)*(1 + epsilonRe) + 453 x8 = (1 + epsilonRe)*(1 + epsilonRe) + 455 epsilonIm*epsilonIm; 454 epsilonIm*epsilonIm; 456 455 457 result = (x4 + cof*integralTerm/omega/omega 456 result = (x4 + cof*integralTerm/omega/omega) ; 458 if(result < 1.0e-8) result = 1.0e-8 ; 457 if(result < 1.0e-8) result = 1.0e-8 ; 459 result *= fine_structure_const/be2/pi ; 458 result *= fine_structure_const/be2/pi ; 460 // result *= (1-exp(-beta/betaBohr))*(1-e 459 // result *= (1-exp(-beta/betaBohr))*(1-exp(-beta/betaBohr)) ; 461 // result *= (1-exp(-be2/betaBohr2)) ; 460 // result *= (1-exp(-be2/betaBohr2)) ; 462 result *= (1-exp(-be4/betaBohr4)) ; 461 result *= (1-exp(-be4/betaBohr4)) ; 463 if(fDensity >= fSolidDensity) 462 if(fDensity >= fSolidDensity) 464 { 463 { 465 result /= x8 ; 464 result /= x8 ; 466 } 465 } 467 return result ; 466 return result ; 468 467 469 } // end of DifPAIxSection 468 } // end of DifPAIxSection 470 469 471 ////////////////////////////////////////////// 470 ////////////////////////////////////////////////////////////////////// 472 // 471 // 473 // Differential PAI dEdx(omega)=omega*dNdx(ome 472 // Differential PAI dEdx(omega)=omega*dNdx(omega) 474 // 473 // 475 474 476 G4double G4InitXscPAI::DifPAIdEdx( G4double om 475 G4double G4InitXscPAI::DifPAIdEdx( G4double omega ) 477 { 476 { 478 G4double dEdx = omega*DifPAIxSection(omega); 477 G4double dEdx = omega*DifPAIxSection(omega); 479 return dEdx; 478 return dEdx; 480 } 479 } 481 480 482 ////////////////////////////////////////////// 481 ////////////////////////////////////////////////////////////////////////// 483 // 482 // 484 // Calculation od dN/dx of collisions with cre 483 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons 485 484 486 G4double G4InitXscPAI::PAIdNdxCherenkov( G4dou 485 G4double G4InitXscPAI::PAIdNdxCherenkov( G4double omega ) 487 { 486 { 488 G4int i = fCurrentInterval; 487 G4int i = fCurrentInterval; 489 G4double betaGammaSq = fBetaGammaSq; 488 G4double betaGammaSq = fBetaGammaSq; 490 G4double epsilonRe = RePartDielectricConst(o 489 G4double epsilonRe = RePartDielectricConst(omega); 491 G4double epsilonIm = ImPartDielectricConst(i 490 G4double epsilonIm = ImPartDielectricConst(i,omega); 492 491 493 G4double /*cof,*/ logarithm, x3, x5, argumen << 492 G4double cof, logarithm, x3, x5, argument, modul2, dNdxC ; 494 G4double be2, be4; << 493 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr ; 495 494 496 //cof = 1.0 ; << 495 cof = 1.0 ; 497 static const G4double cofBetaBohr = 4.0 ; << 496 cofBetaBohr = 4.0 ; 498 static const G4double betaBohr2 = fine_str << 497 betaBohr2 = fine_structure_const*fine_structure_const ; 499 static const G4double betaBohr4 = betaBohr << 498 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr ; 500 499 501 be2 = betaGammaSq/(1 + betaGammaSq) ; 500 be2 = betaGammaSq/(1 + betaGammaSq) ; 502 be4 = be2*be2 ; 501 be4 = be2*be2 ; 503 502 504 if( betaGammaSq < 0.01 ) logarithm = log(1. 503 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq) ; // 0.0 ; 505 else 504 else 506 { 505 { 507 logarithm = -log( (1/betaGammaSq - epsil 506 logarithm = -log( (1/betaGammaSq - epsilonRe)* 508 (1/betaGammaSq - epsilonRe) 507 (1/betaGammaSq - epsilonRe) + 509 epsilonIm*epsilonIm )*0.5 ; 508 epsilonIm*epsilonIm )*0.5 ; 510 logarithm += log(1+1.0/betaGammaSq) ; 509 logarithm += log(1+1.0/betaGammaSq) ; 511 } 510 } 512 511 513 if( epsilonIm == 0.0 || betaGammaSq < 0.01 512 if( epsilonIm == 0.0 || betaGammaSq < 0.01 ) 514 { 513 { 515 argument = 0.0 ; 514 argument = 0.0 ; 516 } 515 } 517 else 516 else 518 { 517 { 519 x3 = -epsilonRe + 1.0/betaGammaSq ; 518 x3 = -epsilonRe + 1.0/betaGammaSq ; 520 x5 = -1.0 - epsilonRe + 519 x5 = -1.0 - epsilonRe + 521 be2*((1.0 +epsilonRe)*(1.0 + epsilon 520 be2*((1.0 +epsilonRe)*(1.0 + epsilonRe) + 522 epsilonIm*epsilonIm) ; 521 epsilonIm*epsilonIm) ; 523 if( x3 == 0.0 ) argument = 0.5*pi; 522 if( x3 == 0.0 ) argument = 0.5*pi; 524 else argument = atan2(epsilonI 523 else argument = atan2(epsilonIm,x3) ; 525 argument *= x5 ; 524 argument *= x5 ; 526 } 525 } 527 dNdxC = ( logarithm*epsilonIm + argument )/ 526 dNdxC = ( logarithm*epsilonIm + argument )/hbarc ; 528 527 529 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8 ; 528 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8 ; 530 529 531 dNdxC *= fine_structure_const/be2/pi ; 530 dNdxC *= fine_structure_const/be2/pi ; 532 531 533 dNdxC *= (1-exp(-be4/betaBohr4)) ; 532 dNdxC *= (1-exp(-be4/betaBohr4)) ; 534 533 535 if(fDensity >= fSolidDensity) 534 if(fDensity >= fSolidDensity) 536 { 535 { 537 modul2 = (1.0 + epsilonRe)*(1.0 + epsilo 536 modul2 = (1.0 + epsilonRe)*(1.0 + epsilonRe) + 538 epsilonIm*epsilonIm; 537 epsilonIm*epsilonIm; 539 dNdxC /= modul2 ; 538 dNdxC /= modul2 ; 540 } 539 } 541 return dNdxC ; 540 return dNdxC ; 542 541 543 } // end of PAIdNdxCerenkov 542 } // end of PAIdNdxCerenkov 544 543 545 ////////////////////////////////////////////// 544 ////////////////////////////////////////////////////////////////////////// 546 // 545 // 547 // Calculation od dN/dx of collisions with cre 546 // Calculation od dN/dx of collisions with creation of longitudinal EM 548 // excitations (plasmons, delta-electrons) 547 // excitations (plasmons, delta-electrons) 549 548 550 G4double G4InitXscPAI::PAIdNdxPlasmon( G4doubl 549 G4double G4InitXscPAI::PAIdNdxPlasmon( G4double omega ) 551 { 550 { 552 G4int i = fCurrentInterval; 551 G4int i = fCurrentInterval; 553 G4double betaGammaSq = fBetaGammaSq; 552 G4double betaGammaSq = fBetaGammaSq; 554 G4double integralTerm = IntegralTerm(omega); 553 G4double integralTerm = IntegralTerm(omega); 555 G4double epsilonRe = RePartDielectricConst(o 554 G4double epsilonRe = RePartDielectricConst(omega); 556 G4double epsilonIm = ImPartDielectricConst(i 555 G4double epsilonIm = ImPartDielectricConst(i,omega); 557 556 558 G4double cof, resonance, modul2, dNdxP ; 557 G4double cof, resonance, modul2, dNdxP ; 559 G4double be2, be4; << 558 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr ; 560 559 561 cof = 1 ; 560 cof = 1 ; 562 static const G4double cofBetaBohr = 4.0 ; << 561 cofBetaBohr = 4.0 ; 563 static const G4double betaBohr2 = fine_st << 562 betaBohr2 = fine_structure_const*fine_structure_const ; 564 static const G4double betaBohr4 = betaBoh << 563 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr ; 565 564 566 be2 = betaGammaSq/(1 + betaGammaSq) ; 565 be2 = betaGammaSq/(1 + betaGammaSq) ; 567 be4 = be2*be2 ; 566 be4 = be2*be2 ; 568 567 569 resonance = log(2*electron_mass_c2*be2/ome 568 resonance = log(2*electron_mass_c2*be2/omega) ; 570 resonance *= epsilonIm/hbarc ; 569 resonance *= epsilonIm/hbarc ; 571 570 572 571 573 dNdxP = ( resonance + cof*integralTerm/omeg 572 dNdxP = ( resonance + cof*integralTerm/omega/omega ) ; 574 573 575 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8 ; 574 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8 ; 576 575 577 dNdxP *= fine_structure_const/be2/pi ; 576 dNdxP *= fine_structure_const/be2/pi ; 578 dNdxP *= (1-exp(-be4/betaBohr4)) ; 577 dNdxP *= (1-exp(-be4/betaBohr4)) ; 579 578 580 if( fDensity >= fSolidDensity ) 579 if( fDensity >= fSolidDensity ) 581 { 580 { 582 modul2 = (1 + epsilonRe)*(1 + epsilonRe) 581 modul2 = (1 + epsilonRe)*(1 + epsilonRe) + 583 epsilonIm*epsilonIm; 582 epsilonIm*epsilonIm; 584 dNdxP /= modul2 ; 583 dNdxP /= modul2 ; 585 } 584 } 586 return dNdxP ; 585 return dNdxP ; 587 586 588 } // end of PAIdNdxPlasmon 587 } // end of PAIdNdxPlasmon 589 588 590 ////////////////////////////////////////////// 589 //////////////////////////////////////////////////////////////////////// 591 // 590 // 592 // Calculation of the PAI integral cross-secti 591 // Calculation of the PAI integral cross-section 593 // = specific primary ionisation, 1/cm 592 // = specific primary ionisation, 1/cm 594 // 593 // 595 594 596 void G4InitXscPAI::IntegralPAIxSection(G4doubl 595 void G4InitXscPAI::IntegralPAIxSection(G4double bg2, G4double Tmax) 597 { 596 { 598 G4int i,k,i1,i2; 597 G4int i,k,i1,i2; 599 G4double energy1, energy2, result = 0.; 598 G4double energy1, energy2, result = 0.; 600 599 601 fBetaGammaSq = bg2; 600 fBetaGammaSq = bg2; 602 fTmax = Tmax; 601 fTmax = Tmax; 603 602 604 delete fPAIxscVector; << 603 if(fPAIxscVector) delete fPAIxscVector; 605 604 606 fPAIxscVector = new G4PhysicsLogVector( (*(* 605 fPAIxscVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 607 fPAIxscVector->PutValue(fPAIbin-1,result); 606 fPAIxscVector->PutValue(fPAIbin-1,result); 608 607 609 for( i = fIntervalNumber - 1; i >= 0; i-- ) 608 for( i = fIntervalNumber - 1; i >= 0; i-- ) 610 { 609 { 611 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 610 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 612 } 611 } 613 if (i < 0) i = 0; // Tmax should be more tha 612 if (i < 0) i = 0; // Tmax should be more than 614 // first ionisation potent 613 // first ionisation potential 615 fIntervalTmax = i; 614 fIntervalTmax = i; 616 615 617 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 616 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 618 617 619 for( k = fPAIbin - 2; k >= 0; k-- ) 618 for( k = fPAIbin - 2; k >= 0; k-- ) 620 { 619 { 621 energy1 = fPAIxscVector->GetLowEdgeEnergy( 620 energy1 = fPAIxscVector->GetLowEdgeEnergy(k); 622 energy2 = fPAIxscVector->GetLowEdgeEnergy( 621 energy2 = fPAIxscVector->GetLowEdgeEnergy(k+1); 623 622 624 for( i = fIntervalTmax; i >= 0; i-- ) 623 for( i = fIntervalTmax; i >= 0; i-- ) 625 { 624 { 626 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 625 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 627 } 626 } 628 if(i < 0) i = 0; 627 if(i < 0) i = 0; 629 i2 = i; 628 i2 = i; 630 629 631 for( i = fIntervalTmax; i >= 0; i-- ) 630 for( i = fIntervalTmax; i >= 0; i-- ) 632 { 631 { 633 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 632 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 634 } 633 } 635 if(i < 0) i = 0; 634 if(i < 0) i = 0; 636 i1 = i; 635 i1 = i; 637 636 638 if( i1 == i2 ) 637 if( i1 == i2 ) 639 { 638 { 640 fCurrentInterval = i1; 639 fCurrentInterval = i1; 641 result += integral.Legendre10(this,&G4In 640 result += integral.Legendre10(this,&G4InitXscPAI::DifPAIxSection, 642 energy1,en 641 energy1,energy2); 643 fPAIxscVector->PutValue(k,result); 642 fPAIxscVector->PutValue(k,result); 644 } 643 } 645 else 644 else 646 { 645 { 647 for( i = i2; i >= i1; i-- ) 646 for( i = i2; i >= i1; i-- ) 648 { 647 { 649 fCurrentInterval = i; 648 fCurrentInterval = i; 650 649 651 if( i==i2 ) result += integral. 650 if( i==i2 ) result += integral.Legendre10(this, 652 &G4InitXscPAI::DifP 651 &G4InitXscPAI::DifPAIxSection, 653 (*(*fMatSandiaMatri 652 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 654 653 655 else if( i == i1 ) result += integral.Legend 654 else if( i == i1 ) result += integral.Legendre10(this, 656 &G4InitXscPAI::DifP 655 &G4InitXscPAI::DifPAIxSection,energy1, 657 (*(*fMatSandiaMatri 656 (*(*fMatSandiaMatrix)[i+1])[0]); 658 657 659 else result += integral. 658 else result += integral.Legendre10(this, 660 &G4InitXscPAI::DifP 659 &G4InitXscPAI::DifPAIxSection, 661 (*(*fMatSandiaMatrix)[i 660 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 662 } 661 } 663 fPAIxscVector->PutValue(k,result); 662 fPAIxscVector->PutValue(k,result); 664 } 663 } 665 // G4cout<<k<<"\t"<<result<<G4endl; 664 // G4cout<<k<<"\t"<<result<<G4endl; 666 } 665 } 667 return ; 666 return ; 668 } 667 } 669 668 670 669 671 ////////////////////////////////////////////// 670 //////////////////////////////////////////////////////////////////////// 672 // 671 // 673 // Calculation of the PAI integral dEdx 672 // Calculation of the PAI integral dEdx 674 // = mean energy loss per unit length, keV/cm 673 // = mean energy loss per unit length, keV/cm 675 // 674 // 676 675 677 void G4InitXscPAI::IntegralPAIdEdx(G4double bg 676 void G4InitXscPAI::IntegralPAIdEdx(G4double bg2, G4double Tmax) 678 { 677 { 679 G4int i,k,i1,i2; 678 G4int i,k,i1,i2; 680 G4double energy1, energy2, result = 0.; 679 G4double energy1, energy2, result = 0.; 681 680 682 fBetaGammaSq = bg2; 681 fBetaGammaSq = bg2; 683 fTmax = Tmax; 682 fTmax = Tmax; 684 683 685 delete fPAIdEdxVector; << 684 if(fPAIdEdxVector) delete fPAIdEdxVector; 686 685 687 fPAIdEdxVector = new G4PhysicsLogVector( (*( 686 fPAIdEdxVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 688 fPAIdEdxVector->PutValue(fPAIbin-1,result); 687 fPAIdEdxVector->PutValue(fPAIbin-1,result); 689 688 690 for( i = fIntervalNumber - 1; i >= 0; i-- ) 689 for( i = fIntervalNumber - 1; i >= 0; i-- ) 691 { 690 { 692 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 691 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 693 } 692 } 694 if (i < 0) i = 0; // Tmax should be more tha 693 if (i < 0) i = 0; // Tmax should be more than 695 // first ionisation potent 694 // first ionisation potential 696 fIntervalTmax = i; 695 fIntervalTmax = i; 697 696 698 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 697 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 699 698 700 for( k = fPAIbin - 2; k >= 0; k-- ) 699 for( k = fPAIbin - 2; k >= 0; k-- ) 701 { 700 { 702 energy1 = fPAIdEdxVector->GetLowEdgeEnergy 701 energy1 = fPAIdEdxVector->GetLowEdgeEnergy(k); 703 energy2 = fPAIdEdxVector->GetLowEdgeEnergy 702 energy2 = fPAIdEdxVector->GetLowEdgeEnergy(k+1); 704 703 705 for( i = fIntervalTmax; i >= 0; i-- ) 704 for( i = fIntervalTmax; i >= 0; i-- ) 706 { 705 { 707 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 706 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 708 } 707 } 709 if(i < 0) i = 0; 708 if(i < 0) i = 0; 710 i2 = i; 709 i2 = i; 711 710 712 for( i = fIntervalTmax; i >= 0; i-- ) 711 for( i = fIntervalTmax; i >= 0; i-- ) 713 { 712 { 714 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 713 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 715 } 714 } 716 if(i < 0) i = 0; 715 if(i < 0) i = 0; 717 i1 = i; 716 i1 = i; 718 717 719 if( i1 == i2 ) 718 if( i1 == i2 ) 720 { 719 { 721 fCurrentInterval = i1; 720 fCurrentInterval = i1; 722 result += integral.Legendre10(this,&G4In 721 result += integral.Legendre10(this,&G4InitXscPAI::DifPAIdEdx, 723 energy1,en 722 energy1,energy2); 724 fPAIdEdxVector->PutValue(k,result); 723 fPAIdEdxVector->PutValue(k,result); 725 } 724 } 726 else 725 else 727 { 726 { 728 for( i = i2; i >= i1; i-- ) 727 for( i = i2; i >= i1; i-- ) 729 { 728 { 730 fCurrentInterval = i; 729 fCurrentInterval = i; 731 730 732 if( i==i2 ) result += integral. 731 if( i==i2 ) result += integral.Legendre10(this, 733 &G4InitXscPAI::DifP 732 &G4InitXscPAI::DifPAIdEdx, 734 (*(*fMatSandiaMatri 733 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 735 734 736 else if( i == i1 ) result += integral.Legend 735 else if( i == i1 ) result += integral.Legendre10(this, 737 &G4InitXscPAI::DifP 736 &G4InitXscPAI::DifPAIdEdx,energy1, 738 (*(*fMatSandiaMatri 737 (*(*fMatSandiaMatrix)[i+1])[0]); 739 738 740 else result += integral. 739 else result += integral.Legendre10(this, 741 &G4InitXscPAI::DifP 740 &G4InitXscPAI::DifPAIdEdx, 742 (*(*fMatSandiaMatrix)[i 741 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 743 } 742 } 744 fPAIdEdxVector->PutValue(k,result); 743 fPAIdEdxVector->PutValue(k,result); 745 } 744 } 746 // G4cout<<k<<"\t"<<result<<G4endl; 745 // G4cout<<k<<"\t"<<result<<G4endl; 747 } 746 } 748 return ; 747 return ; 749 } 748 } 750 749 751 ////////////////////////////////////////////// 750 //////////////////////////////////////////////////////////////////////// 752 // 751 // 753 // Calculation of the PAI Cerenkov integral cr 752 // Calculation of the PAI Cerenkov integral cross-section 754 // fIntegralCrenkov[1] = specific Crenkov ioni 753 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm 755 // and fIntegralCerenkov[0] = mean Cerenkov lo 754 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm in keV/cm 756 755 757 void G4InitXscPAI::IntegralCherenkov(G4double 756 void G4InitXscPAI::IntegralCherenkov(G4double bg2, G4double Tmax) 758 { 757 { 759 G4int i,k,i1,i2; 758 G4int i,k,i1,i2; 760 G4double energy1, energy2, beta2, module2, c 759 G4double energy1, energy2, beta2, module2, cos2, width, result = 0.; 761 760 762 fBetaGammaSq = bg2; 761 fBetaGammaSq = bg2; 763 fTmax = Tmax; 762 fTmax = Tmax; 764 beta2 = bg2/(1+bg2); 763 beta2 = bg2/(1+bg2); 765 764 766 delete fPAIphotonVector; << 765 if(fPAIphotonVector) delete fPAIphotonVector; 767 delete fChCosSqVector; << 766 if(fChCosSqVector) delete fChCosSqVector; 768 delete fChWidthVector; << 767 if(fChWidthVector) delete fChWidthVector; 769 768 770 fPAIphotonVector = new G4PhysicsLogVector( ( 769 fPAIphotonVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 771 fChCosSqVector = new G4PhysicsLogVector( (*( 770 fChCosSqVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 772 fChWidthVector = new G4PhysicsLogVector( (*( 771 fChWidthVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 773 772 774 fPAIphotonVector->PutValue(fPAIbin-1,result) 773 fPAIphotonVector->PutValue(fPAIbin-1,result); 775 fChCosSqVector->PutValue(fPAIbin-1,1.); 774 fChCosSqVector->PutValue(fPAIbin-1,1.); 776 fChWidthVector->PutValue(fPAIbin-1,1e-7); 775 fChWidthVector->PutValue(fPAIbin-1,1e-7); 777 776 778 for( i = fIntervalNumber - 1; i >= 0; i-- ) 777 for( i = fIntervalNumber - 1; i >= 0; i-- ) 779 { 778 { 780 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 779 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 781 } 780 } 782 if (i < 0) i = 0; // Tmax should be more tha 781 if (i < 0) i = 0; // Tmax should be more than 783 // first ionisation potent 782 // first ionisation potential 784 fIntervalTmax = i; 783 fIntervalTmax = i; 785 784 786 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 785 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 787 786 788 for( k = fPAIbin - 2; k >= 0; k-- ) 787 for( k = fPAIbin - 2; k >= 0; k-- ) 789 { 788 { 790 energy1 = fPAIphotonVector->GetLowEdgeEner 789 energy1 = fPAIphotonVector->GetLowEdgeEnergy(k); 791 energy2 = fPAIphotonVector->GetLowEdgeEner 790 energy2 = fPAIphotonVector->GetLowEdgeEnergy(k+1); 792 791 793 for( i = fIntervalTmax; i >= 0; i-- ) 792 for( i = fIntervalTmax; i >= 0; i-- ) 794 { 793 { 795 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 794 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 796 } 795 } 797 if(i < 0) i = 0; 796 if(i < 0) i = 0; 798 i2 = i; 797 i2 = i; 799 798 800 for( i = fIntervalTmax; i >= 0; i-- ) 799 for( i = fIntervalTmax; i >= 0; i-- ) 801 { 800 { 802 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 801 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 803 } 802 } 804 if(i < 0) i = 0; 803 if(i < 0) i = 0; 805 i1 = i; 804 i1 = i; 806 805 807 module2 = ModuleSqDielectricConst(i1,energ 806 module2 = ModuleSqDielectricConst(i1,energy1); 808 cos2 = RePartDielectricConst(energy1)/m 807 cos2 = RePartDielectricConst(energy1)/module2/beta2; 809 width = ImPartDielectricConst(i1,energy1 808 width = ImPartDielectricConst(i1,energy1)/module2/beta2; 810 809 811 fChCosSqVector->PutValue(k,cos2); 810 fChCosSqVector->PutValue(k,cos2); 812 fChWidthVector->PutValue(k,width); 811 fChWidthVector->PutValue(k,width); 813 812 814 if( i1 == i2 ) 813 if( i1 == i2 ) 815 { 814 { 816 fCurrentInterval = i1; 815 fCurrentInterval = i1; 817 result += integral.Legendre10(this,&G4In 816 result += integral.Legendre10(this,&G4InitXscPAI::PAIdNdxCherenkov, 818 energy1,en 817 energy1,energy2); 819 fPAIphotonVector->PutValue(k,result); 818 fPAIphotonVector->PutValue(k,result); 820 819 821 } 820 } 822 else 821 else 823 { 822 { 824 for( i = i2; i >= i1; i-- ) 823 for( i = i2; i >= i1; i-- ) 825 { 824 { 826 fCurrentInterval = i; 825 fCurrentInterval = i; 827 826 828 if( i==i2 ) result += integral. 827 if( i==i2 ) result += integral.Legendre10(this, 829 &G4InitXscPAI::PAId 828 &G4InitXscPAI::PAIdNdxCherenkov, 830 (*(*fMatSandiaMatri 829 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 831 830 832 else if( i == i1 ) result += integral.Legend 831 else if( i == i1 ) result += integral.Legendre10(this, 833 &G4InitXscPAI::PAId 832 &G4InitXscPAI::PAIdNdxCherenkov,energy1, 834 (*(*fMatSandiaMatri 833 (*(*fMatSandiaMatrix)[i+1])[0]); 835 834 836 else result += integral. 835 else result += integral.Legendre10(this, 837 &G4InitXscPAI::PAId 836 &G4InitXscPAI::PAIdNdxCherenkov, 838 (*(*fMatSandiaMatrix)[i 837 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 839 } 838 } 840 fPAIphotonVector->PutValue(k,result); 839 fPAIphotonVector->PutValue(k,result); 841 } 840 } 842 // G4cout<<k<<"\t"<<result<<G4endl; 841 // G4cout<<k<<"\t"<<result<<G4endl; 843 } 842 } 844 return; 843 return; 845 } // end of IntegralCerenkov 844 } // end of IntegralCerenkov 846 845 847 ////////////////////////////////////////////// 846 //////////////////////////////////////////////////////////////////////// 848 // 847 // 849 // Calculation of the PAI Plasmon integral cro 848 // Calculation of the PAI Plasmon integral cross-section 850 // fIntegralPlasmon[1] = splasmon primary ioni 849 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm 851 // and fIntegralPlasmon[0] = mean plasmon loss 850 // and fIntegralPlasmon[0] = mean plasmon loss per cm in keV/cm 852 851 853 void G4InitXscPAI::IntegralPlasmon(G4double bg 852 void G4InitXscPAI::IntegralPlasmon(G4double bg2, G4double Tmax) 854 { 853 { 855 G4int i,k,i1,i2; 854 G4int i,k,i1,i2; 856 G4double energy1, energy2, result = 0.; 855 G4double energy1, energy2, result = 0.; 857 856 858 fBetaGammaSq = bg2; 857 fBetaGammaSq = bg2; 859 fTmax = Tmax; 858 fTmax = Tmax; 860 859 861 delete fPAIelectronVector; << 860 if(fPAIelectronVector) delete fPAIelectronVector; 862 861 863 fPAIelectronVector = new G4PhysicsLogVector( 862 fPAIelectronVector = new G4PhysicsLogVector( (*(*fMatSandiaMatrix)[0])[0], fTmax, fPAIbin); 864 fPAIelectronVector->PutValue(fPAIbin-1,resul 863 fPAIelectronVector->PutValue(fPAIbin-1,result); 865 864 866 for( i = fIntervalNumber - 1; i >= 0; i-- ) 865 for( i = fIntervalNumber - 1; i >= 0; i-- ) 867 { 866 { 868 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) 867 if( Tmax >= (*(*fMatSandiaMatrix)[i])[0] ) break; 869 } 868 } 870 if (i < 0) i = 0; // Tmax should be more tha 869 if (i < 0) i = 0; // Tmax should be more than 871 // first ionisation potent 870 // first ionisation potential 872 fIntervalTmax = i; 871 fIntervalTmax = i; 873 872 874 G4Integrator<G4InitXscPAI,G4double(G4InitXsc 873 G4Integrator<G4InitXscPAI,G4double(G4InitXscPAI::*)(G4double)> integral; 875 874 876 for( k = fPAIbin - 2; k >= 0; k-- ) 875 for( k = fPAIbin - 2; k >= 0; k-- ) 877 { 876 { 878 energy1 = fPAIelectronVector->GetLowEdgeEn 877 energy1 = fPAIelectronVector->GetLowEdgeEnergy(k); 879 energy2 = fPAIelectronVector->GetLowEdgeEn 878 energy2 = fPAIelectronVector->GetLowEdgeEnergy(k+1); 880 879 881 for( i = fIntervalTmax; i >= 0; i-- ) 880 for( i = fIntervalTmax; i >= 0; i-- ) 882 { 881 { 883 if( energy2 > (*(*fMatSandiaMatrix)[i])[ 882 if( energy2 > (*(*fMatSandiaMatrix)[i])[0] ) break; 884 } 883 } 885 if(i < 0) i = 0; 884 if(i < 0) i = 0; 886 i2 = i; 885 i2 = i; 887 886 888 for( i = fIntervalTmax; i >= 0; i-- ) 887 for( i = fIntervalTmax; i >= 0; i-- ) 889 { 888 { 890 if( energy1 > (*(*fMatSandiaMatrix)[i])[ 889 if( energy1 > (*(*fMatSandiaMatrix)[i])[0] ) break; 891 } 890 } 892 if(i < 0) i = 0; 891 if(i < 0) i = 0; 893 i1 = i; 892 i1 = i; 894 893 895 if( i1 == i2 ) 894 if( i1 == i2 ) 896 { 895 { 897 fCurrentInterval = i1; 896 fCurrentInterval = i1; 898 result += integral.Legendre10(this,&G4In 897 result += integral.Legendre10(this,&G4InitXscPAI::PAIdNdxPlasmon, 899 energy1,en 898 energy1,energy2); 900 fPAIelectronVector->PutValue(k,result); 899 fPAIelectronVector->PutValue(k,result); 901 } 900 } 902 else 901 else 903 { 902 { 904 for( i = i2; i >= i1; i-- ) 903 for( i = i2; i >= i1; i-- ) 905 { 904 { 906 fCurrentInterval = i; 905 fCurrentInterval = i; 907 906 908 if( i==i2 ) result += integral. 907 if( i==i2 ) result += integral.Legendre10(this, 909 &G4InitXscPAI::PAId 908 &G4InitXscPAI::PAIdNdxPlasmon, 910 (*(*fMatSandiaMatri 909 (*(*fMatSandiaMatrix)[i])[0] ,energy2); 911 910 912 else if( i == i1 ) result += integral.Legend 911 else if( i == i1 ) result += integral.Legendre10(this, 913 &G4InitXscPAI::PAId 912 &G4InitXscPAI::PAIdNdxPlasmon,energy1, 914 (*(*fMatSandiaMatri 913 (*(*fMatSandiaMatrix)[i+1])[0]); 915 914 916 else result += integral. 915 else result += integral.Legendre10(this, 917 &G4InitXscPAI::PAId 916 &G4InitXscPAI::PAIdNdxPlasmon, 918 (*(*fMatSandiaMatrix)[i 917 (*(*fMatSandiaMatrix)[i])[0] ,(*(*fMatSandiaMatrix)[i+1])[0]); 919 } 918 } 920 fPAIelectronVector->PutValue(k,result); 919 fPAIelectronVector->PutValue(k,result); 921 } 920 } 922 // G4cout<<k<<"\t"<<result<<G4endl; 921 // G4cout<<k<<"\t"<<result<<G4endl; 923 } 922 } 924 return; 923 return; 925 } // end of IntegralPlasmon 924 } // end of IntegralPlasmon 926 925 927 926 928 ////////////////////////////////////////////// 927 ///////////////////////////////////////////////////////////////////////// 929 // 928 // 930 // 929 // 931 930 932 G4double G4InitXscPAI::GetPhotonLambda( G4doub 931 G4double G4InitXscPAI::GetPhotonLambda( G4double omega ) 933 { 932 { 934 G4int i ; 933 G4int i ; 935 G4double omega2, omega3, omega4, a1, a2, a3, 934 G4double omega2, omega3, omega4, a1, a2, a3, a4, lambda ; 936 935 937 omega2 = omega*omega ; 936 omega2 = omega*omega ; 938 omega3 = omega2*omega ; 937 omega3 = omega2*omega ; 939 omega4 = omega2*omega2 ; 938 omega4 = omega2*omega2 ; 940 939 941 for(i = 0; i < fIntervalNumber;i++) 940 for(i = 0; i < fIntervalNumber;i++) 942 { 941 { 943 if( omega < (*(*fMatSandiaMatrix)[i])[0] ) 942 if( omega < (*(*fMatSandiaMatrix)[i])[0] ) break ; 944 } 943 } 945 if( i == 0 ) 944 if( i == 0 ) 946 { 945 { 947 G4cout<<"Warning: energy in G4InitXscPAI:: 946 G4cout<<"Warning: energy in G4InitXscPAI::GetPhotonLambda < I1"<<G4endl; 948 } 947 } 949 else i-- ; 948 else i-- ; 950 949 951 a1 = (*(*fMatSandiaMatrix)[i])[1]; 950 a1 = (*(*fMatSandiaMatrix)[i])[1]; 952 a2 = (*(*fMatSandiaMatrix)[i])[2]; 951 a2 = (*(*fMatSandiaMatrix)[i])[2]; 953 a3 = (*(*fMatSandiaMatrix)[i])[3]; 952 a3 = (*(*fMatSandiaMatrix)[i])[3]; 954 a4 = (*(*fMatSandiaMatrix)[i])[4]; 953 a4 = (*(*fMatSandiaMatrix)[i])[4]; 955 954 956 lambda = 1./(a1/omega + a2/omega2 + a3/omega 955 lambda = 1./(a1/omega + a2/omega2 + a3/omega3 + a4/omega4); 957 956 958 return lambda ; 957 return lambda ; 959 } 958 } 960 959 961 ////////////////////////////////////////////// 960 ///////////////////////////////////////////////////////////////////////// 962 // 961 // 963 // 962 // 964 963 965 ////////////////////////////////////////////// 964 ///////////////////////////////////////////////////////////////////////// 966 // 965 // 967 // 966 // 968 967 969 G4double G4InitXscPAI::GetStepEnergyLoss( G4do 968 G4double G4InitXscPAI::GetStepEnergyLoss( G4double step ) 970 { 969 { 971 G4double loss = 0.0 ; 970 G4double loss = 0.0 ; 972 loss *= step; 971 loss *= step; 973 972 974 return loss ; 973 return loss ; 975 } 974 } 976 975 977 ////////////////////////////////////////////// 976 ///////////////////////////////////////////////////////////////////////// 978 // 977 // 979 // 978 // 980 979 981 G4double G4InitXscPAI::GetStepCerenkovLoss( G4 980 G4double G4InitXscPAI::GetStepCerenkovLoss( G4double step ) 982 { 981 { 983 G4double loss = 0.0 ; 982 G4double loss = 0.0 ; 984 loss *= step; 983 loss *= step; 985 984 986 return loss ; 985 return loss ; 987 } 986 } 988 987 989 ////////////////////////////////////////////// 988 ///////////////////////////////////////////////////////////////////////// 990 // 989 // 991 // 990 // 992 991 993 G4double G4InitXscPAI::GetStepPlasmonLoss( G4d 992 G4double G4InitXscPAI::GetStepPlasmonLoss( G4double step ) 994 { 993 { 995 994 996 995 997 G4double loss = 0.0 ; 996 G4double loss = 0.0 ; 998 loss *= step; 997 loss *= step; 999 return loss ; 998 return loss ; 1000 } 999 } 1001 1000 1002 1001 1003 // 1002 // 1004 // end of G4InitXscPAI implementation file 1003 // end of G4InitXscPAI implementation file 1005 // 1004 // 1006 ///////////////////////////////////////////// 1005 //////////////////////////////////////////////////////////////////////////// 1007 1006 1008 1007