Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4GoudsmitSaundersonMscModel.cc,v 1.27 2010-12-23 18:31:17 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // ------------------------------------------- << 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class implementation file << 31 // GEANT4 Class file 30 // 32 // 31 // File name: G4GoudsmitSaundersonMscModel 33 // File name: G4GoudsmitSaundersonMscModel 32 // 34 // 33 // Author: Mihaly Novak / (Omrane Kadri << 35 // Author: Omrane Kadri 34 // 36 // 35 // Creation date: 20.02.2009 37 // Creation date: 20.02.2009 36 // 38 // 37 // Modifications: 39 // Modifications: 38 // 04.03.2009 V.Ivanchenko cleanup and format 40 // 04.03.2009 V.Ivanchenko cleanup and format according to Geant4 EM style 39 // 12.05.2010 O.Kadri: adding Qn1 and Qn12 as << 40 // 18.05.2015 M. Novak provide PRELIMINARY ver << 41 // This class has been revised and << 42 // A new version of Kawrakow-Bielaj << 43 // based on the screened Rutherford << 44 // electrons/positrons has been int << 45 // angular distributions over a 2D << 46 // and the CDFs are now stored in a << 47 // together with the corresponding << 48 // These angular distributions are << 49 // G4GoudsmitSaundersonTable class << 50 // it was no, single, few or multip << 51 // angular deflection (i.e. cos(the << 52 // Two screening options are provid << 53 // - if fIsUsePWATotalXsecData=TRU << 54 // was called before initialisat << 55 // determined such that the firs << 56 // computed according to the scr << 57 // scattering will reproduce the << 58 // and first transport mean free << 59 // - if fIsUsePWATotalXsecData=FAL << 60 // SetOptionPWAScreening(FALSE) << 61 // screening parameter value A i << 62 // formula (by using material de << 63 // precomputed for each material << 64 // G4GoudsmitSaundersonTable) [3 << 65 // Elastic and first trasport mean << 66 // The new version is self-consiste << 67 // robust and accurate compared to << 68 // Spin effects as well as a more a << 69 // computations of Lewis moments wi << 70 // 02.09.2015 M. Novak: first version of new s << 71 // fUseSafetyPlus corresponds to Ur << 72 // fUseDistanceToBoundary correspon << 73 // fUseSafety corresponds to EGSnr << 74 // Range factor can be significantl << 75 // 23.08.2017 M. Novak: added corrections to a << 76 // It can be activated by setting t << 77 // before initialization using the << 78 // The fMottCorrection member is re << 79 // correction (rejection) functions << 80 // Goudsmit-Saunderson agnular dist << 81 // effects and screening correction << 82 // GS angular distributions is: DCS << 83 // # DCS_{SR} is the relativisti << 84 // solution of the Klein-Gordo << 85 // scattering of spinless e- o << 86 // note: the default (without << 87 // are based on this DCS_{SR} << 88 // # DCS_{R} is the Rutherford D << 89 // screening << 90 // # DCS_{Mott} is the Mott DCS << 91 // Coulomb potential i.e. scat << 92 // point-like unscreened Coulo << 93 // # moreover, the screening par << 94 // the DCS_{cor} with this cor << 95 // transport cross sections ob << 96 // (i.e. from elsepa [4]) << 97 // Unlike the default GS, the Mott- << 98 // (different for e- and e+ <= the << 99 // (Z and material) dependent. << 100 // 27.10.2017 M. Novak: << 101 // - Mott-correction flag is set no << 102 // - new form of PWA correction to << 103 // - changed step limit flag conven << 104 // # fUseSafety corresponds to U << 105 // # fUseDistanceToBoundary corr << 106 // # fUseSafetyPlus corresponds << 107 // 02.02.2018 M. Novak: implemented CrossSecti << 108 // 41 // 109 // Class description: << 42 // 15.04.2009 O.Kadri: cleanup: discard no scattering and single scattering theta 110 // Kawrakow-Bielajew Goudsmit-Saunderson MSC << 43 // sampling from SampleCosineTheta() which means the splitting 111 // for elastic scattering of e-/e+. Option, << 44 // step into two sub-steps occur only for msc regime 112 // also available now (SetOptionMottCorrecti << 113 // algorithm (UseSafety) is available beyond << 114 // and true to geomerty and geometry to true << 115 // from the Urban model[5]. The most accurat << 116 // UseSafetyPlus MSC step limit with Mott-co << 117 // are expected to be set through the G4EmPa << 118 // # G4EmParameters::Instance()->SetMscStep << 119 // # G4EmParameters::Instance()->SetUseMott << 120 // 45 // >> 46 // 12.06.2009 O.Kadri: linear log-log extrapolation of lambda0 & lambda1 between 1 GeV - 100 TeV >> 47 // adding a theta min limit due to screening effect of the atomic nucleus >> 48 // 26.08.2009 O.Kadri: Cubic Spline interpolation was replaced with polynomial method >> 49 // within CalculateIntegrals method >> 50 // 05.10.2009 O.Kadri: tuning small angle theta distributions >> 51 // assuming the case of lambdan<1 as single scattering regime >> 52 // tuning theta sampling for theta below the screening angle >> 53 // 08.02.2010 O.Kadri: bugfix in compound xsection calculation and small angle computation >> 54 // adding a rejection condition to hard collision angular sampling >> 55 // ComputeTruePathLengthLimit was taken from G4WentzelVIModel >> 56 // 26.03.2010 O.Kadri: direct xsection calculation not inverse of the inverse >> 57 // angular sampling without large angle rejection method >> 58 // longitudinal displacement is computed exactly from <z> >> 59 // 12.05.2010 O.Kadri: exchange between target and projectile has as a condition the particle type (e-/e-) >> 60 // some cleanup to minimize time consuming (adding lamdan12 & Qn12, changing the error to 1.0e-12 for scrA) 121 // 61 // 122 // References: << 123 // [1] A.F.Bielajew, NIMB 111 (1996) 195-208 << 124 // [2] I.Kawrakow, A.F.Bielajew, NIMB 134(19 << 125 // [3] I.Kawrakow, E.Mainegra-Hing, D.W.O.Ro << 126 // Report PIRS-701 (2013) << 127 // [4] F.Salvat, A.Jablonski, C.J. Powell, C << 128 // [5] L.Urban, Preprint CERN-OPEN-2006-077 << 129 // 62 // 130 // ------------------------------------------- << 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 131 << 64 //REFERENCES: 132 << 65 //Ref.1:E. Benedito et al.,"Mixed simulation ... cross-sections", NIMB 174 (2001) pp 91-110; >> 66 //Ref.2:I. Kawrakow et al.,"On the condensed ... transport",NIMB 142 (1998) pp 253-280; >> 67 //Ref.3:I. Kawrakow et al.,"On the representation ... calculations",NIMB 134 (1998) pp 325-336; >> 68 //Ref.4:Bielajew et al.,".....", NIMB 173 (2001) 332-343; >> 69 //Ref.5:F. Salvat et al.,"ELSEPA--Dirac partial ...molecules", Comp.Phys.Comm.165 (2005) pp 157-190; >> 70 //Ref.6:G4UrbanMscModel G4 9.2; >> 71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 133 #include "G4GoudsmitSaundersonMscModel.hh" 72 #include "G4GoudsmitSaundersonMscModel.hh" 134 << 135 #include "G4GoudsmitSaundersonTable.hh" 73 #include "G4GoudsmitSaundersonTable.hh" 136 #include "G4GSPWACorrections.hh" << 137 << 138 #include "G4PhysicalConstants.hh" << 139 #include "G4SystemOfUnits.hh" << 140 74 141 #include "G4ParticleChangeForMSC.hh" 75 #include "G4ParticleChangeForMSC.hh" >> 76 #include "G4MaterialCutsCouple.hh" 142 #include "G4DynamicParticle.hh" 77 #include "G4DynamicParticle.hh" 143 #include "G4Electron.hh" 78 #include "G4Electron.hh" 144 #include "G4Positron.hh" 79 #include "G4Positron.hh" 145 80 146 #include "G4LossTableManager.hh" 81 #include "G4LossTableManager.hh" 147 #include "G4EmParameters.hh" << 148 #include "G4Track.hh" 82 #include "G4Track.hh" 149 #include "G4PhysicsTable.hh" 83 #include "G4PhysicsTable.hh" 150 #include "Randomize.hh" 84 #include "Randomize.hh" 151 #include "G4Log.hh" << 152 #include "G4Exp.hh" << 153 #include "G4Pow.hh" << 154 #include <fstream> << 155 85 >> 86 using namespace std; 156 87 157 // set accurate energy loss and dispalcement s << 88 G4double G4GoudsmitSaundersonMscModel::ener[] = {-1.}; 158 G4bool G4GoudsmitSaundersonMscModel::gIsUseAcc << 89 G4double G4GoudsmitSaundersonMscModel::TCSE[103][106] ; 159 // set the usual optimization to be always act << 90 G4double G4GoudsmitSaundersonMscModel::FTCSE[103][106] ; 160 G4bool G4GoudsmitSaundersonMscModel::gIsOptimi << 91 G4double G4GoudsmitSaundersonMscModel::TCSP[103][106] ; 161 << 92 G4double G4GoudsmitSaundersonMscModel::FTCSP[103][106] ; 162 93 >> 94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 163 G4GoudsmitSaundersonMscModel::G4GoudsmitSaunde 95 G4GoudsmitSaundersonMscModel::G4GoudsmitSaundersonMscModel(const G4String& nam) 164 : G4VMscModel(nam) { << 96 : G4VMscModel(nam),lowKEnergy(0.1*keV),highKEnergy(100.*TeV),isInitialized(false) 165 charge = 0; << 97 { 166 currentMaterialIndex = -1; << 98 currentKinEnergy=currentRange=skindepth=par1=par2=par3=zPathLength=truePathLength 167 // << 99 =tausmall=taulim=tlimit=charge=lambdalimit=tPathLength=lambda0=lambda1 168 fr = 0.1; << 100 =lambda11=mass=0.0; 169 rangeinit = 1.e+21; << 101 currentMaterialIndex = -1; 170 geombig = 1.e+50*mm; << 102 171 geomlimit = geombig; << 103 fr=0.02,rangeinit=0.,masslimite=0.6*MeV, 172 tgeom = geombig; << 104 particle=0;tausmall=1.e-16;taulim=1.e-6;tlimit=1.e10*mm; 173 tlimit = 1.e+10*mm; << 105 tlimitmin=10.e-6*mm;geombig=1.e50*mm;geommin=1.e-3*mm,tgeom=geombig; 174 presafety = 0.*mm; << 106 tlimitminfix=1.e-6*mm;stepmin=tlimitminfix;lambdalimit=1.*mm;smallstep=1.e10; 175 // << 107 theManager=G4LossTableManager::Instance(); 176 particle = nullptr; << 108 inside=false;insideskin=false; 177 theManager = G4LossTableManager: << 109 samplez=false; 178 firstStep = true; << 110 179 currentKinEnergy = 0.0; << 111 GSTable = new G4GoudsmitSaundersonTable(); 180 currentRange = 0.0; << 112 181 // << 113 if(ener[0] < 0.0){ 182 tlimitminfix2 = 1.*nm; << 114 G4cout << "### G4GoudsmitSaundersonMscModel loading ELSEPA data" << G4endl; 183 tausmall = 1.e-16; << 115 LoadELSEPAXSections(); 184 mass = electron_mass_c2; << 116 } 185 taulim = 1.e-6; << 117 } 186 // << 118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 187 currentCouple = nullptr; << 119 G4GoudsmitSaundersonMscModel::~G4GoudsmitSaundersonMscModel() 188 fParticleChange = nullptr; << 120 { 189 // << 121 delete GSTable; 190 fZeff = 1.; << 122 } 191 // << 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 192 par1 = 0.; << 124 void G4GoudsmitSaundersonMscModel::Initialise(const G4ParticleDefinition* p, 193 par2 = 0.; << 125 const G4DataVector&) 194 par3 = 0.; << 126 { 195 // << 127 skindepth=skin*stepmin; 196 // Moliere screeing parameter will be used a << 128 SetParticle(p); 197 // appalied to the integrated quantities (sc << 129 if(isInitialized) { return; } 198 // and second moments) derived from the corr << 130 fParticleChange = GetParticleChangeForMSC(); 199 // this PWA correction is ignored if Mott-co << 200 // Mott-correction contains all these correc << 201 fIsUsePWACorrection = true; << 202 // << 203 fIsUseMottCorrection = false; << 204 // << 205 fLambda0 = 0.0; // elastic mea << 206 fLambda1 = 0.0; // first trans << 207 fScrA = 0.0; // screening p << 208 fG1 = 0.0; // first trans << 209 // << 210 fMCtoScrA = 1.0; << 211 fMCtoQ1 = 1.0; << 212 fMCtoG2PerG1 = 1.0; << 213 // << 214 fTheTrueStepLenght = 0.; << 215 fTheTransportDistance = 0.; << 216 fTheZPathLenght = 0.; << 217 // << 218 fTheDisplacementVector.set(0.,0.,0.); << 219 fTheNewDirection.set(0.,0.,1.); << 220 // << 221 fIsEverythingWasDone = false; << 222 fIsMultipleSacettring = false; << 223 fIsSingleScattering = false; << 224 fIsEndedUpOnBoundary = false; << 225 fIsNoScatteringInMSC = false; << 226 fIsNoDisplace = false; << 227 fIsInsideSkin = false; << 228 fIsWasOnBoundary = false; << 229 fIsFirstRealStep = false; << 230 rndmEngineMod = G4Random::getTheEng << 231 // << 232 fGSTable = nullptr; << 233 fPWACorrection = nullptr; << 234 } << 235 131 >> 132 isInitialized=true; >> 133 } >> 134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 236 135 237 G4GoudsmitSaundersonMscModel::~G4GoudsmitSaund << 136 G4double 238 if (IsMaster()) { << 137 G4GoudsmitSaundersonMscModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition* p, 239 if (fGSTable) { << 138 G4double kineticEnergy,G4double Z, G4double, G4double, G4double) 240 delete fGSTable; << 139 { 241 fGSTable = nullptr; << 140 G4double kinEnergy = kineticEnergy; >> 141 if(kinEnergy<lowKEnergy) kinEnergy=lowKEnergy; >> 142 if(kinEnergy>highKEnergy)kinEnergy=highKEnergy; >> 143 >> 144 G4double cs(0.0), cs0(0.0); >> 145 CalculateIntegrals(p,Z,kinEnergy,cs0,cs); >> 146 >> 147 return cs; >> 148 } >> 149 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 150 >> 151 void >> 152 G4GoudsmitSaundersonMscModel::SampleScattering(const G4DynamicParticle* dynParticle, >> 153 G4double safety) >> 154 { >> 155 G4double kineticEnergy = dynParticle->GetKineticEnergy(); >> 156 if((kineticEnergy <= 0.0) || (tPathLength <= tlimitminfix)|| >> 157 (tPathLength/tausmall < lambda1)) { return; } >> 158 >> 159 /////////////////////////////////////////// >> 160 // Effective energy >> 161 G4double eloss = kineticEnergy; >> 162 G4double rrr = currentRange-tPathLength; >> 163 if(rrr > 0.0) { >> 164 G4double T1 = GetEnergy(particle,currentRange-tPathLength,currentCouple); >> 165 if(T1 < kineticEnergy) { eloss = kineticEnergy - T1; } >> 166 else { eloss = 0.0; } >> 167 } >> 168 if(eloss > 0.0) { >> 169 G4double ee = kineticEnergy - 0.5*eloss; >> 170 G4double ttau = ee/electron_mass_c2; >> 171 G4double ttau2 = ttau*ttau; >> 172 G4double epsilonpp= eloss/ee; >> 173 G4double cst1=epsilonpp*epsilonpp*(6+10*ttau+5*ttau2)/(24*ttau2+48*ttau+72); >> 174 kineticEnergy *= (1 - cst1); >> 175 } >> 176 /////////////////////////////////////////// >> 177 // additivity rule for mixture and compound xsection's >> 178 const G4Material* mat = currentCouple->GetMaterial(); >> 179 const G4ElementVector* theElementVector = mat->GetElementVector(); >> 180 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume(); >> 181 G4int nelm = mat->GetNumberOfElements(); >> 182 G4double s0(0.0), s1(0.0); >> 183 lambda0 = 0.0; >> 184 for(G4int i=0;i<nelm;i++) >> 185 { >> 186 CalculateIntegrals(particle,(*theElementVector)[i]->GetZ(),kineticEnergy,s0,s1); >> 187 lambda0 += (theAtomNumDensityVector[i]*s0); >> 188 } >> 189 if(lambda0>DBL_MIN) lambda0 =1./lambda0; >> 190 >> 191 // Newton-Raphson root's finding method of scrA from: >> 192 // Sig1(PWA)/Sig0(PWA)=g1=2*scrA*((1+scrA)*log(1+1/scrA)-1) >> 193 G4double g1=0.0; >> 194 if(lambda1>DBL_MIN) { g1 = lambda0/lambda1; } >> 195 >> 196 G4double logx0,x1,delta; >> 197 G4double x0=g1*0.5; >> 198 // V.Ivanchenko added limit of the loop >> 199 for(G4int i=0;i<1000;++i) >> 200 { >> 201 logx0=std::log(1.+1./x0); >> 202 x1 = x0-(x0*((1.+x0)*logx0-1.0)-g1*0.5)/( (1.+2.*x0)*logx0-2.0); >> 203 delta = std::fabs( x1 - x0 ); >> 204 x0 = x1; >> 205 if(delta < 1.0e-3*x1) { break;} 242 } 206 } 243 if (fPWACorrection) { << 207 G4double scrA = x1; 244 delete fPWACorrection; << 245 fPWACorrection = nullptr; << 246 } << 247 } << 248 } << 249 208 >> 209 G4double lambdan=0.; 250 210 251 void G4GoudsmitSaundersonMscModel::Initialise( << 211 if(lambda0>0.) { lambdan=tPathLength/lambda0; } 252 SetParticle(p); << 212 if(lambdan<=1.0e-12)return; 253 InitialiseParameters(p); << 213 254 // -create GoudsmitSaundersonTable and init << 214 G4double Qn1 = lambdan *g1;//2.* lambdan *scrA*((1.+scrA)*log(1.+1./scrA)-1.); 255 // Mott-correction was required << 215 G4double Qn12 = 0.5*Qn1; 256 if (IsMaster()) { << 216 257 // get the Mott-correction flag from EmPar << 217 G4double cosTheta1,sinTheta1,cosTheta2,sinTheta2; 258 if (G4EmParameters::Instance()->UseMottCor << 218 G4double cosPhi1=1.0,sinPhi1=0.0,cosPhi2=1.0,sinPhi2=0.0; 259 fIsUseMottCorrection = true; << 219 G4double us=0.0,vs=0.0,ws=1.0,wss=0.,x_coord=0.0,y_coord=0.0,z_coord=1.0; 260 } << 220 261 // Mott-correction includes other way of P << 221 G4double epsilon1=G4UniformRand(); 262 // when Mott-correction is activated by th << 222 G4double expn = std::exp(-lambdan); 263 if (fIsUseMottCorrection) { << 223 if(epsilon1<expn)// no scattering 264 fIsUsePWACorrection = false; << 224 {return;} 265 } << 225 else if((epsilon1<((1.+lambdan)*expn))||(lambdan<1.))//single or plural scattering (Rutherford DCS's) 266 // clear GS-table << 226 { 267 if (fGSTable) { << 227 268 delete fGSTable; << 228 G4double xi=G4UniformRand(); 269 fGSTable = nullptr; << 229 xi= 2.*scrA*xi/(1.-xi + scrA); 270 } << 230 if(xi<0.)xi=0.; 271 // clear PWA corrections table if any << 231 else if(xi>2.)xi=2.; 272 if (fPWACorrection) { << 232 ws=(1. - xi); 273 delete fPWACorrection; << 233 wss=std::sqrt(xi*(2.-xi)); 274 fPWACorrection = nullptr; << 234 G4double phi0=CLHEP::twopi*G4UniformRand(); 275 } << 235 us=wss*cos(phi0); 276 // create GS-table << 236 vs=wss*sin(phi0); 277 G4bool isElectron = true; << 237 } 278 if (p->GetPDGCharge()>0.) { << 238 else // multiple scattering 279 isElectron = false; << 239 { 280 } << 240 // Ref.2 subsection 4.4 "The best solution found" 281 fGSTable = new G4GoudsmitSaundersonTable(i << 241 // Sample first substep scattering angle 282 // G4GSTable will be initialised: << 242 SampleCosineTheta(0.5*lambdan,scrA,cosTheta1,sinTheta1); 283 // - Screened-Rutherford DCS based GS angu << 243 G4double phi1 = CLHEP::twopi*G4UniformRand(); 284 // - Mott-correction will be initialised i << 244 cosPhi1 = cos(phi1); 285 fGSTable->SetOptionMottCorrection(fIsUseMo << 245 sinPhi1 = sin(phi1); 286 // - set PWA correction (correction to int << 246 287 fGSTable->SetOptionPWACorrection(fIsUsePWA << 247 // Sample second substep scattering angle 288 // init << 248 SampleCosineTheta(0.5*lambdan,scrA,cosTheta2,sinTheta2); 289 fGSTable->Initialise(LowEnergyLimit(),High << 249 G4double phi2 = CLHEP::twopi*G4UniformRand(); 290 // create PWA corrections table if it was << 250 cosPhi2 = cos(phi2); 291 if (fIsUsePWACorrection) { << 251 sinPhi2 = sin(phi2); 292 fPWACorrection = new G4GSPWACorrections( << 252 293 fPWACorrection->Initialise(); << 253 // Overall scattering direction 294 } << 254 us = sinTheta2*(cosTheta1*cosPhi1*cosPhi2 - sinPhi1*sinPhi2) + cosTheta2*sinTheta1*cosPhi1; 295 } << 255 vs = sinTheta2*(cosTheta1*sinPhi1*cosPhi2 + cosPhi1*sinPhi2) + cosTheta2*sinTheta1*sinPhi1; 296 fParticleChange = GetParticleChangeForMSC(p) << 256 ws = cosTheta1*cosTheta2 - sinTheta1*sinTheta2*cosPhi2; 297 } << 257 G4double sqrtA=sqrt(scrA); >> 258 if(acos(ws)<sqrtA)//small angle approximation for theta less than screening angle >> 259 { >> 260 G4int i=0; >> 261 do{i++; >> 262 ws=1.+Qn12*log(G4UniformRand()); >> 263 }while((fabs(ws)>1.)&&(i<20));//i<20 to avoid time consuming during the run >> 264 if(i>=19)ws=cos(sqrtA); >> 265 wss=std::sqrt((1.-ws*ws)); >> 266 us=wss*std::cos(phi1); >> 267 vs=wss*std::sin(phi1); >> 268 } >> 269 } >> 270 >> 271 >> 272 G4ThreeVector oldDirection = dynParticle->GetMomentumDirection(); >> 273 G4ThreeVector newDirection(us,vs,ws); >> 274 newDirection.rotateUz(oldDirection); >> 275 fParticleChange->ProposeMomentumDirection(newDirection); >> 276 >> 277 if((safety > tlimitminfix)&&latDisplasment) >> 278 { >> 279 if(Qn1<0.02)// corresponding to error less than 1% in the exact formula of <z> >> 280 z_coord = 1.0 - Qn1*(0.5 - Qn1/6.); >> 281 else z_coord = (1.-std::exp(-Qn1))/Qn1; >> 282 G4double rr=std::sqrt((1.- z_coord*z_coord)/(1.-ws*ws)); >> 283 x_coord = rr*us; >> 284 y_coord = rr*vs; >> 285 >> 286 // displacement is computed relatively to the end point >> 287 z_coord -= 1.0; >> 288 rr = std::sqrt(x_coord*x_coord+y_coord*y_coord+z_coord*z_coord); >> 289 G4double r = rr*zPathLength; >> 290 /* >> 291 G4cout << "G4GS::SampleSecondaries: e(MeV)= " << kineticEnergy >> 292 << " sinTheta= " << sqrt(1.0 - ws*ws) << " r(mm)= " << r >> 293 << " trueStep(mm)= " << tPathLength >> 294 << " geomStep(mm)= " << zPathLength >> 295 << G4endl; >> 296 */ >> 297 >> 298 if(r > tlimitminfix) { >> 299 >> 300 G4ThreeVector Direction(x_coord/rr,y_coord/rr,z_coord/rr); >> 301 Direction.rotateUz(oldDirection); >> 302 >> 303 ComputeDisplacement(fParticleChange, Direction, r, safety); >> 304 } >> 305 } >> 306 } >> 307 >> 308 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 309 >> 310 void >> 311 G4GoudsmitSaundersonMscModel::SampleCosineTheta(G4double lambdan, G4double scrA, >> 312 G4double &cost, G4double &sint) >> 313 { >> 314 G4double r1,tet,xi=0.; >> 315 G4double Qn1 = 2.* lambdan *scrA*((1.+scrA)*log(1.+1./scrA)-1.); >> 316 if (Qn1<0.001) >> 317 { >> 318 do{ >> 319 r1=G4UniformRand(); >> 320 xi=-0.5*Qn1*log(G4UniformRand()); >> 321 tet=acos(1.-xi); >> 322 }while(tet*r1*r1>sin(tet)); >> 323 } >> 324 else if(Qn1>0.5) { xi=2.*G4UniformRand(); }//isotropic distribution >> 325 else{ xi=2.*(GSTable->SampleTheta(lambdan,scrA,G4UniformRand()));} >> 326 >> 327 >> 328 if(xi<0.)xi=0.; >> 329 else if(xi>2.)xi=2.; >> 330 >> 331 cost=(1. - xi); >> 332 sint=sqrt(xi*(2.-xi)); >> 333 >> 334 } >> 335 >> 336 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 337 // Polynomial log-log interpolation of Lambda0 and Lambda1 between 100 eV - 1 GeV >> 338 // linear log-log extrapolation between 1 GeV - 100 TeV >> 339 >> 340 void >> 341 G4GoudsmitSaundersonMscModel::CalculateIntegrals(const G4ParticleDefinition* p,G4double Z, >> 342 G4double kinEnergy,G4double &Sig0, >> 343 G4double &Sig1) >> 344 { >> 345 G4double x1,x2,y1,y2,acoeff,bcoeff; >> 346 G4double kineticE = kinEnergy; >> 347 if(kineticE<lowKEnergy)kineticE=lowKEnergy; >> 348 if(kineticE>highKEnergy)kineticE=highKEnergy; >> 349 kineticE /= eV; >> 350 G4double logE=std::log(kineticE); >> 351 >> 352 G4int iZ = G4int(Z); >> 353 if(iZ > 103) iZ = 103; >> 354 >> 355 G4int enerInd=0; >> 356 for(G4int i=0;i<105;i++) >> 357 { >> 358 if((logE>=ener[i])&&(logE<ener[i+1])){enerInd=i;break;} >> 359 } >> 360 >> 361 if(p==G4Electron::Electron()) >> 362 { >> 363 if(kineticE<=1.0e+9)//Interpolation of the form y=ax²+b >> 364 { >> 365 x1=ener[enerInd]; >> 366 x2=ener[enerInd+1]; >> 367 y1=TCSE[iZ-1][enerInd]; >> 368 y2=TCSE[iZ-1][enerInd+1]; >> 369 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 370 bcoeff=y2-acoeff*x2*x2; >> 371 Sig0=acoeff*logE*logE+bcoeff; >> 372 Sig0 =std::exp(Sig0); >> 373 y1=FTCSE[iZ-1][enerInd]; >> 374 y2=FTCSE[iZ-1][enerInd+1]; >> 375 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 376 bcoeff=y2-acoeff*x2*x2; >> 377 Sig1=acoeff*logE*logE+bcoeff; >> 378 Sig1=std::exp(Sig1); >> 379 } >> 380 else //Interpolation of the form y=ax+b >> 381 { >> 382 x1=ener[104]; >> 383 x2=ener[105]; >> 384 y1=TCSE[iZ-1][104]; >> 385 y2=TCSE[iZ-1][105]; >> 386 Sig0=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 387 Sig0=std::exp(Sig0); >> 388 y1=FTCSE[iZ-1][104]; >> 389 y2=FTCSE[iZ-1][105]; >> 390 Sig1=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 391 Sig1=std::exp(Sig1); >> 392 } >> 393 } >> 394 if(p==G4Positron::Positron()) >> 395 { >> 396 if(kinEnergy<=1.0e+9) >> 397 { >> 398 x1=ener[enerInd]; >> 399 x2=ener[enerInd+1]; >> 400 y1=TCSP[iZ-1][enerInd]; >> 401 y2=TCSP[iZ-1][enerInd+1]; >> 402 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 403 bcoeff=y2-acoeff*x2*x2; >> 404 Sig0=acoeff*logE*logE+bcoeff; >> 405 Sig0 =std::exp(Sig0); >> 406 y1=FTCSP[iZ-1][enerInd]; >> 407 y2=FTCSP[iZ-1][enerInd+1]; >> 408 acoeff=(y2-y1)/(x2*x2-x1*x1); >> 409 bcoeff=y2-acoeff*x2*x2; >> 410 Sig1=acoeff*logE*logE+bcoeff; >> 411 Sig1=std::exp(Sig1); >> 412 } >> 413 else >> 414 { >> 415 x1=ener[104]; >> 416 x2=ener[105]; >> 417 y1=TCSP[iZ-1][104]; >> 418 y2=TCSP[iZ-1][105]; >> 419 Sig0=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 420 Sig0 =std::exp(Sig0); >> 421 y1=FTCSP[iZ-1][104]; >> 422 y2=FTCSP[iZ-1][105]; >> 423 Sig1=(y2-y1)*(logE-x1)/(x2-x1)+y1; >> 424 Sig1=std::exp(Sig1); >> 425 } >> 426 } >> 427 >> 428 Sig0 *= barn; >> 429 Sig1 *= barn; >> 430 >> 431 } >> 432 >> 433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 434 //t->g->t step transformations taken from Ref.6 >> 435 >> 436 G4double >> 437 G4GoudsmitSaundersonMscModel::ComputeTruePathLengthLimit(const G4Track& track, >> 438 G4PhysicsTable* theTable, >> 439 G4double currentMinimalStep) >> 440 { >> 441 tPathLength = currentMinimalStep; >> 442 G4StepPoint* sp = track.GetStep()->GetPreStepPoint(); >> 443 G4StepStatus stepStatus = sp->GetStepStatus(); 298 444 >> 445 const G4DynamicParticle* dp = track.GetDynamicParticle(); 299 446 300 void G4GoudsmitSaundersonMscModel::InitialiseL << 447 if(stepStatus == fUndefined) { 301 fGSTable = static_cast<G4Goud << 448 inside = false; 302 fIsUseMottCorrection = static_cast<G4Goud << 449 insideskin = false; 303 fIsUsePWACorrection = static_cast<G4Goud << 450 tlimit = geombig; 304 fPWACorrection = static_cast<G4Goud << 451 SetParticle( dp->GetDefinition() ); 305 } << 452 } >> 453 >> 454 theLambdaTable = theTable; >> 455 currentCouple = track.GetMaterialCutsCouple(); >> 456 currentMaterialIndex = currentCouple->GetIndex(); >> 457 currentKinEnergy = dp->GetKineticEnergy(); >> 458 currentRange = GetRange(particle,currentKinEnergy,currentCouple); >> 459 >> 460 >> 461 lambda1 = GetLambda(currentKinEnergy); >> 462 >> 463 // stop here if small range particle >> 464 if(inside) return tPathLength; >> 465 >> 466 if(tPathLength > currentRange) tPathLength = currentRange; >> 467 >> 468 G4double presafety = sp->GetSafety(); >> 469 >> 470 //G4cout << "G4GS::StepLimit tPathLength= " >> 471 // <<tPathLength<<" safety= " << presafety >> 472 // << " range= " <<currentRange<< " lambda= "<<lambda1 >> 473 // << " Alg: " << steppingAlgorithm <<G4endl; >> 474 >> 475 // far from geometry boundary >> 476 if(currentRange < presafety) >> 477 { >> 478 inside = true; >> 479 return tPathLength; >> 480 } >> 481 >> 482 // standard version >> 483 // >> 484 if (steppingAlgorithm == fUseDistanceToBoundary) >> 485 { >> 486 //compute geomlimit and presafety >> 487 G4double geomlimit = ComputeGeomLimit(track, presafety, tPathLength); >> 488 >> 489 // is far from boundary >> 490 if(currentRange <= presafety) >> 491 { >> 492 inside = true; >> 493 return tPathLength; >> 494 } >> 495 >> 496 smallstep += 1.; >> 497 insideskin = false; >> 498 >> 499 if((stepStatus == fGeomBoundary) || (stepStatus == fUndefined)) >> 500 { >> 501 rangeinit = currentRange; >> 502 if(stepStatus == fUndefined) smallstep = 1.e10; >> 503 else smallstep = 1.; >> 504 >> 505 //define stepmin here (it depends on lambda!) >> 506 //rough estimation of lambda_elastic/lambda_transport >> 507 G4double rat = currentKinEnergy/MeV ; >> 508 rat = 1.e-3/(rat*(10.+rat)) ; >> 509 //stepmin ~ lambda_elastic >> 510 stepmin = rat*lambda1; >> 511 skindepth = skin*stepmin; >> 512 //define tlimitmin >> 513 tlimitmin = 10.*stepmin; >> 514 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix; >> 515 >> 516 //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin >> 517 // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl; >> 518 // constraint from the geometry >> 519 if((geomlimit < geombig) && (geomlimit > geommin)) >> 520 { >> 521 if(stepStatus == fGeomBoundary) >> 522 tgeom = geomlimit/facgeom; >> 523 else >> 524 tgeom = 2.*geomlimit/facgeom; >> 525 } >> 526 else >> 527 tgeom = geombig; 306 528 >> 529 } 307 530 308 // computes macroscopic first transport cross << 531 //step limit 309 G4double G4GoudsmitSaundersonMscModel::CrossSe << 532 tlimit = facrange*rangeinit; 310 const << 533 if(tlimit < facsafety*presafety) 311 G4dou << 534 tlimit = facsafety*presafety; 312 G4dou << 535 313 G4dou << 536 //lower limit for tlimit 314 G4double xsecTr1 = 0.; // cross section per << 537 if(tlimit < tlimitmin) tlimit = tlimitmin; 315 // << 538 316 fLambda0 = 0.0; // elastic mean free path << 539 if(tlimit > tgeom) tlimit = tgeom; 317 fLambda1 = 0.0; // first transport mean free << 540 318 fScrA = 0.0; // screening parameter << 541 //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit 319 fG1 = 0.0; // first transport coef. << 542 // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl; 320 // use Moliere's screening (with Mott-corret << 543 321 G4double efEnergy = std::max(kineticEnergy, << 544 // shortcut 322 // total mometum square << 545 if((tPathLength < tlimit) && (tPathLength < presafety) && 323 G4double pt2 = efEnergy*(efEnergy+2.0*el << 546 (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth)) 324 // beta square << 547 return tPathLength; 325 G4double beta2 = pt2/(pt2+electron_mass_c2 << 548 326 // current material index << 549 // step reduction near to boundary 327 G4int matindx = (G4int)mat->GetIndex(); << 550 if(smallstep < skin) 328 // Moliere's b_c << 551 { 329 G4double bc = fGSTable->GetMoliereBc(ma << 552 tlimit = stepmin; 330 // get the Mott-correcton factors if Mott-co << 553 insideskin = true; 331 fMCtoScrA = 1.0; << 554 } 332 fMCtoQ1 = 1.0; << 555 else if(geomlimit < geombig) 333 fMCtoG2PerG1 = 1.0; << 556 { 334 G4double scpCor = 1.0; << 557 if(geomlimit > skindepth) 335 if (fIsUseMottCorrection) { << 558 { 336 fGSTable->GetMottCorrectionFactors(G4Log(e << 559 if(tlimit > geomlimit-0.999*skindepth) 337 // ! no scattering power correction since << 560 tlimit = geomlimit-0.999*skindepth; 338 // scpCor = fGSTable->ComputeScatteringPow << 561 } 339 } else if (fIsUsePWACorrection) { << 562 else 340 fPWACorrection->GetPWACorrectionFactors(G4 << 563 { 341 // scpCor = fGSTable->ComputeScatteringPow << 564 insideskin = true; 342 } << 565 if(tlimit > stepmin) tlimit = stepmin; 343 // screening parameter: << 566 } 344 // - if Mott-corretioncorrection: the Screen << 567 } 345 // screening parameter gives back the (els << 568 346 // - if PWA correction: he Screened-Rutherfo << 569 if(tlimit < stepmin) tlimit = stepmin; 347 // gives back the (elsepa) PWA first trans << 570 348 fScrA = fGSTable->GetMoliereXc2(matindx)/ << 571 if(tPathLength > tlimit) tPathLength = tlimit; 349 // elastic mean free path in Geant4 internal << 572 350 // (if Mott-corretion: the corrected screeni << 573 } 351 // corrected with the screening parameter co << 574 // for 'normal' simulation with or without magnetic field 352 fLambda0 = beta2*(1.+fScrA)*fMCtoScrA/bc/scp << 575 // there no small step/single scattering at boundaries 353 // first transport coefficient (if Mott-corr << 576 else if(steppingAlgorithm == fUseSafety) 354 // consistent with the one used during the p << 577 { 355 fG1 = 2.0*fScrA*((1.0+fScrA)*G4Log(1.0/ << 578 // compute presafety again if presafety <= 0 and no boundary 356 // first transport mean free path << 579 // i.e. when it is needed for optimization purposes 357 fLambda1 = fLambda0/fG1; << 580 if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix)) 358 xsecTr1 = 1./fLambda1; << 581 presafety = ComputeSafety(sp->GetPosition(),tPathLength); 359 return xsecTr1; << 582 360 } << 583 // is far from boundary >> 584 if(currentRange < presafety) >> 585 { >> 586 inside = true; >> 587 return tPathLength; >> 588 } 361 589 >> 590 if((stepStatus == fGeomBoundary) || (stepStatus == fUndefined)) >> 591 { >> 592 rangeinit = currentRange; >> 593 fr = facrange; >> 594 // 9.1 like stepping for e+/e- only (not for muons,hadrons) >> 595 if(mass < masslimite) >> 596 { >> 597 if(lambda1 > currentRange) >> 598 rangeinit = lambda1; >> 599 if(lambda1 > lambdalimit) >> 600 fr *= 0.75+0.25*lambda1/lambdalimit; >> 601 } >> 602 >> 603 //lower limit for tlimit >> 604 G4double rat = currentKinEnergy/MeV ; >> 605 rat = 1.e-3/(rat*(10.+rat)) ; >> 606 tlimitmin = 10.*lambda1*rat; >> 607 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix; >> 608 } >> 609 //step limit >> 610 tlimit = fr*rangeinit; 362 611 363 // gives back the first transport mean free pa << 612 if(tlimit < facsafety*presafety) 364 G4double << 613 tlimit = facsafety*presafety; 365 G4GoudsmitSaundersonMscModel::GetTransportMean << 366 << 367 // kinetic energy is assumed to be in Geant4 << 368 G4double efEnergy = kineticEnergy; << 369 // << 370 const G4Material* mat = currentCouple->GetM << 371 // << 372 fLambda0 = 0.0; // elastic mean free path << 373 fLambda1 = 0.0; // first transport mean free << 374 fScrA = 0.0; // screening parameter << 375 fG1 = 0.0; // first transport coef. << 376 << 377 // use Moliere's screening (with Mott-corret << 378 if (efEnergy<10.*CLHEP::eV) efEnergy = 10.* << 379 // total mometum square << 380 G4double pt2 = efEnergy*(efEnergy+2.0*el << 381 // beta square << 382 G4double beta2 = pt2/(pt2+electron_mass_c2 << 383 // current material index << 384 G4int matindx = (G4int)mat->GetIndex(); << 385 // Moliere's b_c << 386 G4double bc = fGSTable->GetMoliereBc(ma << 387 // get the Mott-correcton factors if Mott-co << 388 fMCtoScrA = 1.0; << 389 fMCtoQ1 = 1.0; << 390 fMCtoG2PerG1 = 1.0; << 391 G4double scpCor = 1.0; << 392 if (fIsUseMottCorrection) { << 393 fGSTable->GetMottCorrectionFactors(G4Log(e << 394 scpCor = fGSTable->ComputeScatteringPowerC << 395 } else if (fIsUsePWACorrection) { << 396 fPWACorrection->GetPWACorrectionFactors(G4 << 397 // scpCor = fGSTable->ComputeScatteringPow << 398 } << 399 // screening parameter: << 400 // - if Mott-corretioncorrection: the Screen << 401 // screening parameter gives back the (els << 402 // - if PWA correction: he Screened-Rutherfo << 403 // gives back the (elsepa) PWA first trans << 404 fScrA = fGSTable->GetMoliereXc2(matindx)/ << 405 // elastic mean free path in Geant4 internal << 406 // (if Mott-corretion: the corrected screeni << 407 // corrected with the screening parameter co << 408 fLambda0 = beta2*(1.+fScrA)*fMCtoScrA/bc/scp << 409 // first transport coefficient (if Mott-corr << 410 // consistent with the one used during the p << 411 fG1 = 2.0*fScrA*((1.0+fScrA)*G4Log(1.0/ << 412 // first transport mean free path << 413 fLambda1 = fLambda0/fG1; << 414 614 415 return fLambda1; << 615 //lower limit for tlimit 416 } << 616 if(tlimit < tlimitmin) tlimit = tlimitmin; 417 617 >> 618 if(tPathLength > tlimit) tPathLength = tlimit; >> 619 } >> 620 >> 621 // version similar to 7.1 (needed for some experiments) >> 622 else >> 623 { >> 624 if (stepStatus == fGeomBoundary) >> 625 { >> 626 if (currentRange > lambda1) tlimit = facrange*currentRange; >> 627 else tlimit = facrange*lambda1; >> 628 >> 629 if(tlimit < tlimitmin) tlimit = tlimitmin; >> 630 if(tPathLength > tlimit) tPathLength = tlimit; >> 631 } >> 632 } >> 633 //G4cout << "tPathLength= " << tPathLength >> 634 // << " currentMinimalStep= " << currentMinimalStep << G4endl; >> 635 return tPathLength ; >> 636 } >> 637 >> 638 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 639 // taken from Ref.6 >> 640 G4double G4GoudsmitSaundersonMscModel::ComputeGeomPathLength(G4double) >> 641 { >> 642 par1 = -1. ; >> 643 par2 = par3 = 0. ; >> 644 >> 645 // do the true -> geom transformation >> 646 zPathLength = tPathLength; >> 647 >> 648 // z = t for very small tPathLength >> 649 if(tPathLength < tlimitminfix) { return zPathLength; } >> 650 >> 651 // this correction needed to run MSC with eIoni and eBrem inactivated >> 652 // and makes no harm for a normal run >> 653 if(tPathLength > currentRange) >> 654 { tPathLength = currentRange; } >> 655 >> 656 G4double tau = tPathLength/lambda1 ; >> 657 >> 658 if ((tau <= tausmall) || insideskin) { >> 659 zPathLength = tPathLength; >> 660 if(zPathLength > lambda1) { zPathLength = lambda1; } >> 661 return zPathLength; >> 662 } >> 663 >> 664 G4double zmean = tPathLength; >> 665 if (tPathLength < currentRange*dtrl) { >> 666 if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ; >> 667 else zmean = lambda1*(1.-exp(-tau)); >> 668 } else if(currentKinEnergy < mass || tPathLength == currentRange) { >> 669 par1 = 1./currentRange ; >> 670 par2 = 1./(par1*lambda1) ; >> 671 par3 = 1.+par2 ; >> 672 if(tPathLength < currentRange) >> 673 zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ; >> 674 else >> 675 zmean = 1./(par1*par3) ; >> 676 } else { >> 677 G4double T1 = GetEnergy(particle,currentRange-tPathLength,currentCouple); 418 678 419 G4double << 420 G4GoudsmitSaundersonMscModel::GetTransportMean << 421 << 422 // kinetic energy is assumed to be in Geant4 << 423 G4double efEnergy = kineticEnergy; << 424 // << 425 const G4Material* mat = currentCouple->GetM << 426 // << 427 G4double lambda0 = 0.0; // elastc mean free << 428 G4double lambda1 = 0.0; // first transport m << 429 G4double scrA = 0.0; // screening paramet << 430 G4double g1 = 0.0; // first transport m << 431 << 432 // use Moliere's screening (with Mott-corret << 433 if (efEnergy<10.*CLHEP::eV) efEnergy = 10.* << 434 // total mometum square in Geant4 internal e << 435 G4double pt2 = efEnergy*(efEnergy+2.0*el << 436 G4double beta2 = pt2/(pt2+electron_mass_c2 << 437 G4int matindx = (G4int)mat->GetIndex(); << 438 G4double bc = fGSTable->GetMoliereBc(ma << 439 // get the Mott-correcton factors if Mott-co << 440 G4double mctoScrA = 1.0; << 441 G4double mctoQ1 = 1.0; << 442 G4double mctoG2PerG1 = 1.0; << 443 G4double scpCor = 1.0; << 444 if (fIsUseMottCorrection) { << 445 fGSTable->GetMottCorrectionFactors(G4Log(e << 446 scpCor = fGSTable->ComputeScatteringPowerC << 447 } else if (fIsUsePWACorrection) { << 448 fPWACorrection->GetPWACorrectionFactors(G4 << 449 // scpCor = fGSTable->ComputeScatteringPow << 450 } << 451 scrA = fGSTable->GetMoliereXc2(matindx)/( << 452 // total elastic mean free path in Geant4 in << 453 lambda0 = beta2*(1.+scrA)*mctoScrA/bc/scpCor << 454 g1 = 2.0*scrA*((1.0+scrA)*G4Log(1.0/scr << 455 lambda1 = lambda0/g1; << 456 679 457 return lambda1; << 680 lambda11 = GetLambda(T1); 458 } << 459 681 >> 682 par1 = (lambda1-lambda11)/(lambda1*tPathLength) ; >> 683 par2 = 1./(par1*lambda1) ; >> 684 par3 = 1.+par2 ; >> 685 zmean = (1.-exp(par3*log(lambda11/lambda1)))/(par1*par3) ; >> 686 } 460 687 461 void G4GoudsmitSaundersonMscModel::StartTracki << 688 zPathLength = zmean ; 462 SetParticle(track->GetDynamicParticle()->Get << 689 // sample z 463 firstStep = true; << 690 if(samplez) { 464 tlimit = tgeom = rangeinit = geombig; << 465 rangeinit = 1.e+21; << 466 } << 467 691 >> 692 const G4double ztmax = 0.99; >> 693 G4double zt = zmean/tPathLength ; 468 694 469 G4double G4GoudsmitSaundersonMscModel::Compute << 695 if (tPathLength > stepmin && zt < ztmax) { 470 << 471 G4double skindepth = 0.; << 472 // << 473 const G4DynamicParticle* dp = track.GetDynam << 474 G4StepPoint* sp = track.GetStep( << 475 G4StepStatus stepStatus = sp->GetStepSta << 476 currentCouple = track.GetMater << 477 SetCurrentCouple(currentCouple); << 478 currentMaterialIndex = (G4int)current << 479 currentKinEnergy = dp->GetKinetic << 480 currentRange = GetRange(parti << 481 dp->G << 482 // elastic and first transport mfp, screenin << 483 // (Mott-correction will be used if it was r << 484 fLambda1 = GetTransportMeanFreePath(particle << 485 // Set initial values: << 486 // : lengths are initialised to currentMini << 487 // step length from all other physics << 488 fTheTrueStepLenght = currentMinimalStep; << 489 fTheTransportDistance = currentMinimalStep; << 490 fTheZPathLenght = currentMinimalStep; << 491 fTheDisplacementVector.set(0.,0.,0.); << 492 fTheNewDirection.set(0.,0.,1.); << 493 << 494 // Can everything be done in the step limit << 495 fIsEverythingWasDone = false; << 496 // Multiple scattering needs to be sample ? << 497 fIsMultipleSacettring = false; << 498 // Single scattering needs to be sample ? << 499 fIsSingleScattering = false; << 500 // Was zero deflection in multiple scatterin << 501 fIsNoScatteringInMSC = false; << 502 // Do not care about displacement in MSC sam << 503 // ( used only in the case of gIsOptimizatio << 504 fIsNoDisplace = false; << 505 // get pre-step point safety << 506 presafety = sp->GetSafety(); << 507 // << 508 fZeff = currentCouple->GetMaterial()->GetIon << 509 // distance will take into account max-fluct << 510 G4double distance = currentRange; << 511 distance *= (1.20-fZeff*(1.62e-2-9.22e-5*fZe << 512 // << 513 // Possible optimization : if the distance i << 514 // particle will never leave this volume -> << 515 // as the effect of multiple elastic scatter << 516 // Important : this optimization can cause p << 517 // in a bigger volume since MSC won't be don << 518 // distance < safety so don't use optimized- << 519 if (gIsOptimizationOn && (distance<presafety << 520 // Indicate that we need to do MSC after << 521 fIsMultipleSacettring = true; << 522 fIsNoDisplace = true; << 523 } else if (steppingAlgorithm==fUseDistanceTo << 524 //Compute geomlimit (and presafety) : << 525 // - geomlimit will be: << 526 // == the straight line distance to the << 527 // longer than that << 528 // == a big value [geombig = 1.e50*mm] << 529 // the straight line distance to the << 530 // - presafety will be updated as well << 531 // So the particle can travell 'gemlimit' << 532 // line!) in its current direction: << 533 // (1) before reaching a boundary (geomli << 534 // (2) before reaching its current range << 535 geomlimit = ComputeGeomLimit(track, presaf << 536 // Record that the particle is on a bounda << 537 if ( (stepStatus==fGeomBoundary) || (stepS << 538 fIsWasOnBoundary = true; << 539 } << 540 // Set skin depth = skin x elastic_mean_fr << 541 skindepth = skin*fLambda0; << 542 // Init the flag that indicates that the p << 543 // distance from a boundary << 544 fIsInsideSkin = false; << 545 // Check if we can try Single Scattering b << 546 // distance from/to a boundary OR the curr << 547 // shorter than skindepth. NOTICE: the lat << 548 // because the MSC angular sampling is fin << 549 // faster to try single scattering in case << 550 if ((stepStatus==fGeomBoundary) || (presaf << 551 // check if we are within skindepth dist << 552 if ((stepStatus == fGeomBoundary) || (pr << 553 fIsInsideSkin = true; << 554 fIsWasOnBoundary = true; << 555 } << 556 //Try single scattering: << 557 // - sample distance to next single scat << 558 // - compare to current minimum length << 559 // == if sslimit is the shorter: << 560 // - set the step length to ssl << 561 // - indicate that single scatt << 562 // == else : nothing to do << 563 //- in both cases, the step length was v << 564 // true path length are the same << 565 G4double sslimit = -1.*fLambda0*G4Log(G4 << 566 // compare to current minimum step lengt << 567 if (sslimit<fTheTrueStepLenght) { << 568 fTheTrueStepLenght = sslimit; << 569 fIsSingleScattering = true; << 570 } << 571 // short step -> true step length equal << 572 fTheZPathLenght = fTheTrueStepLeng << 573 // Set taht everything is done in step-l << 574 // We will check if we need to perform t << 575 // sampling i.e. if single elastic scatt << 576 fIsEverythingWasDone = true; << 577 } else { << 578 // After checking we know that we cannot << 579 // need to make an MSC step << 580 // Indicate that we need to make and MSC << 581 // do it now i.e. if presafety>final_tru << 582 // fIsEverythingWasDone = false which in << 583 // MSC after transportation. << 584 fIsMultipleSacettring = true; << 585 // Init the first-real-step falg: it wil << 586 // non-single scattering step in this vo << 587 fIsFirstRealStep = false; << 588 // If previously the partcile was on bou << 589 // well. When it is not within skin anym << 590 // so we make the first real MSC step wi << 591 if (fIsWasOnBoundary && !fIsInsideSkin) << 592 // reset the 'was on boundary' indicat << 593 fIsWasOnBoundary = false; << 594 fIsFirstRealStep = true; << 595 } << 596 // If this is the first-real msc step (t << 597 // skin) or this is the first step with << 598 // primary): << 599 // - set the initial range that will b << 600 // (only in this volume, because aft << 601 // first-real MSC step we will reset << 602 // - don't let the partcile to cross th << 603 if (firstStep || fIsFirstRealStep || ran << 604 rangeinit = currentRange; << 605 // If geomlimit < geombig than the par << 606 // along its initial direction before << 607 // Otherwise we can be sure that the p << 608 // before reaching the boundary along << 609 // geometrical limit appalied. [Howeve << 610 // first or the first-real MSC step. A << 611 // MSC step the direction will change << 612 // But we will try to end up within sk << 613 // the actual value of geomlimit(See l << 614 // boundary).] << 615 if (geomlimit<geombig) { << 616 // transfrom straight line distance << 617 // length based on the mean values ( << 618 // first-transport mean free path i. << 619 if ((1.-geomlimit/fLambda1)> 0.) { << 620 geomlimit = -fLambda1*G4Log(1.-geo << 621 } << 622 // the 2-different case that could l << 623 if (firstStep) { << 624 tgeom = 2.*geomlimit/facgeom; << 625 } else { << 626 tgeom = geomlimit/facgeom; << 627 } << 628 } else { << 629 tgeom = geombig; << 630 } << 631 } << 632 // True step length limit from range fac << 633 // range is used that was set at the fir << 634 // in this volume with this particle. << 635 tlimit = facrange*rangeinit; << 636 // Take the minimum of the true step len << 637 // geometrical constraint or range-facto << 638 tlimit = std::min(tlimit,tgeom); << 639 // Step reduction close to boundary: we << 640 // from the boundary ( Notice: in case o << 641 // because geomlimit is the straigth lin << 642 // the currect direction (if geomlimit<g << 643 // change the initial direction. So te p << 644 // before in a different direction. Howe << 645 // path length to this (straight line) l << 646 // transport distance (straight line) wi << 647 // geomlimit-0.999*skindepth after the c << 648 if (geomlimit<geombig) { << 649 tlimit = std::min(tlimit, geomlimit-0. << 650 } << 651 // randomize 1st step or 1st 'normal' st << 652 if (firstStep || fIsFirstRealStep) { << 653 fTheTrueStepLenght = std::min(fTheTrue << 654 } else { << 655 fTheTrueStepLenght = std::min(fTheTrue << 656 } << 657 } << 658 } else if (steppingAlgorithm==fUseSafetyPlus << 659 presafety = ComputeSafety(sp->GetPosition << 660 geomlimit = presafety; << 661 // Set skin depth = skin x elastic_mean_fr << 662 skindepth = skin*fLambda0; << 663 // Check if we can try Single Scattering b << 664 // distance from/to a boundary OR the curr << 665 // shorter than skindepth. NOTICE: the lat << 666 // because the MSC angular sampling is fin << 667 // faster to try single scattering in case << 668 if ((stepStatus==fGeomBoundary) || (presaf << 669 //Try single scattering: << 670 // - sample distance to next single scat << 671 // - compare to current minimum length << 672 // == if sslimit is the shorter: << 673 // - set the step length to ssl << 674 // - indicate that single scatt << 675 // == else : nothing to do << 676 //- in both cases, the step length was v << 677 // true path length are the same << 678 G4double sslimit = -1.*fLambda0*G4Log(G4 << 679 // compare to current minimum step lengt << 680 if (sslimit<fTheTrueStepLenght) { << 681 fTheTrueStepLenght = sslimit; << 682 fIsSingleScattering = true; << 683 } << 684 // short step -> true step length equal << 685 fTheZPathLenght = fTheTrueStepLeng << 686 // Set taht everything is done in step-l << 687 // We will check if we need to perform t << 688 // sampling i.e. if single elastic scatt << 689 fIsEverythingWasDone = true; << 690 } else { << 691 // After checking we know that we cannot << 692 // need to make an MSC step << 693 // Indicate that we need to make and MSC << 694 fIsMultipleSacettring = true; << 695 fIsEverythingWasDone = true; << 696 // limit from range factor << 697 fTheTrueStepLenght = std::min(fTheTru << 698 // never let the particle go further tha << 699 // if we are here we are out of the skin << 700 if (fTheTrueStepLenght>presafety) { << 701 fTheTrueStepLenght = std::min(fTheTrue << 702 } << 703 // make sure that we are still within th << 704 // i.e. true step length is not longer t << 705 // We schould take into account energy l << 706 // step length as well. So let it 0.5 x << 707 fTheTrueStepLenght = std::min(fTheTrueSt << 708 } << 709 } else { << 710 // This is the default stepping algorithm: << 711 // accurate that corresponds to fUseSafety << 712 // model can handle any short steps so we << 713 // << 714 // NO single scattering in case of skin or << 715 // model will be single or even no scatter << 716 // compared to the elastic mean free path. << 717 // << 718 // indicate that MSC needs to be done (alw << 719 fIsMultipleSacettring = true; << 720 if (stepStatus!=fGeomBoundary) { << 721 presafety = ComputeSafety(sp->GetPositio << 722 } << 723 // Far from boundary-> in optimized mode d << 724 if ((distance<presafety) && (gIsOptimizati << 725 fIsNoDisplace = true; << 726 } else { << 727 // Urban like << 728 if (firstStep || (stepStatus==fGeomBound << 729 rangeinit = currentRange; << 730 fr = facrange; << 731 // We don't use this: we won't converge to the << 732 // decreasing range-factor. << 733 // rangeinit = std::max(rangeinit << 734 // if(fLambda1 > lambdalimit) { << 735 // fr *= (0.75+0.25*fLambda1/la << 736 // } << 737 696 738 } << 697 G4double u,cz1; 739 //step limit << 698 if(zt >= 0.333333333) { 740 tlimit = std::max(fr*rangeinit, facsafet << 741 // first step randomization << 742 if (firstStep || stepStatus==fGeomBounda << 743 fTheTrueStepLenght = std::min(fTheTrue << 744 } else { << 745 fTheTrueStepLenght = std::min(fTheTrue << 746 } << 747 } << 748 } << 749 // << 750 // unset first-step << 751 firstStep =false; << 752 // performe single scattering, multiple scat << 753 if (fIsEverythingWasDone) { << 754 if (fIsSingleScattering) { << 755 // sample single scattering << 756 //G4double ekin = 0.5*(currentKinEnerg << 757 G4double lekin = G4Log(currentKinEnergy << 758 G4double pt2 = currentKinEnergy*(curr << 759 G4double beta2 = pt2/(pt2+CLHEP::electr << 760 G4double cost = fGSTable->SingleScatte << 761 // protection << 762 if (cost<-1.) cost = -1.; << 763 if (cost> 1.) cost = 1.; << 764 // compute sint << 765 G4double dum = 1.-cost; << 766 G4double sint = std::sqrt(dum*(2.-dum) << 767 G4double phi = CLHEP::twopi*G4Uniform << 768 G4double sinPhi = std::sin(phi); << 769 G4double cosPhi = std::cos(phi); << 770 fTheNewDirection.set(sint*cosPhi,sint*si << 771 } else if (fIsMultipleSacettring) { << 772 // sample multiple scattering << 773 SampleMSC(); // fTheZPathLenght, fTheDis << 774 } // and if single scattering but it was l << 775 } //else { do nothing here but after transpo << 776 // << 777 return ConvertTrueToGeom(fTheTrueStepLenght, << 778 } << 779 699 >> 700 G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ; >> 701 cz1 = 1.+cz ; >> 702 G4double u0 = cz/cz1 ; >> 703 G4double grej ; >> 704 do { >> 705 u = exp(log(G4UniformRand())/cz1) ; >> 706 grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ; >> 707 } while (grej < G4UniformRand()) ; 780 708 781 G4double G4GoudsmitSaundersonMscModel::Compute << 782 // convert true ->geom << 783 // It is called from the step limitation Com << 784 // !fIsEverythingWasDone but protect: << 785 par1 = -1.; << 786 par2 = par3 = 0.; << 787 // if fIsEverythingWasDone = TRUE => fTheZP << 788 // so return with the already known value << 789 // Otherwise: << 790 if (!fIsEverythingWasDone) { << 791 // this correction needed to run MSC with << 792 // and makes no harm for a normal run << 793 fTheTrueStepLenght = std::min(fTheTrueStep << 794 // do the true -> geom transformation << 795 fTheZPathLenght = fTheTrueStepLenght; << 796 // z = t for very small true-path-length << 797 if (fTheTrueStepLenght<tlimitminfix2) { << 798 return fTheZPathLenght; << 799 } << 800 G4double tau = fTheTrueStepLenght/fLambda1 << 801 if (tau<=tausmall) { << 802 fTheZPathLenght = std::min(fTheTrueStepL << 803 } else if (fTheTrueStepLenght<currentRang << 804 if (tau<taulim) fTheZPathLenght = fTheTr << 805 else fTheZPathLenght = fLambd << 806 } else if (currentKinEnergy<mass || fTheTr << 807 par1 = 1./currentRange ; // alpha =1 << 808 par2 = 1./(par1*fLambda1) ; // 1/(alpha << 809 par3 = 1.+par2 ; // 1+1/ << 810 if (fTheTrueStepLenght<currentRange) { << 811 fTheZPathLenght = 1./(par1*par3) * (1. << 812 } else { 709 } else { 813 fTheZPathLenght = 1./(par1*par3); << 710 cz1 = 1./zt-1.; >> 711 u = 1.-exp(log(G4UniformRand())/cz1) ; 814 } 712 } 815 } else { << 713 zPathLength = tPathLength*u ; 816 G4double rfin = std::max(currentRange << 817 G4double T1 = GetEnergy(particle,rf << 818 G4double lambda1 = GetTransportMeanFreeP << 819 // << 820 par1 = (fLambda1-lambda1)/(fLambda1*fThe << 821 par2 = 1./(par1*fLambda1); << 822 par3 = 1.+par2 ; << 823 G4Pow *g4calc = G4Pow::GetInstance(); << 824 fTheZPathLenght = 1./(par1*par3) * (1.-g << 825 } 714 } 826 } 715 } 827 fTheZPathLenght = std::min(fTheZPathLenght, << 716 if(zPathLength > lambda1) zPathLength = lambda1; 828 // << 717 //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda1 << G4endl; 829 return fTheZPathLenght; << 718 >> 719 return zPathLength; 830 } 720 } 831 721 >> 722 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 723 // taken from Ref.6 >> 724 G4double >> 725 G4GoudsmitSaundersonMscModel::ComputeTrueStepLength(G4double geomStepLength) >> 726 { >> 727 // step defined other than transportation >> 728 if(geomStepLength == zPathLength && tPathLength <= currentRange) >> 729 return tPathLength; 832 730 833 G4double G4GoudsmitSaundersonMscModel::Compute << 834 // init << 835 fIsEndedUpOnBoundary = false; << 836 // step defined other than transportation << 837 if (geomStepLength==fTheZPathLenght) { << 838 return fTheTrueStepLenght; << 839 } << 840 // else :: << 841 // - set the flag that transportation was th << 842 // - convert geom -> true by using the mean << 843 fIsEndedUpOnBoundary = true; // OR LAST STEP << 844 fTheZPathLenght = geomStepLength; << 845 // was a short single scattering step << 846 if (fIsEverythingWasDone && !fIsMultipleSace << 847 fTheTrueStepLenght = geomStepLength; << 848 return fTheTrueStepLenght; << 849 } << 850 // t = z for very small step 731 // t = z for very small step 851 if (geomStepLength<tlimitminfix2) { << 732 zPathLength = geomStepLength; 852 fTheTrueStepLenght = geomStepLength; << 733 tPathLength = geomStepLength; >> 734 if(geomStepLength < tlimitminfix) return tPathLength; >> 735 853 // recalculation 736 // recalculation 854 } else { << 737 if((geomStepLength > lambda1*tausmall) && !insideskin) 855 G4double tlength = geomStepLength; << 738 { 856 if (geomStepLength>fLambda1*tausmall) { << 739 if(par1 < 0.) 857 if (par1< 0.) { << 740 tPathLength = -lambda1*log(1.-geomStepLength/lambda1) ; 858 tlength = -fLambda1*G4Log(1.-geomStepL << 741 else >> 742 { >> 743 if(par1*par3*geomStepLength < 1.) >> 744 tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ; >> 745 else >> 746 tPathLength = currentRange; >> 747 } >> 748 } >> 749 if(tPathLength < geomStepLength) tPathLength = geomStepLength; >> 750 //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl; >> 751 >> 752 return tPathLength; >> 753 } >> 754 >> 755 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 756 //Total & first transport x sections for e-/e+ generated from ELSEPA code >> 757 >> 758 void G4GoudsmitSaundersonMscModel::LoadELSEPAXSections() >> 759 { >> 760 G4String filename = "XSECTIONS.dat"; >> 761 >> 762 char* path = getenv("G4LEDATA"); >> 763 if (!path) >> 764 { >> 765 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()","em0006", >> 766 FatalException, >> 767 "Environment variable G4LEDATA not defined"); >> 768 return; >> 769 } >> 770 >> 771 G4String pathString(path); >> 772 G4String dirFile = pathString + "/msc_GS/" + filename; >> 773 FILE *infile; >> 774 infile = fopen(dirFile,"r"); >> 775 if (infile == 0) >> 776 { >> 777 G4ExceptionDescription ed; >> 778 ed << "Data file <" + dirFile + "> is not opened!" << G4endl; >> 779 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 780 "em0003",FatalException,ed); >> 781 return; >> 782 } >> 783 >> 784 // Read parameters from tables and take logarithms >> 785 G4float aRead; >> 786 for(G4int i=0 ; i<106 ;i++){ >> 787 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 788 if(aRead > 0.0) { aRead = log(aRead); } >> 789 else { aRead = 0.0; } >> 790 } else { >> 791 G4ExceptionDescription ed; >> 792 ed << "Error reading <" + dirFile + "> loop #1 i= " << i << G4endl; >> 793 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 794 "em0003",FatalException,ed); >> 795 return; >> 796 } >> 797 ener[i]=aRead; >> 798 } >> 799 for(G4int j=0;j<103;j++){ >> 800 for(G4int i=0;i<106;i++){ >> 801 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 802 if(aRead > 0.0) { aRead = log(aRead); } >> 803 else { aRead = 0.0; } 859 } else { 804 } else { 860 if (par1*par3*geomStepLength<1.) { << 805 G4ExceptionDescription ed; 861 G4Pow *g4calc = G4Pow::GetInstance() << 806 ed << "Error reading <" + dirFile + "> loop #2 j= " << j 862 tlength = (1.-g4calc->powA( 1.-par1* << 807 << "; i= " << i << G4endl; 863 } else { << 808 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", 864 tlength = currentRange; << 809 "em0003",FatalException,ed); 865 } << 810 return; 866 } << 811 } 867 if (tlength<geomStepLength || tlength>fT << 812 TCSE[j][i]=aRead; 868 tlength = geomStepLength; << 813 } 869 } << 814 } 870 } << 815 for(G4int j=0;j<103;j++){ 871 fTheTrueStepLenght = tlength; << 816 for(G4int i=0;i<106;i++){ 872 } << 817 if(1 == fscanf(infile,"%f\t",&aRead)) { 873 // << 818 if(aRead > 0.0) { aRead = log(aRead); } 874 return fTheTrueStepLenght; << 819 else { aRead = 0.0; } 875 } << 820 } else { 876 << 821 G4ExceptionDescription ed; 877 G4ThreeVector& << 822 ed << "Error reading <" + dirFile + "> loop #3 j= " << j 878 G4GoudsmitSaundersonMscModel::SampleScattering << 823 << "; i= " << i << G4endl; 879 if (steppingAlgorithm==fUseDistanceToBoundar << 824 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", 880 // single scattering was and scattering ha << 825 "em0003",FatalException,ed); 881 fTheNewDirection.rotateUz(oldDirection); << 826 return; 882 fParticleChange->ProposeMomentumDirection( << 827 } 883 return fTheDisplacementVector; << 828 FTCSE[j][i]=aRead; 884 } else if (steppingAlgorithm==fUseSafetyPlus << 829 } 885 if (fIsEndedUpOnBoundary) { // do nothing << 830 } 886 return fTheDisplacementVector; << 831 for(G4int j=0;j<103;j++){ 887 } else if (fIsEverythingWasDone) { // evry << 832 for(G4int i=0;i<106;i++){ 888 // check single scattering and see if it << 833 if(1 == fscanf(infile,"%f\t",&aRead)) { 889 if (fIsSingleScattering) { << 834 if(aRead > 0.0) { aRead = log(aRead); } 890 fTheNewDirection.rotateUz(oldDirection << 835 else { aRead = 0.0; } 891 fParticleChange->ProposeMomentumDirect << 836 } else { 892 return fTheDisplacementVector; << 837 G4ExceptionDescription ed; 893 } << 838 ed << "Error reading <" + dirFile + "> loop #4 j= " << j 894 // check if multiple scattering happened << 839 << "; i= " << i << G4endl; 895 if (fIsMultipleSacettring && !fIsNoScatt << 840 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", 896 fTheNewDirection.rotateUz(oldDirect << 841 "em0003",FatalException,ed); 897 fTheDisplacementVector.rotateUz(old << 842 return; 898 fParticleChange->ProposeMomentumDir << 843 } >> 844 TCSP[j][i]=aRead; >> 845 } >> 846 } >> 847 for(G4int j=0;j<103;j++){ >> 848 for(G4int i=0;i<106;i++){ >> 849 if(1 == fscanf(infile,"%f\t",&aRead)) { >> 850 if(aRead > 0.0) { aRead = log(aRead); } >> 851 else { aRead = 0.0; } >> 852 } else { >> 853 G4ExceptionDescription ed; >> 854 ed << "Error reading <" + dirFile + "> loop #5 j= " << j >> 855 << "; i= " << i << G4endl; >> 856 G4Exception("G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()", >> 857 "em0003",FatalException,ed); >> 858 return; 899 } 859 } 900 // The only thing that could happen if w << 860 FTCSP[j][i]=aRead; 901 // is that single scattering was tried << 861 } 902 // So no displacement and no scattering << 903 return fTheDisplacementVector; << 904 } << 905 // << 906 // The only thing that could still happen << 907 // optimization branch: so sample MSC angl << 908 } << 909 //else MSC needs to be done here << 910 SampleMSC(); << 911 if (!fIsNoScatteringInMSC) { << 912 fTheNewDirection.rotateUz(oldDirection); << 913 fParticleChange->ProposeMomentumDirection( << 914 if (!fIsNoDisplace) { << 915 fTheDisplacementVector.rotateUz(oldDirec << 916 } << 917 } 862 } 918 // << 919 return fTheDisplacementVector; << 920 } << 921 863 >> 864 fclose(infile); 922 865 923 void G4GoudsmitSaundersonMscModel::SampleMSC() << 924 fIsNoScatteringInMSC = false; << 925 // kinetic energy is assumed to be in Geant4 << 926 G4double kineticEnergy = currentKinEnergy; << 927 // << 928 // Energy loss correction: 2 version << 929 G4double eloss = 0.0; << 930 // if (fTheTrueStepLenght > currentRange*dtrl << 931 eloss = kineticEnergy - GetEnergy(particle,c << 932 // } else { << 933 // eloss = fTheTrueStepLenght*GetDEDX(parti << 934 // } << 935 << 936 G4double tau = 0.;// = kineticEnergy/ele << 937 G4double tau2 = 0.;// = tau*tau; << 938 G4double eps0 = 0.;// = eloss/kineticEnerg << 939 G4double epsm = 0.;// = eloss/kineticEnerg << 940 << 941 // - init. << 942 G4double efEnergy = kineticEnergy; << 943 G4double efStep = fTheTrueStepLenght; << 944 << 945 G4double kineticEnergy0 = kineticEnergy; << 946 if (gIsUseAccurate) { // - use accurate e << 947 kineticEnergy -= 0.5*eloss; // mean ener << 948 // other parameters for energy loss correc << 949 tau = kineticEnergy/electron_m << 950 tau2 = tau*tau; << 951 eps0 = eloss/kineticEnergy0; // << 952 epsm = eloss/kineticEnergy; // << 953 << 954 efEnergy = kineticEnergy * (1.-epsm << 955 G4double dum = 0.166666*(4.+tau*(6.+tau << 956 efStep = fTheTrueStepLenght*(1.-d << 957 } else { // - t << 958 kineticEnergy -= 0.5*eloss; // mean ener << 959 efEnergy = kineticEnergy; << 960 G4double factor = 1./(1.+0.9784671*kinetic << 961 eps0 = eloss/kineticEnergy0; << 962 epsm = eps0/(1.-0.5*eps0); << 963 G4double temp = 0.3*(1 -factor*(1.-0.333 << 964 efStep = fTheTrueStepLenght*(1.+t << 965 } << 966 // << 967 // compute elastic mfp, first transport mfp, << 968 // if it was requested by the user) << 969 fLambda1 = GetTransportMeanFreePath(particle << 970 // s/lambda_el << 971 G4double lambdan=0.; << 972 if (fLambda0>0.0) { << 973 lambdan=efStep/fLambda0; << 974 } << 975 if (lambdan<=1.0e-12) { << 976 if (fIsEverythingWasDone) { << 977 fTheZPathLenght = fTheTrueStepLenght; << 978 } << 979 fIsNoScatteringInMSC = true; << 980 return; << 981 } << 982 // first moment: 2.* lambdan *scrA*((1.+scrA << 983 G4double Qn1 = lambdan *fG1; << 984 // sample scattering angles << 985 // new direction, relative to the orriginal << 986 G4double cosTheta1 = 1.0, sinTheta1 = 0.0, c << 987 G4double cosPhi1 = 1.0, sinPhi1 = 0.0, c << 988 G4double uss = 0.0, vss = 0.0, w << 989 G4double x_coord = 0.0, y_coord = 0.0, z << 990 G4double u2 = 0.0, v2 = 0.0; << 991 // if we are above the upper grid limit with << 992 // => izotropic distribution: lambG1_max =7. << 993 if (0.5*Qn1 > 7.0){ << 994 cosTheta1 = 1.-2.*G4UniformRand(); << 995 sinTheta1 = std::sqrt((1.-cosTheta1)*(1.+c << 996 cosTheta2 = 1.-2.*G4UniformRand(); << 997 sinTheta2 = std::sqrt((1.-cosTheta2)*(1.+c << 998 } else { << 999 // sample 2 scattering cost1, sint1, cost << 1000 G4double lekin = G4Log(efEnergy); << 1001 G4double pt2 = efEnergy*(efEnergy+2.0 << 1002 G4double beta2 = pt2/(pt2+CLHEP::electr << 1003 // backup GS angular dtr pointer (kineti << 1004 // if the first was an msc sampling (the << 1005 G4GoudsmitSaundersonTable::GSMSCAngularD << 1006 G4int mcEkinIdx = -1; << 1007 G4int mcDeltIdx = -1; << 1008 G4double transfPar = 0.; << 1009 G4bool isMsc = fGSTable->Sampling(0.5*la << 1010 curren << 1011 true); << 1012 fGSTable->Sampling(0.5*lambdan, 0.5*Qn1, << 1013 currentMaterialIndex, << 1014 if (cosTheta1+cosTheta2==2.) { // no sca << 1015 if (fIsEverythingWasDone) << 1016 fTheZPathLenght = fTheTrueStepLeng << 1017 fIsNoScatteringInMSC = true; << 1018 return; << 1019 } << 1020 } << 1021 // sample 2 azimuthal angles << 1022 G4double phi1 = CLHEP::twopi*G4UniformRand( << 1023 sinPhi1 = std::sin(phi1); << 1024 cosPhi1 = std::cos(phi1); << 1025 G4double phi2 = CLHEP::twopi*G4UniformRand( << 1026 sinPhi2 = std::sin(phi2); << 1027 cosPhi2 = std::cos(phi2); << 1028 << 1029 // compute final direction realtive to z-di << 1030 u2 = sinTheta2*cosPhi2; << 1031 v2 = sinTheta2*sinPhi2; << 1032 G4double u2p = cosTheta1*u2 + sinTheta1*cos << 1033 uss = u2p*cosPhi1 - v2*sinPhi1; << 1034 vss = u2p*sinPhi1 + v2*cosPhi1; << 1035 wss = cosTheta1*cosTheta2 - sinTheta1*u2; << 1036 << 1037 // set new direction (is scattering frame) << 1038 fTheNewDirection.set(uss,vss,wss); << 1039 << 1040 // set the fTheZPathLenght if we don't samp << 1041 // we should do everything at the step-limi << 1042 if(fIsNoDisplace && fIsEverythingWasDone) << 1043 fTheZPathLenght = fTheTrueStepLenght; << 1044 << 1045 // in optimized-mode if the current-safety << 1046 if(fIsNoDisplace) << 1047 return; << 1048 << 1049 /////////////////////////////////////////// << 1050 // Compute final position << 1051 Qn1 *= fMCtoQ1; << 1052 if (gIsUseAccurate) { << 1053 // correction parameter << 1054 G4double par =1.; << 1055 if(Qn1<0.7) par = 1.; << 1056 else if (Qn1<7.0) par = -0.031376*Qn1+1. << 1057 else par = 0.79; << 1058 << 1059 // Moments with energy loss correction << 1060 // --first the uncorrected (for energy l << 1061 // gamma = G_2/G_1 based on G2 computed << 1062 G4double loga = G4Log(1.0+1.0/fScrA); << 1063 G4double gamma = 6.0*fScrA*(1.0 + fScrA << 1064 gamma *= fMCtoG2PerG1; << 1065 // sample eta from p(eta)=2*eta i.e. P(e << 1066 G4double eta = std::sqrt(G4UniformRan << 1067 G4double eta1 = 0.5*(1 - eta); // use << 1068 // 0.5 +sqrt(6)/6 = 0.9082483; << 1069 // 1/(4*sqrt(6)) = 0.1020621; << 1070 // (4-sqrt(6)/(24*sqrt(6))) = 0.02637471 << 1071 // delta = 0.9082483-(0.1020621-0.026374 << 1072 G4double delta = 0.9082483-(0.1020621-0 << 1073 << 1074 // compute alpha1 and alpha2 for energy << 1075 G4double temp1 = 2.0 + tau; << 1076 G4double temp = (2.0+tau*temp1)/((tau+1 << 1077 //Take logarithmic dependence << 1078 temp = temp - (tau+1.0)/((tau+2.0)*(loga << 1079 temp = temp * epsm; << 1080 temp1 = 1.0 - temp; << 1081 delta = delta + 0.40824829*(eps0*(tau+1. << 1082 (loga*(1.0+fScrA)-1.0)*(loga*(1. << 1083 G4double b = eta*delta; << 1084 G4double c = eta*(1.0-delta); << 1085 << 1086 //Calculate transport direction cosines: << 1087 // ut,vt,wt is the final position divide << 1088 G4double w1v2 = cosTheta1*v2; << 1089 G4double ut = b*sinTheta1*cosPhi1 + c* << 1090 G4double vt = b*sinTheta1*sinPhi1 + c* << 1091 G4double wt = eta1*(1+temp) + b* << 1092 << 1093 // long step correction << 1094 ut *=par; << 1095 vt *=par; << 1096 wt *=par; << 1097 << 1098 // final position relative to the pre-st << 1099 // ut = x_f/s so needs to multiply by s << 1100 x_coord = ut*fTheTrueStepLenght; << 1101 y_coord = vt*fTheTrueStepLenght; << 1102 z_coord = wt*fTheTrueStepLenght; << 1103 << 1104 if(fIsEverythingWasDone){ << 1105 // We sample in the step limit so set << 1106 // and lateral displacement (x_coord,y << 1107 //Calculate transport distance << 1108 G4double transportDistance = std::sqr << 1109 // protection << 1110 if(transportDistance>fTheTrueStepLengh << 1111 transportDistance = fTheTrueStepLen << 1112 fTheZPathLenght = transportDistance; << 1113 } << 1114 // else:: we sample in the DoIt so << 1115 // the fTheZPathLenght was already << 1116 fTheDisplacementVector.set(x_coord,y_coo << 1117 } else { << 1118 // compute zz = <z>/tPathLength << 1119 // s -> true-path-length << 1120 // z -> geom-path-length:: when PRESTA i << 1121 // r -> lateral displacement = s/2 sin(t << 1122 G4double zz = 0.0; << 1123 if(fIsEverythingWasDone){ << 1124 // We sample in the step limit so set << 1125 // and lateral displacement (x_coord, << 1126 if(Qn1<0.1) { // use 3-order Taylor a << 1127 zz = 1.0 - Qn1*(0.5 - Qn1*(0.166666 << 1128 } else { << 1129 zz = (1.-G4Exp(-Qn1))/Qn1; << 1130 } << 1131 } else { << 1132 // we sample in the DoIt so << 1133 // the fTheZPathLenght was already se << 1134 zz = fTheZPathLenght/fTheTrueStepLeng << 1135 } << 1136 << 1137 G4double rr = (1.-zz*zz)/(1.-wss*wss); / << 1138 if(rr >= 0.25) rr = 0.25; // << 1139 G4double rperp = fTheTrueStepLenght*std: << 1140 x_coord = rperp*uss; << 1141 y_coord = rperp*vss; << 1142 z_coord = zz*fTheTrueStepLenght; << 1143 << 1144 if(fIsEverythingWasDone){ << 1145 G4double transportDistance = std::sqrt << 1146 fTheZPathLenght = transportDistance; << 1147 } << 1148 << 1149 fTheDisplacementVector.set(x_coord,y_coo << 1150 } << 1151 } 866 } >> 867 >> 868 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1152 869