Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- << 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class implementation file << 30 // GEANT4 Class file 30 // 31 // 31 // File name: G4GoudsmitSaundersonMscModel 32 // File name: G4GoudsmitSaundersonMscModel 32 // 33 // 33 // Author: Mihaly Novak / (Omrane Kadri << 34 // Author: Omrane Kadri 34 // 35 // 35 // Creation date: 20.02.2009 36 // Creation date: 20.02.2009 36 // 37 // 37 // Modifications: 38 // Modifications: 38 // 04.03.2009 V.Ivanchenko cleanup and format 39 // 04.03.2009 V.Ivanchenko cleanup and format according to Geant4 EM style 39 // 12.05.2010 O.Kadri: adding Qn1 and Qn12 as << 40 // 18.05.2015 M. Novak provide PRELIMINARY ver << 41 // This class has been revised and << 42 // A new version of Kawrakow-Bielaj << 43 // based on the screened Rutherford << 44 // electrons/positrons has been int << 45 // angular distributions over a 2D << 46 // and the CDFs are now stored in a << 47 // together with the corresponding << 48 // These angular distributions are << 49 // G4GoudsmitSaundersonTable class << 50 // it was no, single, few or multip << 51 // angular deflection (i.e. cos(the << 52 // Two screening options are provid << 53 // - if fIsUsePWATotalXsecData=TRU << 54 // was called before initialisat << 55 // determined such that the firs << 56 // computed according to the scr << 57 // scattering will reproduce the << 58 // and first transport mean free << 59 // - if fIsUsePWATotalXsecData=FAL << 60 // SetOptionPWAScreening(FALSE) << 61 // screening parameter value A i << 62 // formula (by using material de << 63 // precomputed for each material << 64 // G4GoudsmitSaundersonTable) [3 << 65 // Elastic and first trasport mean << 66 // The new version is self-consiste << 67 // robust and accurate compared to << 68 // Spin effects as well as a more a << 69 // computations of Lewis moments wi << 70 // 02.09.2015 M. Novak: first version of new s << 71 // fUseSafetyPlus corresponds to Ur << 72 // fUseDistanceToBoundary correspon << 73 // fUseSafety corresponds to EGSnr << 74 // Range factor can be significantl << 75 // 23.08.2017 M. Novak: added corrections to a << 76 // It can be activated by setting t << 77 // before initialization using the << 78 // The fMottCorrection member is re << 79 // correction (rejection) functions << 80 // Goudsmit-Saunderson agnular dist << 81 // effects and screening correction << 82 // GS angular distributions is: DCS << 83 // # DCS_{SR} is the relativisti << 84 // solution of the Klein-Gordo << 85 // scattering of spinless e- o << 86 // note: the default (without << 87 // are based on this DCS_{SR} << 88 // # DCS_{R} is the Rutherford D << 89 // screening << 90 // # DCS_{Mott} is the Mott DCS << 91 // Coulomb potential i.e. scat << 92 // point-like unscreened Coulo << 93 // # moreover, the screening par << 94 // the DCS_{cor} with this cor << 95 // transport cross sections ob << 96 // (i.e. from elsepa [4]) << 97 // Unlike the default GS, the Mott- << 98 // (different for e- and e+ <= the << 99 // (Z and material) dependent. << 100 // 27.10.2017 M. Novak: << 101 // - Mott-correction flag is set no << 102 // - new form of PWA correction to << 103 // - changed step limit flag conven << 104 // # fUseSafety corresponds to U << 105 // # fUseDistanceToBoundary corr << 106 // # fUseSafetyPlus corresponds << 107 // 02.02.2018 M. Novak: implemented CrossSecti << 108 // 40 // 109 // Class description: << 41 // 15.04.2009 O.Kadri: cleanup: discard no scattering and single scattering theta 110 // Kawrakow-Bielajew Goudsmit-Saunderson MSC << 42 // sampling from SampleCosineTheta() which means the splitting 111 // for elastic scattering of e-/e+. Option, << 43 // step into two sub-steps occur only for msc regime 112 // also available now (SetOptionMottCorrecti << 113 // algorithm (UseSafety) is available beyond << 114 // and true to geomerty and geometry to true << 115 // from the Urban model[5]. The most accurat << 116 // UseSafetyPlus MSC step limit with Mott-co << 117 // are expected to be set through the G4EmPa << 118 // # G4EmParameters::Instance()->SetMscStep << 119 // # G4EmParameters::Instance()->SetUseMott << 120 // 44 // >> 45 // 12.06.2009 O.Kadri: linear log-log extrapolation of lambda0 & lambda1 between 1 GeV - 100 TeV >> 46 // adding a theta min limit due to screening effect of the atomic nucleus >> 47 // 26.08.2009 O.Kadri: Cubic Spline interpolation was replaced with polynomial method >> 48 // within CalculateIntegrals method >> 49 // 05.10.2009 O.Kadri: tuning small angle theta distributions >> 50 // assuming the case of lambdan<1 as single scattering regime >> 51 // tuning theta sampling for theta below the screening angle >> 52 // 08.02.2010 O.Kadri: bugfix in compound xsection calculation and small angle computation >> 53 // adding a rejection condition to hard collision angular sampling >> 54 // ComputeTruePathLengthLimit was taken from G4WentzelVIModel >> 55 // 26.03.2010 O.Kadri: direct xsection calculation not inverse of the inverse >> 56 // angular sampling without large angle rejection method >> 57 // longitudinal displacement is computed exactly from <z> >> 58 // 12.05.2010 O.Kadri: exchange between target and projectile has as a condition the particle type (e-/e-) >> 59 // some cleanup to minimize time consuming (adding lamdan12 & Qn12, changing the error to 1.0e-12 for scrA) 121 // 60 // 122 // References: << 123 // [1] A.F.Bielajew, NIMB 111 (1996) 195-208 << 124 // [2] I.Kawrakow, A.F.Bielajew, NIMB 134(19 << 125 // [3] I.Kawrakow, E.Mainegra-Hing, D.W.O.Ro << 126 // Report PIRS-701 (2013) << 127 // [4] F.Salvat, A.Jablonski, C.J. Powell, C << 128 // [5] L.Urban, Preprint CERN-OPEN-2006-077 << 129 // 61 // 130 // ------------------------------------------- << 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 131 << 63 //REFERENCES: 132 << 64 //Ref.1:E. Benedito et al.,"Mixed simulation ... cross-sections", NIMB 174 (2001) pp 91-110; >> 65 //Ref.2:I. Kawrakow et al.,"On the condensed ... transport",NIMB 142 (1998) pp 253-280; >> 66 //Ref.3:I. Kawrakow et al.,"On the representation ... calculations",NIMB 134 (1998) pp 325-336; >> 67 //Ref.4:Bielajew et al.,".....", NIMB 173 (2001) 332-343; >> 68 //Ref.5:F. Salvat et al.,"ELSEPA--Dirac partial ...molecules", Comp.Phys.Comm.165 (2005) pp 157-190; >> 69 //Ref.6:G4UrbanMscModel G4 9.2; >> 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 133 #include "G4GoudsmitSaundersonMscModel.hh" 71 #include "G4GoudsmitSaundersonMscModel.hh" 134 << 135 #include "G4GoudsmitSaundersonTable.hh" 72 #include "G4GoudsmitSaundersonTable.hh" 136 #include "G4GSPWACorrections.hh" << 137 73 138 #include "G4PhysicalConstants.hh" 74 #include "G4PhysicalConstants.hh" 139 #include "G4SystemOfUnits.hh" 75 #include "G4SystemOfUnits.hh" 140 76 141 #include "G4ParticleChangeForMSC.hh" 77 #include "G4ParticleChangeForMSC.hh" >> 78 #include "G4MaterialCutsCouple.hh" 142 #include "G4DynamicParticle.hh" 79 #include "G4DynamicParticle.hh" 143 #include "G4Electron.hh" 80 #include "G4Electron.hh" 144 #include "G4Positron.hh" 81 #include "G4Positron.hh" 145 82 146 #include "G4LossTableManager.hh" 83 #include "G4LossTableManager.hh" 147 #include "G4EmParameters.hh" << 148 #include "G4Track.hh" 84 #include "G4Track.hh" 149 #include "G4PhysicsTable.hh" 85 #include "G4PhysicsTable.hh" 150 #include "Randomize.hh" 86 #include "Randomize.hh" 151 #include "G4Log.hh" << 152 #include "G4Exp.hh" << 153 #include "G4Pow.hh" << 154 #include <fstream> << 155 << 156 87 157 // set accurate energy loss and dispalcement s << 88 using namespace std; 158 G4bool G4GoudsmitSaundersonMscModel::gIsUseAcc << 159 // set the usual optimization to be always act << 160 G4bool G4GoudsmitSaundersonMscModel::gIsOptimi << 161 89 >> 90 G4double G4GoudsmitSaundersonMscModel::ener[] = {-1.}; >> 91 G4double G4GoudsmitSaundersonMscModel::TCSE[103][106] ; >> 92 G4double G4GoudsmitSaundersonMscModel::FTCSE[103][106] ; >> 93 G4double G4GoudsmitSaundersonMscModel::TCSP[103][106] ; >> 94 G4double G4GoudsmitSaundersonMscModel::FTCSP[103][106] ; 162 95 >> 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 163 G4GoudsmitSaundersonMscModel::G4GoudsmitSaunde 97 G4GoudsmitSaundersonMscModel::G4GoudsmitSaundersonMscModel(const G4String& nam) 164 : G4VMscModel(nam) { << 98 : G4VMscModel(nam),lowKEnergy(0.1*keV),highKEnergy(100.*TeV) 165 charge = 0; << 99 { 166 currentMaterialIndex = -1; << 100 currentKinEnergy=currentRange=skindepth=par1=par2=par3 167 // << 101 =zPathLength=truePathLength 168 fr = 0.1; << 102 =tausmall=taulim=tlimit=charge=lambdalimit=tPathLength=lambda0=lambda1 169 rangeinit = 1.e+21; << 103 =lambda11=mass=0.0; 170 geombig = 1.e+50*mm; << 104 currentMaterialIndex = -1; 171 geomlimit = geombig; << 105 172 tgeom = geombig; << 106 fr=0.02,rangeinit=0.,masslimite=0.6*MeV, 173 tlimit = 1.e+10*mm; << 107 particle=0;tausmall=1.e-16;taulim=1.e-6;tlimit=1.e10*mm; 174 presafety = 0.*mm; << 108 tlimitmin=10.e-6*mm;geombig=1.e50*mm;geommin=1.e-3*mm,tgeom=geombig; 175 // << 109 tlimitminfix=1.e-6*mm;stepmin=tlimitminfix;lambdalimit=1.*mm;smallstep=1.e10; 176 particle = nullptr; << 110 theManager=G4LossTableManager::Instance(); 177 theManager = G4LossTableManager: << 111 inside=false;insideskin=false; 178 firstStep = true; << 112 samplez=false; 179 currentKinEnergy = 0.0; << 113 firstStep = true; 180 currentRange = 0.0; << 114 181 // << 115 GSTable = new G4GoudsmitSaundersonTable(); 182 tlimitminfix2 = 1.*nm; << 116 183 tausmall = 1.e-16; << 117 if(ener[0] < 0.0){ 184 mass = electron_mass_c2; << 118 G4cout << "### G4GoudsmitSaundersonMscModel loading ELSEPA data" << G4endl; 185 taulim = 1.e-6; << 119 LoadELSEPAXSections(); 186 // << 120 } 187 currentCouple = nullptr; << 121 } 188 fParticleChange = nullptr; << 122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 189 // << 123 G4GoudsmitSaundersonMscModel::~G4GoudsmitSaundersonMscModel() 190 fZeff = 1.; << 124 { 191 // << 125 delete GSTable; 192 par1 = 0.; << 126 } 193 par2 = 0.; << 127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 194 par3 = 0.; << 128 void G4GoudsmitSaundersonMscModel::Initialise(const G4ParticleDefinition* p, 195 // << 129 const G4DataVector&) 196 // Moliere screeing parameter will be used a << 130 { 197 // appalied to the integrated quantities (sc << 131 skindepth=skin*stepmin; 198 // and second moments) derived from the corr << 132 SetParticle(p); 199 // this PWA correction is ignored if Mott-co << 133 fParticleChange = GetParticleChangeForMSC(p); 200 // Mott-correction contains all these correc << 201 fIsUsePWACorrection = true; << 202 // << 203 fIsUseMottCorrection = false; << 204 // << 205 fLambda0 = 0.0; // elastic mea << 206 fLambda1 = 0.0; // first trans << 207 fScrA = 0.0; // screening p << 208 fG1 = 0.0; // first trans << 209 // << 210 fMCtoScrA = 1.0; << 211 fMCtoQ1 = 1.0; << 212 fMCtoG2PerG1 = 1.0; << 213 // << 214 fTheTrueStepLenght = 0.; << 215 fTheTransportDistance = 0.; << 216 fTheZPathLenght = 0.; << 217 // << 218 fTheDisplacementVector.set(0.,0.,0.); << 219 fTheNewDirection.set(0.,0.,1.); << 220 // << 221 fIsEverythingWasDone = false; << 222 fIsMultipleSacettring = false; << 223 fIsSingleScattering = false; << 224 fIsEndedUpOnBoundary = false; << 225 fIsNoScatteringInMSC = false; << 226 fIsNoDisplace = false; << 227 fIsInsideSkin = false; << 228 fIsWasOnBoundary = false; << 229 fIsFirstRealStep = false; << 230 rndmEngineMod = G4Random::getTheEng << 231 // << 232 fGSTable = nullptr; << 233 fPWACorrection = nullptr; << 234 } 134 } 235 135 >> 136 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 236 137 237 G4GoudsmitSaundersonMscModel::~G4GoudsmitSaund << 138 G4double 238 if (IsMaster()) { << 139 G4GoudsmitSaundersonMscModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition* p, 239 if (fGSTable) { << 140 G4double kineticEnergy,G4double Z, G4double, G4double, G4double) 240 delete fGSTable; << 141 { 241 fGSTable = nullptr; << 142 G4double kinEnergy = kineticEnergy; 242 } << 143 if(kinEnergy<lowKEnergy) kinEnergy=lowKEnergy; 243 if (fPWACorrection) { << 144 if(kinEnergy>highKEnergy)kinEnergy=highKEnergy; 244 delete fPWACorrection; << 145 245 fPWACorrection = nullptr; << 146 G4double cs(0.0), cs0(0.0); 246 } << 147 CalculateIntegrals(p,Z,kinEnergy,cs0,cs); >> 148 >> 149 return cs; >> 150 } >> 151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 152 >> 153 G4ThreeVector& >> 154 G4GoudsmitSaundersonMscModel::SampleScattering(const G4DynamicParticle* dynParticle, G4double) >> 155 { >> 156 fDisplacement.set(0.0,0.0,0.0); >> 157 G4double kineticEnergy = dynParticle->GetKineticEnergy(); >> 158 if((kineticEnergy <= 0.0) || (tPathLength <= tlimitminfix)|| >> 159 (tPathLength/tausmall < lambda1)) { return fDisplacement; } >> 160 >> 161 /////////////////////////////////////////// >> 162 // Effective energy >> 163 G4double eloss = 0.0; >> 164 if (tPathLength > currentRange*dtrl) { >> 165 eloss = kineticEnergy - >> 166 GetEnergy(particle,currentRange-tPathLength,currentCouple); >> 167 } else { >> 168 eloss = tPathLength*GetDEDX(particle,kineticEnergy,currentCouple); 247 } 169 } 248 } << 170 /* >> 171 G4double ttau = kineticEnergy/electron_mass_c2; >> 172 G4double ttau2 = ttau*ttau; >> 173 G4double epsilonpp = eloss/kineticEnergy; >> 174 G4double cst1 = epsilonpp*epsilonpp*(6+10*ttau+5*ttau2)/(24*ttau2+48*ttau+72); >> 175 kineticEnergy *= (1 - cst1); >> 176 */ >> 177 kineticEnergy -= 0.5*eloss; >> 178 >> 179 /////////////////////////////////////////// >> 180 // additivity rule for mixture and compound xsection's >> 181 const G4Material* mat = currentCouple->GetMaterial(); >> 182 const G4ElementVector* theElementVector = mat->GetElementVector(); >> 183 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume(); >> 184 G4int nelm = mat->GetNumberOfElements(); >> 185 G4double s0(0.0), s1(0.0); >> 186 lambda0 = 0.0; >> 187 for(G4int i=0;i<nelm;i++) >> 188 { >> 189 CalculateIntegrals(particle,(*theElementVector)[i]->GetZ(),kineticEnergy,s0,s1); >> 190 lambda0 += (theAtomNumDensityVector[i]*s0); >> 191 } >> 192 if(lambda0>0.0) lambda0 =1./lambda0; >> 193 >> 194 // Newton-Raphson root's finding method of scrA from: >> 195 // Sig1(PWA)/Sig0(PWA)=g1=2*scrA*((1+scrA)*log(1+1/scrA)-1) >> 196 G4double g1=0.0; >> 197 if(lambda1>0.0) { g1 = lambda0/lambda1; } >> 198 >> 199 G4double logx0,x1,delta; >> 200 G4double x0=g1*0.5; >> 201 // V.Ivanchenko added limit of the loop >> 202 for(G4int i=0;i<1000;++i) >> 203 { >> 204 logx0=std::log(1.+1./x0); >> 205 x1 = x0-(x0*((1.+x0)*logx0-1.0)-g1*0.5)/( (1.+2.*x0)*logx0-2.0); >> 206 >> 207 // V.Ivanchenko cut step size of iterative procedure >> 208 if(x1 < 0.0) { x1 = 0.5*x0; } >> 209 else if(x1 > 2*x0) { x1 = 2*x0; } >> 210 else if(x1 < 0.5*x0) { x1 = 0.5*x0; } >> 211 delta = std::fabs( x1 - x0 ); >> 212 x0 = x1; >> 213 if(delta < 1.0e-3*x1) { break;} >> 214 } >> 215 G4double scrA = x1; 249 216 >> 217 G4double lambdan=0.; >> 218 >> 219 if(lambda0>0.0) { lambdan=tPathLength/lambda0; } >> 220 if(lambdan<=1.0e-12) { return fDisplacement; } >> 221 >> 222 //G4cout << "E(eV)= " << kineticEnergy/eV << " L0= " << lambda0 >> 223 // << " L1= " << lambda1 << G4endl; >> 224 >> 225 G4double Qn1 = lambdan *g1;//2.* lambdan *scrA*((1.+scrA)*log(1.+1./scrA)-1.); >> 226 G4double Qn12 = 0.5*Qn1; >> 227 >> 228 G4double cosTheta1,sinTheta1,cosTheta2,sinTheta2; >> 229 G4double cosPhi1=1.0,sinPhi1=0.0,cosPhi2=1.0,sinPhi2=0.0; >> 230 G4double us=0.0,vs=0.0,ws=1.0,wss=0.,x_coord=0.0,y_coord=0.0,z_coord=1.0; >> 231 >> 232 G4double epsilon1=G4UniformRand(); >> 233 G4double expn = std::exp(-lambdan); >> 234 >> 235 if(epsilon1<expn)// no scattering >> 236 { return fDisplacement; } >> 237 else if((epsilon1<((1.+lambdan)*expn))||(lambdan<1.))//single or plural scattering (Rutherford DCS's) >> 238 { >> 239 G4double xi=G4UniformRand(); >> 240 xi= 2.*scrA*xi/(1.-xi + scrA); >> 241 if(xi<0.)xi=0.; >> 242 else if(xi>2.)xi=2.; >> 243 ws=(1. - xi); >> 244 wss=std::sqrt(xi*(2.-xi)); >> 245 G4double phi0=CLHEP::twopi*G4UniformRand(); >> 246 us=wss*cos(phi0); >> 247 vs=wss*sin(phi0); >> 248 } >> 249 else // multiple scattering >> 250 { >> 251 // Ref.2 subsection 4.4 "The best solution found" >> 252 // Sample first substep scattering angle >> 253 SampleCosineTheta(0.5*lambdan,scrA,cosTheta1,sinTheta1); >> 254 G4double phi1 = CLHEP::twopi*G4UniformRand(); >> 255 cosPhi1 = cos(phi1); >> 256 sinPhi1 = sin(phi1); >> 257 >> 258 // Sample second substep scattering angle >> 259 SampleCosineTheta(0.5*lambdan,scrA,cosTheta2,sinTheta2); >> 260 G4double phi2 = CLHEP::twopi*G4UniformRand(); >> 261 cosPhi2 = cos(phi2); >> 262 sinPhi2 = sin(phi2); >> 263 >> 264 // Overall scattering direction >> 265 us = sinTheta2*(cosTheta1*cosPhi1*cosPhi2 - sinPhi1*sinPhi2) + cosTheta2*sinTheta1*cosPhi1; >> 266 vs = sinTheta2*(cosTheta1*sinPhi1*cosPhi2 + cosPhi1*sinPhi2) + cosTheta2*sinTheta1*sinPhi1; >> 267 ws = cosTheta1*cosTheta2 - sinTheta1*sinTheta2*cosPhi2; >> 268 G4double sqrtA=sqrt(scrA); >> 269 if(acos(ws)<sqrtA)//small angle approximation for theta less than screening angle >> 270 { >> 271 G4int i=0; >> 272 do{i++; >> 273 ws=1.+Qn12*log(G4UniformRand()); >> 274 }while((fabs(ws)>1.)&&(i<20));//i<20 to avoid time consuming during the run >> 275 if(i>=19)ws=cos(sqrtA); >> 276 wss=std::sqrt((1.-ws*ws)); >> 277 us=wss*std::cos(phi1); >> 278 vs=wss*std::sin(phi1); >> 279 } >> 280 } >> 281 >> 282 G4ThreeVector oldDirection = dynParticle->GetMomentumDirection(); >> 283 G4ThreeVector newDirection(us,vs,ws); >> 284 newDirection.rotateUz(oldDirection); >> 285 fParticleChange->ProposeMomentumDirection(newDirection); >> 286 >> 287 // corresponding to error less than 1% in the exact formula of <z> >> 288 if(Qn1<0.02) { z_coord = 1.0 - Qn1*(0.5 - Qn1/6.); } >> 289 else { z_coord = (1.-std::exp(-Qn1))/Qn1; } >> 290 G4double rr = zPathLength*std::sqrt((1.- z_coord*z_coord)/(1.-ws*ws)); >> 291 x_coord = rr*us; >> 292 y_coord = rr*vs; >> 293 >> 294 // displacement is computed relatively to the end point >> 295 z_coord -= 1.0; >> 296 z_coord *= zPathLength; >> 297 /* >> 298 G4cout << "G4GS::SampleSecondaries: e(MeV)= " << kineticEnergy >> 299 << " sinTheta= " << sqrt(1.0 - ws*ws) >> 300 << " trueStep(mm)= " << tPathLength >> 301 << " geomStep(mm)= " << zPathLength >> 302 << G4endl; >> 303 */ >> 304 >> 305 fDisplacement.set(x_coord,y_coord,z_coord); >> 306 fDisplacement.rotateUz(oldDirection); >> 307 >> 308 return fDisplacement; >> 309 } >> 310 >> 311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 312 >> 313 void >> 314 G4GoudsmitSaundersonMscModel::SampleCosineTheta(G4double lambdan, G4double scrA, >> 315 G4double &cost, G4double &sint) >> 316 { >> 317 G4double r1,tet,xi=0.; >> 318 G4double Qn1 = 2.* lambdan; >> 319 if(scrA < 10.) { Qn1 *= scrA*((1.+scrA)*log(1.+1./scrA)-1.); } >> 320 else { Qn1*= (1.0 - 0.5/scrA - 0.5/(scrA*scrA)) ; } >> 321 if (Qn1<0.001) >> 322 { >> 323 do{ >> 324 r1=G4UniformRand(); >> 325 xi=-0.5*Qn1*log(G4UniformRand()); >> 326 tet=acos(1.-xi); >> 327 }while(tet*r1*r1>sin(tet)); >> 328 } >> 329 else if(Qn1>0.5) { xi=2.*G4UniformRand(); }//isotropic distribution >> 330 else{ xi=2.*(GSTable->SampleTheta(lambdan,scrA,G4UniformRand()));} >> 331 >> 332 >> 333 if(xi<0.)xi=0.; >> 334 else if(xi>2.)xi=2.; >> 335 >> 336 cost=(1. - xi); >> 337 sint=sqrt(xi*(2.-xi)); >> 338 >> 339 } >> 340 >> 341 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 342 // Polynomial log-log interpolation of Lambda0 and Lambda1 between 100 eV - 1 GeV >> 343 // linear log-log extrapolation between 1 GeV - 100 TeV >> 344 >> 345 void >> 346 G4GoudsmitSaundersonMscModel::CalculateIntegrals(const G4ParticleDefinition* p,G4double Z, >> 347 G4double kinEnergy,G4double &Sig0, >> 348 G4double &Sig1) >> 349 { >> 350 G4double x1,x2,y1,y2,acoeff,bcoeff; >> 351 G4double kineticE = kinEnergy; >> 352 if(kineticE<lowKEnergy)kineticE=lowKEnergy; >> 353 if(kineticE>highKEnergy)kineticE=highKEnergy; >> 354 kineticE /= eV; >> 355 G4double logE=std::log(kineticE); >> 356 >> 357 G4int iZ = G4int(Z); >> 358 if(iZ > 103) iZ = 103; >> 359 >> 360 G4int enerInd=0; >> 361 for(G4int i=0;i<105;i++) >> 362 { >> 363 if((logE>=ener[i])&&(logE<ener[i+1])){enerInd=i;break;} >> 364 } >> 365 >> 366 if(p==G4Electron::Electron()) >> 367 { >> 368 if(kineticE<=1.0e+9)//Interpolation of the form y=ax²+b >> 369 { >> 370 x1=ener[enerInd]; >> 371 x2=ener[enerInd+1]; >> 372 y1=TCSE[iZ-1][enerInd]; >> 373 y2=TCSE[iZ-1][enerInd+1]; >> 374 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 375 bcoeff=y2-acoeff*x2*x2; >> 376 Sig0=acoeff*logE*logE+bcoeff; >> 377 Sig0 =std::exp(Sig0); >> 378 y1=FTCSE[iZ-1][enerInd]; >> 379 y2=FTCSE[iZ-1][enerInd+1]; >> 380 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 381 bcoeff=y2-acoeff*x2*x2; >> 382 Sig1=acoeff*logE*logE+bcoeff; >> 383 Sig1=std::exp(Sig1); >> 384 } >> 385 else //Interpolation of the form y=ax+b >> 386 { >> 387 x1=ener[104]; >> 388 x2=ener[105]; >> 389 y1=TCSE[iZ-1][104]; >> 390 y2=TCSE[iZ-1][105]; >> 391 Sig0=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 392 Sig0=std::exp(Sig0); >> 393 y1=FTCSE[iZ-1][104]; >> 394 y2=FTCSE[iZ-1][105]; >> 395 Sig1=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 396 Sig1=std::exp(Sig1); >> 397 } >> 398 } >> 399 if(p==G4Positron::Positron()) >> 400 { >> 401 if(kinEnergy<=1.0e+9) >> 402 { >> 403 x1=ener[enerInd]; >> 404 x2=ener[enerInd+1]; >> 405 y1=TCSP[iZ-1][enerInd]; >> 406 y2=TCSP[iZ-1][enerInd+1]; >> 407 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 408 bcoeff=y2-acoeff*x2*x2; >> 409 Sig0=acoeff*logE*logE+bcoeff; >> 410 Sig0 =std::exp(Sig0); >> 411 y1=FTCSP[iZ-1][enerInd]; >> 412 y2=FTCSP[iZ-1][enerInd+1]; >> 413 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 414 bcoeff=y2-acoeff*x2*x2; >> 415 Sig1=acoeff*logE*logE+bcoeff; >> 416 Sig1=std::exp(Sig1); >> 417 } >> 418 else >> 419 { >> 420 x1=ener[104]; >> 421 x2=ener[105]; >> 422 y1=TCSP[iZ-1][104]; >> 423 y2=TCSP[iZ-1][105]; >> 424 Sig0=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 425 Sig0 =std::exp(Sig0); >> 426 y1=FTCSP[iZ-1][104]; >> 427 y2=FTCSP[iZ-1][105]; >> 428 Sig1=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 429 Sig1=std::exp(Sig1); >> 430 } >> 431 } >> 432 >> 433 Sig0 *= barn; >> 434 Sig1 *= barn; 250 435 251 void G4GoudsmitSaundersonMscModel::Initialise( << 252 SetParticle(p); << 253 InitialiseParameters(p); << 254 // -create GoudsmitSaundersonTable and init << 255 // Mott-correction was required << 256 if (IsMaster()) { << 257 // get the Mott-correction flag from EmPar << 258 if (G4EmParameters::Instance()->UseMottCor << 259 fIsUseMottCorrection = true; << 260 } << 261 // Mott-correction includes other way of P << 262 // when Mott-correction is activated by th << 263 if (fIsUseMottCorrection) { << 264 fIsUsePWACorrection = false; << 265 } << 266 // clear GS-table << 267 if (fGSTable) { << 268 delete fGSTable; << 269 fGSTable = nullptr; << 270 } << 271 // clear PWA corrections table if any << 272 if (fPWACorrection) { << 273 delete fPWACorrection; << 274 fPWACorrection = nullptr; << 275 } << 276 // create GS-table << 277 G4bool isElectron = true; << 278 if (p->GetPDGCharge()>0.) { << 279 isElectron = false; << 280 } << 281 fGSTable = new G4GoudsmitSaundersonTable(i << 282 // G4GSTable will be initialised: << 283 // - Screened-Rutherford DCS based GS angu << 284 // - Mott-correction will be initialised i << 285 fGSTable->SetOptionMottCorrection(fIsUseMo << 286 // - set PWA correction (correction to int << 287 fGSTable->SetOptionPWACorrection(fIsUsePWA << 288 // init << 289 fGSTable->Initialise(LowEnergyLimit(),High << 290 // create PWA corrections table if it was << 291 if (fIsUsePWACorrection) { << 292 fPWACorrection = new G4GSPWACorrections( << 293 fPWACorrection->Initialise(); << 294 } << 295 } << 296 fParticleChange = GetParticleChangeForMSC(p) << 297 } 436 } 298 437 >> 438 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 299 439 300 void G4GoudsmitSaundersonMscModel::InitialiseL << 440 void G4GoudsmitSaundersonMscModel::StartTracking(G4Track* track) 301 fGSTable = static_cast<G4Goud << 441 { 302 fIsUseMottCorrection = static_cast<G4Goud << 442 SetParticle(track->GetDynamicParticle()->GetDefinition()); 303 fIsUsePWACorrection = static_cast<G4Goud << 443 firstStep = true; 304 fPWACorrection = static_cast<G4Goud << 444 inside = false; >> 445 insideskin = false; >> 446 tlimit = geombig; 305 } 447 } 306 448 >> 449 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 450 //t->g->t step transformations taken from Ref.6 >> 451 >> 452 G4double >> 453 G4GoudsmitSaundersonMscModel::ComputeTruePathLengthLimit(const G4Track& track, >> 454 G4double& currentMinimalStep) >> 455 { >> 456 tPathLength = currentMinimalStep; >> 457 const G4DynamicParticle* dp = track.GetDynamicParticle(); >> 458 G4StepPoint* sp = track.GetStep()->GetPreStepPoint(); >> 459 G4StepStatus stepStatus = sp->GetStepStatus(); >> 460 currentCouple = track.GetMaterialCutsCouple(); >> 461 SetCurrentCouple(currentCouple); >> 462 currentMaterialIndex = currentCouple->GetIndex(); >> 463 currentKinEnergy = dp->GetKineticEnergy(); >> 464 currentRange = GetRange(particle,currentKinEnergy,currentCouple); >> 465 >> 466 lambda1 = GetTransportMeanFreePath(particle,currentKinEnergy); >> 467 >> 468 // stop here if small range particle >> 469 if(inside || tPathLength < tlimitminfix) { >> 470 return ConvertTrueToGeom(tPathLength, currentMinimalStep); >> 471 } >> 472 if(tPathLength > currentRange) tPathLength = currentRange; >> 473 >> 474 G4double presafety = sp->GetSafety(); >> 475 >> 476 //G4cout << "G4GS::StepLimit tPathLength= " >> 477 // <<tPathLength<<" safety= " << presafety >> 478 // << " range= " <<currentRange<< " lambda= "<<lambda1 >> 479 // << " Alg: " << steppingAlgorithm <<G4endl; >> 480 >> 481 // far from geometry boundary >> 482 if(currentRange < presafety) >> 483 { >> 484 inside = true; >> 485 return ConvertTrueToGeom(tPathLength, currentMinimalStep); >> 486 } >> 487 >> 488 // standard version >> 489 // >> 490 if (steppingAlgorithm == fUseDistanceToBoundary) >> 491 { >> 492 //compute geomlimit and presafety >> 493 G4double geomlimit = ComputeGeomLimit(track, presafety, tPathLength); >> 494 >> 495 // is far from boundary >> 496 if(currentRange <= presafety) >> 497 { >> 498 inside = true; >> 499 return ConvertTrueToGeom(tPathLength, currentMinimalStep); >> 500 } >> 501 >> 502 smallstep += 1.; >> 503 insideskin = false; >> 504 >> 505 if(firstStep || stepStatus == fGeomBoundary) >> 506 { >> 507 rangeinit = currentRange; >> 508 if(firstStep) smallstep = 1.e10; >> 509 else smallstep = 1.; >> 510 >> 511 //define stepmin here (it depends on lambda!) >> 512 //rough estimation of lambda_elastic/lambda_transport >> 513 G4double rat = currentKinEnergy/MeV ; >> 514 rat = 1.e-3/(rat*(10.+rat)) ; >> 515 //stepmin ~ lambda_elastic >> 516 stepmin = rat*lambda1; >> 517 skindepth = skin*stepmin; >> 518 //define tlimitmin >> 519 tlimitmin = 10.*stepmin; >> 520 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix; >> 521 >> 522 //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin >> 523 // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl; >> 524 // constraint from the geometry >> 525 if((geomlimit < geombig) && (geomlimit > geommin)) >> 526 { >> 527 if(stepStatus == fGeomBoundary) >> 528 tgeom = geomlimit/facgeom; >> 529 else >> 530 tgeom = 2.*geomlimit/facgeom; >> 531 } >> 532 else >> 533 tgeom = geombig; 307 534 308 // computes macroscopic first transport cross << 535 } 309 G4double G4GoudsmitSaundersonMscModel::CrossSe << 310 const << 311 G4dou << 312 G4dou << 313 G4dou << 314 G4double xsecTr1 = 0.; // cross section per << 315 // << 316 fLambda0 = 0.0; // elastic mean free path << 317 fLambda1 = 0.0; // first transport mean free << 318 fScrA = 0.0; // screening parameter << 319 fG1 = 0.0; // first transport coef. << 320 // use Moliere's screening (with Mott-corret << 321 G4double efEnergy = std::max(kineticEnergy, << 322 // total mometum square << 323 G4double pt2 = efEnergy*(efEnergy+2.0*el << 324 // beta square << 325 G4double beta2 = pt2/(pt2+electron_mass_c2 << 326 // current material index << 327 G4int matindx = (G4int)mat->GetIndex(); << 328 // Moliere's b_c << 329 G4double bc = fGSTable->GetMoliereBc(ma << 330 // get the Mott-correcton factors if Mott-co << 331 fMCtoScrA = 1.0; << 332 fMCtoQ1 = 1.0; << 333 fMCtoG2PerG1 = 1.0; << 334 G4double scpCor = 1.0; << 335 if (fIsUseMottCorrection) { << 336 fGSTable->GetMottCorrectionFactors(G4Log(e << 337 // ! no scattering power correction since << 338 // scpCor = fGSTable->ComputeScatteringPow << 339 } else if (fIsUsePWACorrection) { << 340 fPWACorrection->GetPWACorrectionFactors(G4 << 341 // scpCor = fGSTable->ComputeScatteringPow << 342 } << 343 // screening parameter: << 344 // - if Mott-corretioncorrection: the Screen << 345 // screening parameter gives back the (els << 346 // - if PWA correction: he Screened-Rutherfo << 347 // gives back the (elsepa) PWA first trans << 348 fScrA = fGSTable->GetMoliereXc2(matindx)/ << 349 // elastic mean free path in Geant4 internal << 350 // (if Mott-corretion: the corrected screeni << 351 // corrected with the screening parameter co << 352 fLambda0 = beta2*(1.+fScrA)*fMCtoScrA/bc/scp << 353 // first transport coefficient (if Mott-corr << 354 // consistent with the one used during the p << 355 fG1 = 2.0*fScrA*((1.0+fScrA)*G4Log(1.0/ << 356 // first transport mean free path << 357 fLambda1 = fLambda0/fG1; << 358 xsecTr1 = 1./fLambda1; << 359 return xsecTr1; << 360 } << 361 536 >> 537 //step limit >> 538 tlimit = facrange*rangeinit; >> 539 if(tlimit < facsafety*presafety) >> 540 tlimit = facsafety*presafety; >> 541 >> 542 //lower limit for tlimit >> 543 if(tlimit < tlimitmin) tlimit = tlimitmin; >> 544 >> 545 if(tlimit > tgeom) tlimit = tgeom; >> 546 >> 547 //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit >> 548 // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl; >> 549 >> 550 // shortcut >> 551 if((tPathLength < tlimit) && (tPathLength < presafety) && >> 552 (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth)) >> 553 return ConvertTrueToGeom(tPathLength, currentMinimalStep); >> 554 >> 555 // step reduction near to boundary >> 556 if(smallstep < skin) >> 557 { >> 558 tlimit = stepmin; >> 559 insideskin = true; >> 560 } >> 561 else if(geomlimit < geombig) >> 562 { >> 563 if(geomlimit > skindepth) >> 564 { >> 565 if(tlimit > geomlimit-0.999*skindepth) >> 566 tlimit = geomlimit-0.999*skindepth; >> 567 } >> 568 else >> 569 { >> 570 insideskin = true; >> 571 if(tlimit > stepmin) tlimit = stepmin; >> 572 } >> 573 } >> 574 >> 575 if(tlimit < stepmin) tlimit = stepmin; >> 576 >> 577 if(tPathLength > tlimit) tPathLength = tlimit; >> 578 >> 579 } >> 580 // for 'normal' simulation with or without magnetic field >> 581 // there no small step/single scattering at boundaries >> 582 else if(steppingAlgorithm == fUseSafety) >> 583 { >> 584 // compute presafety again if presafety <= 0 and no boundary >> 585 // i.e. when it is needed for optimization purposes >> 586 if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix)) >> 587 presafety = ComputeSafety(sp->GetPosition(),tPathLength); >> 588 >> 589 // is far from boundary >> 590 if(currentRange < presafety) >> 591 { >> 592 inside = true; >> 593 return ConvertTrueToGeom(tPathLength, currentMinimalStep); >> 594 } 362 595 363 // gives back the first transport mean free pa << 596 if(firstStep || stepStatus == fGeomBoundary) 364 G4double << 597 { 365 G4GoudsmitSaundersonMscModel::GetTransportMean << 598 rangeinit = currentRange; 366 << 599 fr = facrange; 367 // kinetic energy is assumed to be in Geant4 << 600 // 9.1 like stepping for e+/e- only (not for muons,hadrons) 368 G4double efEnergy = kineticEnergy; << 601 if(mass < masslimite) 369 // << 602 { 370 const G4Material* mat = currentCouple->GetM << 603 if(lambda1 > currentRange) 371 // << 604 rangeinit = lambda1; 372 fLambda0 = 0.0; // elastic mean free path << 605 if(lambda1 > lambdalimit) 373 fLambda1 = 0.0; // first transport mean free << 606 fr *= 0.75+0.25*lambda1/lambdalimit; 374 fScrA = 0.0; // screening parameter << 607 } 375 fG1 = 0.0; // first transport coef. << 608 376 << 609 //lower limit for tlimit 377 // use Moliere's screening (with Mott-corret << 610 G4double rat = currentKinEnergy/MeV ; 378 if (efEnergy<10.*CLHEP::eV) efEnergy = 10.* << 611 rat = 1.e-3/(rat*(10.+rat)) ; 379 // total mometum square << 612 tlimitmin = 10.*lambda1*rat; 380 G4double pt2 = efEnergy*(efEnergy+2.0*el << 613 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix; 381 // beta square << 614 } 382 G4double beta2 = pt2/(pt2+electron_mass_c2 << 615 //step limit 383 // current material index << 616 tlimit = fr*rangeinit; 384 G4int matindx = (G4int)mat->GetIndex(); << 385 // Moliere's b_c << 386 G4double bc = fGSTable->GetMoliereBc(ma << 387 // get the Mott-correcton factors if Mott-co << 388 fMCtoScrA = 1.0; << 389 fMCtoQ1 = 1.0; << 390 fMCtoG2PerG1 = 1.0; << 391 G4double scpCor = 1.0; << 392 if (fIsUseMottCorrection) { << 393 fGSTable->GetMottCorrectionFactors(G4Log(e << 394 scpCor = fGSTable->ComputeScatteringPowerC << 395 } else if (fIsUsePWACorrection) { << 396 fPWACorrection->GetPWACorrectionFactors(G4 << 397 // scpCor = fGSTable->ComputeScatteringPow << 398 } << 399 // screening parameter: << 400 // - if Mott-corretioncorrection: the Screen << 401 // screening parameter gives back the (els << 402 // - if PWA correction: he Screened-Rutherfo << 403 // gives back the (elsepa) PWA first trans << 404 fScrA = fGSTable->GetMoliereXc2(matindx)/ << 405 // elastic mean free path in Geant4 internal << 406 // (if Mott-corretion: the corrected screeni << 407 // corrected with the screening parameter co << 408 fLambda0 = beta2*(1.+fScrA)*fMCtoScrA/bc/scp << 409 // first transport coefficient (if Mott-corr << 410 // consistent with the one used during the p << 411 fG1 = 2.0*fScrA*((1.0+fScrA)*G4Log(1.0/ << 412 // first transport mean free path << 413 fLambda1 = fLambda0/fG1; << 414 617 415 return fLambda1; << 618 if(tlimit < facsafety*presafety) 416 } << 619 tlimit = facsafety*presafety; 417 620 >> 621 //lower limit for tlimit >> 622 if(tlimit < tlimitmin) tlimit = tlimitmin; 418 623 419 G4double << 624 if(tPathLength > tlimit) tPathLength = tlimit; 420 G4GoudsmitSaundersonMscModel::GetTransportMean << 625 } 421 << 626 422 // kinetic energy is assumed to be in Geant4 << 627 // version similar to 7.1 (needed for some experiments) 423 G4double efEnergy = kineticEnergy; << 628 else 424 // << 629 { 425 const G4Material* mat = currentCouple->GetM << 630 if (stepStatus == fGeomBoundary) 426 // << 631 { 427 G4double lambda0 = 0.0; // elastc mean free << 632 if (currentRange > lambda1) tlimit = facrange*currentRange; 428 G4double lambda1 = 0.0; // first transport m << 633 else tlimit = facrange*lambda1; 429 G4double scrA = 0.0; // screening paramet << 634 430 G4double g1 = 0.0; // first transport m << 635 if(tlimit < tlimitmin) tlimit = tlimitmin; 431 << 636 if(tPathLength > tlimit) tPathLength = tlimit; 432 // use Moliere's screening (with Mott-corret << 637 } 433 if (efEnergy<10.*CLHEP::eV) efEnergy = 10.* << 638 } 434 // total mometum square in Geant4 internal e << 639 //G4cout << "tPathLength= " << tPathLength 435 G4double pt2 = efEnergy*(efEnergy+2.0*el << 640 // << " currentMinimalStep= " << currentMinimalStep << G4endl; 436 G4double beta2 = pt2/(pt2+electron_mass_c2 << 641 return ConvertTrueToGeom(tPathLength, currentMinimalStep); 437 G4int matindx = (G4int)mat->GetIndex(); << 642 } 438 G4double bc = fGSTable->GetMoliereBc(ma << 643 439 // get the Mott-correcton factors if Mott-co << 644 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 440 G4double mctoScrA = 1.0; << 645 // taken from Ref.6 441 G4double mctoQ1 = 1.0; << 646 G4double G4GoudsmitSaundersonMscModel::ComputeGeomPathLength(G4double) 442 G4double mctoG2PerG1 = 1.0; << 647 { 443 G4double scpCor = 1.0; << 648 firstStep = false; 444 if (fIsUseMottCorrection) { << 649 par1 = -1. ; 445 fGSTable->GetMottCorrectionFactors(G4Log(e << 650 par2 = par3 = 0. ; 446 scpCor = fGSTable->ComputeScatteringPowerC << 651 447 } else if (fIsUsePWACorrection) { << 652 // do the true -> geom transformation 448 fPWACorrection->GetPWACorrectionFactors(G4 << 653 zPathLength = tPathLength; 449 // scpCor = fGSTable->ComputeScatteringPow << 654 450 } << 655 // z = t for very small tPathLength 451 scrA = fGSTable->GetMoliereXc2(matindx)/( << 656 if(tPathLength < tlimitminfix) { return zPathLength; } 452 // total elastic mean free path in Geant4 in << 657 453 lambda0 = beta2*(1.+scrA)*mctoScrA/bc/scpCor << 658 // this correction needed to run MSC with eIoni and eBrem inactivated 454 g1 = 2.0*scrA*((1.0+scrA)*G4Log(1.0/scr << 659 // and makes no harm for a normal run 455 lambda1 = lambda0/g1; << 660 if(tPathLength > currentRange) >> 661 { tPathLength = currentRange; } >> 662 >> 663 G4double tau = tPathLength/lambda1 ; >> 664 >> 665 if ((tau <= tausmall) || insideskin) { >> 666 zPathLength = tPathLength; >> 667 if(zPathLength > lambda1) { zPathLength = lambda1; } >> 668 return zPathLength; >> 669 } >> 670 >> 671 G4double zmean = tPathLength; >> 672 if (tPathLength < currentRange*dtrl) { >> 673 if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ; >> 674 else zmean = lambda1*(1.-exp(-tau)); >> 675 } else if(currentKinEnergy < mass || tPathLength == currentRange) { >> 676 par1 = 1./currentRange ; >> 677 par2 = 1./(par1*lambda1) ; >> 678 par3 = 1.+par2 ; >> 679 if(tPathLength < currentRange) >> 680 zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ; >> 681 else >> 682 zmean = 1./(par1*par3) ; >> 683 } else { >> 684 G4double T1 = GetEnergy(particle,currentRange-tPathLength,currentCouple); 456 685 457 return lambda1; << 686 lambda11 = GetTransportMeanFreePath(particle,T1); 458 } << 459 687 >> 688 par1 = (lambda1-lambda11)/(lambda1*tPathLength) ; >> 689 par2 = 1./(par1*lambda1) ; >> 690 par3 = 1.+par2 ; >> 691 zmean = (1.-exp(par3*log(lambda11/lambda1)))/(par1*par3) ; >> 692 } 460 693 461 void G4GoudsmitSaundersonMscModel::StartTracki << 694 zPathLength = zmean ; 462 SetParticle(track->GetDynamicParticle()->Get << 695 // sample z 463 firstStep = true; << 696 if(samplez) { 464 tlimit = tgeom = rangeinit = geombig; << 465 rangeinit = 1.e+21; << 466 } << 467 697 >> 698 const G4double ztmax = 0.99; >> 699 G4double zt = zmean/tPathLength ; 468 700 469 G4double G4GoudsmitSaundersonMscModel::Compute << 701 if (tPathLength > stepmin && zt < ztmax) { 470 << 471 G4double skindepth = 0.; << 472 // << 473 const G4DynamicParticle* dp = track.GetDynam << 474 G4StepPoint* sp = track.GetStep( << 475 G4StepStatus stepStatus = sp->GetStepSta << 476 currentCouple = track.GetMater << 477 SetCurrentCouple(currentCouple); << 478 currentMaterialIndex = (G4int)current << 479 currentKinEnergy = dp->GetKinetic << 480 currentRange = GetRange(parti << 481 dp->G << 482 // elastic and first transport mfp, screenin << 483 // (Mott-correction will be used if it was r << 484 fLambda1 = GetTransportMeanFreePath(particle << 485 // Set initial values: << 486 // : lengths are initialised to currentMini << 487 // step length from all other physics << 488 fTheTrueStepLenght = currentMinimalStep; << 489 fTheTransportDistance = currentMinimalStep; << 490 fTheZPathLenght = currentMinimalStep; << 491 fTheDisplacementVector.set(0.,0.,0.); << 492 fTheNewDirection.set(0.,0.,1.); << 493 << 494 // Can everything be done in the step limit << 495 fIsEverythingWasDone = false; << 496 // Multiple scattering needs to be sample ? << 497 fIsMultipleSacettring = false; << 498 // Single scattering needs to be sample ? << 499 fIsSingleScattering = false; << 500 // Was zero deflection in multiple scatterin << 501 fIsNoScatteringInMSC = false; << 502 // Do not care about displacement in MSC sam << 503 // ( used only in the case of gIsOptimizatio << 504 fIsNoDisplace = false; << 505 // get pre-step point safety << 506 presafety = sp->GetSafety(); << 507 // << 508 fZeff = currentCouple->GetMaterial()->GetIon << 509 // distance will take into account max-fluct << 510 G4double distance = currentRange; << 511 distance *= (1.20-fZeff*(1.62e-2-9.22e-5*fZe << 512 // << 513 // Possible optimization : if the distance i << 514 // particle will never leave this volume -> << 515 // as the effect of multiple elastic scatter << 516 // Important : this optimization can cause p << 517 // in a bigger volume since MSC won't be don << 518 // distance < safety so don't use optimized- << 519 if (gIsOptimizationOn && (distance<presafety << 520 // Indicate that we need to do MSC after << 521 fIsMultipleSacettring = true; << 522 fIsNoDisplace = true; << 523 } else if (steppingAlgorithm==fUseDistanceTo << 524 //Compute geomlimit (and presafety) : << 525 // - geomlimit will be: << 526 // == the straight line distance to the << 527 // longer than that << 528 // == a big value [geombig = 1.e50*mm] << 529 // the straight line distance to the << 530 // - presafety will be updated as well << 531 // So the particle can travell 'gemlimit' << 532 // line!) in its current direction: << 533 // (1) before reaching a boundary (geomli << 534 // (2) before reaching its current range << 535 geomlimit = ComputeGeomLimit(track, presaf << 536 // Record that the particle is on a bounda << 537 if ( (stepStatus==fGeomBoundary) || (stepS << 538 fIsWasOnBoundary = true; << 539 } << 540 // Set skin depth = skin x elastic_mean_fr << 541 skindepth = skin*fLambda0; << 542 // Init the flag that indicates that the p << 543 // distance from a boundary << 544 fIsInsideSkin = false; << 545 // Check if we can try Single Scattering b << 546 // distance from/to a boundary OR the curr << 547 // shorter than skindepth. NOTICE: the lat << 548 // because the MSC angular sampling is fin << 549 // faster to try single scattering in case << 550 if ((stepStatus==fGeomBoundary) || (presaf << 551 // check if we are within skindepth dist << 552 if ((stepStatus == fGeomBoundary) || (pr << 553 fIsInsideSkin = true; << 554 fIsWasOnBoundary = true; << 555 } << 556 //Try single scattering: << 557 // - sample distance to next single scat << 558 // - compare to current minimum length << 559 // == if sslimit is the shorter: << 560 // - set the step length to ssl << 561 // - indicate that single scatt << 562 // == else : nothing to do << 563 //- in both cases, the step length was v << 564 // true path length are the same << 565 G4double sslimit = -1.*fLambda0*G4Log(G4 << 566 // compare to current minimum step lengt << 567 if (sslimit<fTheTrueStepLenght) { << 568 fTheTrueStepLenght = sslimit; << 569 fIsSingleScattering = true; << 570 } << 571 // short step -> true step length equal << 572 fTheZPathLenght = fTheTrueStepLeng << 573 // Set taht everything is done in step-l << 574 // We will check if we need to perform t << 575 // sampling i.e. if single elastic scatt << 576 fIsEverythingWasDone = true; << 577 } else { << 578 // After checking we know that we cannot << 579 // need to make an MSC step << 580 // Indicate that we need to make and MSC << 581 // do it now i.e. if presafety>final_tru << 582 // fIsEverythingWasDone = false which in << 583 // MSC after transportation. << 584 fIsMultipleSacettring = true; << 585 // Init the first-real-step falg: it wil << 586 // non-single scattering step in this vo << 587 fIsFirstRealStep = false; << 588 // If previously the partcile was on bou << 589 // well. When it is not within skin anym << 590 // so we make the first real MSC step wi << 591 if (fIsWasOnBoundary && !fIsInsideSkin) << 592 // reset the 'was on boundary' indicat << 593 fIsWasOnBoundary = false; << 594 fIsFirstRealStep = true; << 595 } << 596 // If this is the first-real msc step (t << 597 // skin) or this is the first step with << 598 // primary): << 599 // - set the initial range that will b << 600 // (only in this volume, because aft << 601 // first-real MSC step we will reset << 602 // - don't let the partcile to cross th << 603 if (firstStep || fIsFirstRealStep || ran << 604 rangeinit = currentRange; << 605 // If geomlimit < geombig than the par << 606 // along its initial direction before << 607 // Otherwise we can be sure that the p << 608 // before reaching the boundary along << 609 // geometrical limit appalied. [Howeve << 610 // first or the first-real MSC step. A << 611 // MSC step the direction will change << 612 // But we will try to end up within sk << 613 // the actual value of geomlimit(See l << 614 // boundary).] << 615 if (geomlimit<geombig) { << 616 // transfrom straight line distance << 617 // length based on the mean values ( << 618 // first-transport mean free path i. << 619 if ((1.-geomlimit/fLambda1)> 0.) { << 620 geomlimit = -fLambda1*G4Log(1.-geo << 621 } << 622 // the 2-different case that could l << 623 if (firstStep) { << 624 tgeom = 2.*geomlimit/facgeom; << 625 } else { << 626 tgeom = geomlimit/facgeom; << 627 } << 628 } else { << 629 tgeom = geombig; << 630 } << 631 } << 632 // True step length limit from range fac << 633 // range is used that was set at the fir << 634 // in this volume with this particle. << 635 tlimit = facrange*rangeinit; << 636 // Take the minimum of the true step len << 637 // geometrical constraint or range-facto << 638 tlimit = std::min(tlimit,tgeom); << 639 // Step reduction close to boundary: we << 640 // from the boundary ( Notice: in case o << 641 // because geomlimit is the straigth lin << 642 // the currect direction (if geomlimit<g << 643 // change the initial direction. So te p << 644 // before in a different direction. Howe << 645 // path length to this (straight line) l << 646 // transport distance (straight line) wi << 647 // geomlimit-0.999*skindepth after the c << 648 if (geomlimit<geombig) { << 649 tlimit = std::min(tlimit, geomlimit-0. << 650 } << 651 // randomize 1st step or 1st 'normal' st << 652 if (firstStep || fIsFirstRealStep) { << 653 fTheTrueStepLenght = std::min(fTheTrue << 654 } else { << 655 fTheTrueStepLenght = std::min(fTheTrue << 656 } << 657 } << 658 } else if (steppingAlgorithm==fUseSafetyPlus << 659 presafety = ComputeSafety(sp->GetPosition << 660 geomlimit = presafety; << 661 // Set skin depth = skin x elastic_mean_fr << 662 skindepth = skin*fLambda0; << 663 // Check if we can try Single Scattering b << 664 // distance from/to a boundary OR the curr << 665 // shorter than skindepth. NOTICE: the lat << 666 // because the MSC angular sampling is fin << 667 // faster to try single scattering in case << 668 if ((stepStatus==fGeomBoundary) || (presaf << 669 //Try single scattering: << 670 // - sample distance to next single scat << 671 // - compare to current minimum length << 672 // == if sslimit is the shorter: << 673 // - set the step length to ssl << 674 // - indicate that single scatt << 675 // == else : nothing to do << 676 //- in both cases, the step length was v << 677 // true path length are the same << 678 G4double sslimit = -1.*fLambda0*G4Log(G4 << 679 // compare to current minimum step lengt << 680 if (sslimit<fTheTrueStepLenght) { << 681 fTheTrueStepLenght = sslimit; << 682 fIsSingleScattering = true; << 683 } << 684 // short step -> true step length equal << 685 fTheZPathLenght = fTheTrueStepLeng << 686 // Set taht everything is done in step-l << 687 // We will check if we need to perform t << 688 // sampling i.e. if single elastic scatt << 689 fIsEverythingWasDone = true; << 690 } else { << 691 // After checking we know that we cannot << 692 // need to make an MSC step << 693 // Indicate that we need to make and MSC << 694 fIsMultipleSacettring = true; << 695 fIsEverythingWasDone = true; << 696 // limit from range factor << 697 fTheTrueStepLenght = std::min(fTheTru << 698 // never let the particle go further tha << 699 // if we are here we are out of the skin << 700 if (fTheTrueStepLenght>presafety) { << 701 fTheTrueStepLenght = std::min(fTheTrue << 702 } << 703 // make sure that we are still within th << 704 // i.e. true step length is not longer t << 705 // We schould take into account energy l << 706 // step length as well. So let it 0.5 x << 707 fTheTrueStepLenght = std::min(fTheTrueSt << 708 } << 709 } else { << 710 // This is the default stepping algorithm: << 711 // accurate that corresponds to fUseSafety << 712 // model can handle any short steps so we << 713 // << 714 // NO single scattering in case of skin or << 715 // model will be single or even no scatter << 716 // compared to the elastic mean free path. << 717 // << 718 // indicate that MSC needs to be done (alw << 719 fIsMultipleSacettring = true; << 720 if (stepStatus!=fGeomBoundary) { << 721 presafety = ComputeSafety(sp->GetPositio << 722 } << 723 // Far from boundary-> in optimized mode d << 724 if ((distance<presafety) && (gIsOptimizati << 725 fIsNoDisplace = true; << 726 } else { << 727 // Urban like << 728 if (firstStep || (stepStatus==fGeomBound << 729 rangeinit = currentRange; << 730 fr = facrange; << 731 // We don't use this: we won't converge to the << 732 // decreasing range-factor. << 733 // rangeinit = std::max(rangeinit << 734 // if(fLambda1 > lambdalimit) { << 735 // fr *= (0.75+0.25*fLambda1/la << 736 // } << 737 702 738 } << 703 G4double u,cz1; 739 //step limit << 704 if(zt >= 0.333333333) { 740 tlimit = std::max(fr*rangeinit, facsafet << 741 // first step randomization << 742 if (firstStep || stepStatus==fGeomBounda << 743 fTheTrueStepLenght = std::min(fTheTrue << 744 } else { << 745 fTheTrueStepLenght = std::min(fTheTrue << 746 } << 747 } << 748 } << 749 // << 750 // unset first-step << 751 firstStep =false; << 752 // performe single scattering, multiple scat << 753 if (fIsEverythingWasDone) { << 754 if (fIsSingleScattering) { << 755 // sample single scattering << 756 //G4double ekin = 0.5*(currentKinEnerg << 757 G4double lekin = G4Log(currentKinEnergy << 758 G4double pt2 = currentKinEnergy*(curr << 759 G4double beta2 = pt2/(pt2+CLHEP::electr << 760 G4double cost = fGSTable->SingleScatte << 761 // protection << 762 if (cost<-1.) cost = -1.; << 763 if (cost> 1.) cost = 1.; << 764 // compute sint << 765 G4double dum = 1.-cost; << 766 G4double sint = std::sqrt(dum*(2.-dum) << 767 G4double phi = CLHEP::twopi*G4Uniform << 768 G4double sinPhi = std::sin(phi); << 769 G4double cosPhi = std::cos(phi); << 770 fTheNewDirection.set(sint*cosPhi,sint*si << 771 } else if (fIsMultipleSacettring) { << 772 // sample multiple scattering << 773 SampleMSC(); // fTheZPathLenght, fTheDis << 774 } // and if single scattering but it was l << 775 } //else { do nothing here but after transpo << 776 // << 777 return ConvertTrueToGeom(fTheTrueStepLenght, << 778 } << 779 705 >> 706 G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ; >> 707 cz1 = 1.+cz ; >> 708 G4double u0 = cz/cz1 ; >> 709 G4double grej ; >> 710 do { >> 711 u = exp(log(G4UniformRand())/cz1) ; >> 712 grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ; >> 713 } while (grej < G4UniformRand()) ; 780 714 781 G4double G4GoudsmitSaundersonMscModel::Compute << 782 // convert true ->geom << 783 // It is called from the step limitation Com << 784 // !fIsEverythingWasDone but protect: << 785 par1 = -1.; << 786 par2 = par3 = 0.; << 787 // if fIsEverythingWasDone = TRUE => fTheZP << 788 // so return with the already known value << 789 // Otherwise: << 790 if (!fIsEverythingWasDone) { << 791 // this correction needed to run MSC with << 792 // and makes no harm for a normal run << 793 fTheTrueStepLenght = std::min(fTheTrueStep << 794 // do the true -> geom transformation << 795 fTheZPathLenght = fTheTrueStepLenght; << 796 // z = t for very small true-path-length << 797 if (fTheTrueStepLenght<tlimitminfix2) { << 798 return fTheZPathLenght; << 799 } << 800 G4double tau = fTheTrueStepLenght/fLambda1 << 801 if (tau<=tausmall) { << 802 fTheZPathLenght = std::min(fTheTrueStepL << 803 } else if (fTheTrueStepLenght<currentRang << 804 if (tau<taulim) fTheZPathLenght = fTheTr << 805 else fTheZPathLenght = fLambd << 806 } else if (currentKinEnergy<mass || fTheTr << 807 par1 = 1./currentRange ; // alpha =1 << 808 par2 = 1./(par1*fLambda1) ; // 1/(alpha << 809 par3 = 1.+par2 ; // 1+1/ << 810 if (fTheTrueStepLenght<currentRange) { << 811 fTheZPathLenght = 1./(par1*par3) * (1. << 812 } else { 715 } else { 813 fTheZPathLenght = 1./(par1*par3); << 716 cz1 = 1./zt-1.; >> 717 u = 1.-exp(log(G4UniformRand())/cz1) ; 814 } 718 } 815 } else { << 719 zPathLength = tPathLength*u ; 816 G4double rfin = std::max(currentRange << 817 G4double T1 = GetEnergy(particle,rf << 818 G4double lambda1 = GetTransportMeanFreeP << 819 // << 820 par1 = (fLambda1-lambda1)/(fLambda1*fThe << 821 par2 = 1./(par1*fLambda1); << 822 par3 = 1.+par2 ; << 823 G4Pow *g4calc = G4Pow::GetInstance(); << 824 fTheZPathLenght = 1./(par1*par3) * (1.-g << 825 } 720 } 826 } 721 } 827 fTheZPathLenght = std::min(fTheZPathLenght, << 722 if(zPathLength > lambda1) zPathLength = lambda1; 828 // << 723 //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda1 << G4endl; 829 return fTheZPathLenght; << 724 >> 725 return zPathLength; 830 } 726 } 831 727 >> 728 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 729 // taken from Ref.6 >> 730 G4double >> 731 G4GoudsmitSaundersonMscModel::ComputeTrueStepLength(G4double geomStepLength) >> 732 { >> 733 // step defined other than transportation >> 734 if(geomStepLength == zPathLength && tPathLength <= currentRange) >> 735 return tPathLength; 832 736 833 G4double G4GoudsmitSaundersonMscModel::Compute << 834 // init << 835 fIsEndedUpOnBoundary = false; << 836 // step defined other than transportation << 837 if (geomStepLength==fTheZPathLenght) { << 838 return fTheTrueStepLenght; << 839 } << 840 // else :: << 841 // - set the flag that transportation was th << 842 // - convert geom -> true by using the mean << 843 fIsEndedUpOnBoundary = true; // OR LAST STEP << 844 fTheZPathLenght = geomStepLength; << 845 // was a short single scattering step << 846 if (fIsEverythingWasDone && !fIsMultipleSace << 847 fTheTrueStepLenght = geomStepLength; << 848 return fTheTrueStepLenght; << 849 } << 850 // t = z for very small step 737 // t = z for very small step 851 if (geomStepLength<tlimitminfix2) { << 738 zPathLength = geomStepLength; 852 fTheTrueStepLenght = geomStepLength; << 739 tPathLength = geomStepLength; >> 740 if(geomStepLength < tlimitminfix) return tPathLength; >> 741 853 // recalculation 742 // recalculation 854 } else { << 743 if((geomStepLength > lambda1*tausmall) && !insideskin) 855 G4double tlength = geomStepLength; << 744 { 856 if (geomStepLength>fLambda1*tausmall) { << 745 if(par1 < 0.) 857 if (par1< 0.) { << 746 tPathLength = -lambda1*log(1.-geomStepLength/lambda1) ; 858 tlength = -fLambda1*G4Log(1.-geomStepL << 747 else >> 748 { >> 749 if(par1*par3*geomStepLength < 1.) >> 750 tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ; >> 751 else >> 752 tPathLength = currentRange; >> 753 } >> 754 } >> 755 if(tPathLength < geomStepLength) tPathLength = geomStepLength; >> 756 //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl; >> 757 >> 758 return tPathLength; >> 759 } >> 760 >> 761 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 762 //Total & first transport x sections for e-/e+ generated from ELSEPA code >> 763 >> 764 void G4GoudsmitSaundersonMscModel::LoadELSEPAXSections() >> 765 { >> 766 G4String filename = "XSECTIONS.dat"; >> 767 >> 768 char* path = getenv("G4LEDATA"); >> 769 if (!path) >> 770 { >> 771 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()","em0006", >> 772 FatalException, >> 773 "Environment variable G4LEDATA not defined"); >> 774 return; >> 775 } >> 776 >> 777 G4String pathString(path); >> 778 G4String dirFile = pathString + "/msc_GS/" + filename; >> 779 FILE *infile; >> 780 infile = fopen(dirFile,"r"); >> 781 if (infile == 0) >> 782 { >> 783 G4ExceptionDescription ed; >> 784 ed << "Data file <" + dirFile + "> is not opened!" << G4endl; >> 785 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 786 "em0003",FatalException,ed); >> 787 return; >> 788 } >> 789 >> 790 // Read parameters from tables and take logarithms >> 791 G4float aRead; >> 792 for(G4int i=0 ; i<106 ;i++){ >> 793 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 794 if(aRead > 0.0) { aRead = log(aRead); } >> 795 else { aRead = 0.0; } >> 796 } else { >> 797 G4ExceptionDescription ed; >> 798 ed << "Error reading <" + dirFile + "> loop #1 i= " << i << G4endl; >> 799 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 800 "em0003",FatalException,ed); >> 801 return; >> 802 } >> 803 ener[i]=aRead; >> 804 } >> 805 for(G4int j=0;j<103;j++){ >> 806 for(G4int i=0;i<106;i++){ >> 807 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 808 if(aRead > 0.0) { aRead = log(aRead); } >> 809 else { aRead = 0.0; } 859 } else { 810 } else { 860 if (par1*par3*geomStepLength<1.) { << 811 G4ExceptionDescription ed; 861 G4Pow *g4calc = G4Pow::GetInstance() << 812 ed << "Error reading <" + dirFile + "> loop #2 j= " << j 862 tlength = (1.-g4calc->powA( 1.-par1* << 813 << "; i= " << i << G4endl; 863 } else { << 814 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", 864 tlength = currentRange; << 815 "em0003",FatalException,ed); 865 } << 816 return; 866 } << 817 } 867 if (tlength<geomStepLength || tlength>fT << 818 TCSE[j][i]=aRead; 868 tlength = geomStepLength; << 819 } >> 820 } >> 821 for(G4int j=0;j<103;j++){ >> 822 for(G4int i=0;i<106;i++){ >> 823 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 824 if(aRead > 0.0) { aRead = log(aRead); } >> 825 else { aRead = 0.0; } >> 826 } else { >> 827 G4ExceptionDescription ed; >> 828 ed << "Error reading <" + dirFile + "> loop #3 j= " << j >> 829 << "; i= " << i << G4endl; >> 830 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 831 "em0003",FatalException,ed); >> 832 return; >> 833 } >> 834 FTCSE[j][i]=aRead; >> 835 } >> 836 } >> 837 for(G4int j=0;j<103;j++){ >> 838 for(G4int i=0;i<106;i++){ >> 839 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 840 if(aRead > 0.0) { aRead = log(aRead); } >> 841 else { aRead = 0.0; } >> 842 } else { >> 843 G4ExceptionDescription ed; >> 844 ed << "Error reading <" + dirFile + "> loop #4 j= " << j >> 845 << "; i= " << i << G4endl; >> 846 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 847 "em0003",FatalException,ed); >> 848 return; >> 849 } >> 850 TCSP[j][i]=aRead; >> 851 } >> 852 } >> 853 for(G4int j=0;j<103;j++){ >> 854 for(G4int i=0;i<106;i++){ >> 855 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 856 if(aRead > 0.0) { aRead = log(aRead); } >> 857 else { aRead = 0.0; } >> 858 } else { >> 859 G4ExceptionDescription ed; >> 860 ed << "Error reading <" + dirFile + "> loop #5 j= " << j >> 861 << "; i= " << i << G4endl; >> 862 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 863 "em0003",FatalException,ed); >> 864 return; 869 } 865 } 870 } << 866 FTCSP[j][i]=aRead; 871 fTheTrueStepLenght = tlength; << 867 } 872 } 868 } 873 // << 874 return fTheTrueStepLenght; << 875 } << 876 869 877 G4ThreeVector& << 870 fclose(infile); 878 G4GoudsmitSaundersonMscModel::SampleScattering << 879 if (steppingAlgorithm==fUseDistanceToBoundar << 880 // single scattering was and scattering ha << 881 fTheNewDirection.rotateUz(oldDirection); << 882 fParticleChange->ProposeMomentumDirection( << 883 return fTheDisplacementVector; << 884 } else if (steppingAlgorithm==fUseSafetyPlus << 885 if (fIsEndedUpOnBoundary) { // do nothing << 886 return fTheDisplacementVector; << 887 } else if (fIsEverythingWasDone) { // evry << 888 // check single scattering and see if it << 889 if (fIsSingleScattering) { << 890 fTheNewDirection.rotateUz(oldDirection << 891 fParticleChange->ProposeMomentumDirect << 892 return fTheDisplacementVector; << 893 } << 894 // check if multiple scattering happened << 895 if (fIsMultipleSacettring && !fIsNoScatt << 896 fTheNewDirection.rotateUz(oldDirect << 897 fTheDisplacementVector.rotateUz(old << 898 fParticleChange->ProposeMomentumDir << 899 } << 900 // The only thing that could happen if w << 901 // is that single scattering was tried << 902 // So no displacement and no scattering << 903 return fTheDisplacementVector; << 904 } << 905 // << 906 // The only thing that could still happen << 907 // optimization branch: so sample MSC angl << 908 } << 909 //else MSC needs to be done here << 910 SampleMSC(); << 911 if (!fIsNoScatteringInMSC) { << 912 fTheNewDirection.rotateUz(oldDirection); << 913 fParticleChange->ProposeMomentumDirection( << 914 if (!fIsNoDisplace) { << 915 fTheDisplacementVector.rotateUz(oldDirec << 916 } << 917 } << 918 // << 919 return fTheDisplacementVector; << 920 } << 921 871 922 << 923 void G4GoudsmitSaundersonMscModel::SampleMSC() << 924 fIsNoScatteringInMSC = false; << 925 // kinetic energy is assumed to be in Geant4 << 926 G4double kineticEnergy = currentKinEnergy; << 927 // << 928 // Energy loss correction: 2 version << 929 G4double eloss = 0.0; << 930 // if (fTheTrueStepLenght > currentRange*dtrl << 931 eloss = kineticEnergy - GetEnergy(particle,c << 932 // } else { << 933 // eloss = fTheTrueStepLenght*GetDEDX(parti << 934 // } << 935 << 936 G4double tau = 0.;// = kineticEnergy/ele << 937 G4double tau2 = 0.;// = tau*tau; << 938 G4double eps0 = 0.;// = eloss/kineticEnerg << 939 G4double epsm = 0.;// = eloss/kineticEnerg << 940 << 941 // - init. << 942 G4double efEnergy = kineticEnergy; << 943 G4double efStep = fTheTrueStepLenght; << 944 << 945 G4double kineticEnergy0 = kineticEnergy; << 946 if (gIsUseAccurate) { // - use accurate e << 947 kineticEnergy -= 0.5*eloss; // mean ener << 948 // other parameters for energy loss correc << 949 tau = kineticEnergy/electron_m << 950 tau2 = tau*tau; << 951 eps0 = eloss/kineticEnergy0; // << 952 epsm = eloss/kineticEnergy; // << 953 << 954 efEnergy = kineticEnergy * (1.-epsm << 955 G4double dum = 0.166666*(4.+tau*(6.+tau << 956 efStep = fTheTrueStepLenght*(1.-d << 957 } else { // - t << 958 kineticEnergy -= 0.5*eloss; // mean ener << 959 efEnergy = kineticEnergy; << 960 G4double factor = 1./(1.+0.9784671*kinetic << 961 eps0 = eloss/kineticEnergy0; << 962 epsm = eps0/(1.-0.5*eps0); << 963 G4double temp = 0.3*(1 -factor*(1.-0.333 << 964 efStep = fTheTrueStepLenght*(1.+t << 965 } << 966 // << 967 // compute elastic mfp, first transport mfp, << 968 // if it was requested by the user) << 969 fLambda1 = GetTransportMeanFreePath(particle << 970 // s/lambda_el << 971 G4double lambdan=0.; << 972 if (fLambda0>0.0) { << 973 lambdan=efStep/fLambda0; << 974 } << 975 if (lambdan<=1.0e-12) { << 976 if (fIsEverythingWasDone) { << 977 fTheZPathLenght = fTheTrueStepLenght; << 978 } << 979 fIsNoScatteringInMSC = true; << 980 return; << 981 } << 982 // first moment: 2.* lambdan *scrA*((1.+scrA << 983 G4double Qn1 = lambdan *fG1; << 984 // sample scattering angles << 985 // new direction, relative to the orriginal << 986 G4double cosTheta1 = 1.0, sinTheta1 = 0.0, c << 987 G4double cosPhi1 = 1.0, sinPhi1 = 0.0, c << 988 G4double uss = 0.0, vss = 0.0, w << 989 G4double x_coord = 0.0, y_coord = 0.0, z << 990 G4double u2 = 0.0, v2 = 0.0; << 991 // if we are above the upper grid limit with << 992 // => izotropic distribution: lambG1_max =7. << 993 if (0.5*Qn1 > 7.0){ << 994 cosTheta1 = 1.-2.*G4UniformRand(); << 995 sinTheta1 = std::sqrt((1.-cosTheta1)*(1.+c << 996 cosTheta2 = 1.-2.*G4UniformRand(); << 997 sinTheta2 = std::sqrt((1.-cosTheta2)*(1.+c << 998 } else { << 999 // sample 2 scattering cost1, sint1, cost << 1000 G4double lekin = G4Log(efEnergy); << 1001 G4double pt2 = efEnergy*(efEnergy+2.0 << 1002 G4double beta2 = pt2/(pt2+CLHEP::electr << 1003 // backup GS angular dtr pointer (kineti << 1004 // if the first was an msc sampling (the << 1005 G4GoudsmitSaundersonTable::GSMSCAngularD << 1006 G4int mcEkinIdx = -1; << 1007 G4int mcDeltIdx = -1; << 1008 G4double transfPar = 0.; << 1009 G4bool isMsc = fGSTable->Sampling(0.5*la << 1010 curren << 1011 true); << 1012 fGSTable->Sampling(0.5*lambdan, 0.5*Qn1, << 1013 currentMaterialIndex, << 1014 if (cosTheta1+cosTheta2==2.) { // no sca << 1015 if (fIsEverythingWasDone) << 1016 fTheZPathLenght = fTheTrueStepLeng << 1017 fIsNoScatteringInMSC = true; << 1018 return; << 1019 } << 1020 } << 1021 // sample 2 azimuthal angles << 1022 G4double phi1 = CLHEP::twopi*G4UniformRand( << 1023 sinPhi1 = std::sin(phi1); << 1024 cosPhi1 = std::cos(phi1); << 1025 G4double phi2 = CLHEP::twopi*G4UniformRand( << 1026 sinPhi2 = std::sin(phi2); << 1027 cosPhi2 = std::cos(phi2); << 1028 << 1029 // compute final direction realtive to z-di << 1030 u2 = sinTheta2*cosPhi2; << 1031 v2 = sinTheta2*sinPhi2; << 1032 G4double u2p = cosTheta1*u2 + sinTheta1*cos << 1033 uss = u2p*cosPhi1 - v2*sinPhi1; << 1034 vss = u2p*sinPhi1 + v2*cosPhi1; << 1035 wss = cosTheta1*cosTheta2 - sinTheta1*u2; << 1036 << 1037 // set new direction (is scattering frame) << 1038 fTheNewDirection.set(uss,vss,wss); << 1039 << 1040 // set the fTheZPathLenght if we don't samp << 1041 // we should do everything at the step-limi << 1042 if(fIsNoDisplace && fIsEverythingWasDone) << 1043 fTheZPathLenght = fTheTrueStepLenght; << 1044 << 1045 // in optimized-mode if the current-safety << 1046 if(fIsNoDisplace) << 1047 return; << 1048 << 1049 /////////////////////////////////////////// << 1050 // Compute final position << 1051 Qn1 *= fMCtoQ1; << 1052 if (gIsUseAccurate) { << 1053 // correction parameter << 1054 G4double par =1.; << 1055 if(Qn1<0.7) par = 1.; << 1056 else if (Qn1<7.0) par = -0.031376*Qn1+1. << 1057 else par = 0.79; << 1058 << 1059 // Moments with energy loss correction << 1060 // --first the uncorrected (for energy l << 1061 // gamma = G_2/G_1 based on G2 computed << 1062 G4double loga = G4Log(1.0+1.0/fScrA); << 1063 G4double gamma = 6.0*fScrA*(1.0 + fScrA << 1064 gamma *= fMCtoG2PerG1; << 1065 // sample eta from p(eta)=2*eta i.e. P(e << 1066 G4double eta = std::sqrt(G4UniformRan << 1067 G4double eta1 = 0.5*(1 - eta); // use << 1068 // 0.5 +sqrt(6)/6 = 0.9082483; << 1069 // 1/(4*sqrt(6)) = 0.1020621; << 1070 // (4-sqrt(6)/(24*sqrt(6))) = 0.02637471 << 1071 // delta = 0.9082483-(0.1020621-0.026374 << 1072 G4double delta = 0.9082483-(0.1020621-0 << 1073 << 1074 // compute alpha1 and alpha2 for energy << 1075 G4double temp1 = 2.0 + tau; << 1076 G4double temp = (2.0+tau*temp1)/((tau+1 << 1077 //Take logarithmic dependence << 1078 temp = temp - (tau+1.0)/((tau+2.0)*(loga << 1079 temp = temp * epsm; << 1080 temp1 = 1.0 - temp; << 1081 delta = delta + 0.40824829*(eps0*(tau+1. << 1082 (loga*(1.0+fScrA)-1.0)*(loga*(1. << 1083 G4double b = eta*delta; << 1084 G4double c = eta*(1.0-delta); << 1085 << 1086 //Calculate transport direction cosines: << 1087 // ut,vt,wt is the final position divide << 1088 G4double w1v2 = cosTheta1*v2; << 1089 G4double ut = b*sinTheta1*cosPhi1 + c* << 1090 G4double vt = b*sinTheta1*sinPhi1 + c* << 1091 G4double wt = eta1*(1+temp) + b* << 1092 << 1093 // long step correction << 1094 ut *=par; << 1095 vt *=par; << 1096 wt *=par; << 1097 << 1098 // final position relative to the pre-st << 1099 // ut = x_f/s so needs to multiply by s << 1100 x_coord = ut*fTheTrueStepLenght; << 1101 y_coord = vt*fTheTrueStepLenght; << 1102 z_coord = wt*fTheTrueStepLenght; << 1103 << 1104 if(fIsEverythingWasDone){ << 1105 // We sample in the step limit so set << 1106 // and lateral displacement (x_coord,y << 1107 //Calculate transport distance << 1108 G4double transportDistance = std::sqr << 1109 // protection << 1110 if(transportDistance>fTheTrueStepLengh << 1111 transportDistance = fTheTrueStepLen << 1112 fTheZPathLenght = transportDistance; << 1113 } << 1114 // else:: we sample in the DoIt so << 1115 // the fTheZPathLenght was already << 1116 fTheDisplacementVector.set(x_coord,y_coo << 1117 } else { << 1118 // compute zz = <z>/tPathLength << 1119 // s -> true-path-length << 1120 // z -> geom-path-length:: when PRESTA i << 1121 // r -> lateral displacement = s/2 sin(t << 1122 G4double zz = 0.0; << 1123 if(fIsEverythingWasDone){ << 1124 // We sample in the step limit so set << 1125 // and lateral displacement (x_coord, << 1126 if(Qn1<0.1) { // use 3-order Taylor a << 1127 zz = 1.0 - Qn1*(0.5 - Qn1*(0.166666 << 1128 } else { << 1129 zz = (1.-G4Exp(-Qn1))/Qn1; << 1130 } << 1131 } else { << 1132 // we sample in the DoIt so << 1133 // the fTheZPathLenght was already se << 1134 zz = fTheZPathLenght/fTheTrueStepLeng << 1135 } << 1136 << 1137 G4double rr = (1.-zz*zz)/(1.-wss*wss); / << 1138 if(rr >= 0.25) rr = 0.25; // << 1139 G4double rperp = fTheTrueStepLenght*std: << 1140 x_coord = rperp*uss; << 1141 y_coord = rperp*vss; << 1142 z_coord = zz*fTheTrueStepLenght; << 1143 << 1144 if(fIsEverythingWasDone){ << 1145 G4double transportDistance = std::sqrt << 1146 fTheZPathLenght = transportDistance; << 1147 } << 1148 << 1149 fTheDisplacementVector.set(x_coord,y_coo << 1150 } << 1151 } 872 } >> 873 >> 874 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1152 875