Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4GoudsmitSaundersonMscModel.cc 93663 2015-10-28 09:50:49Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ---------------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class implementation file 30 // GEANT4 Class implementation file 30 // 31 // 31 // File name: G4GoudsmitSaundersonMscModel 32 // File name: G4GoudsmitSaundersonMscModel 32 // 33 // 33 // Author: Mihaly Novak / (Omrane Kadri 34 // Author: Mihaly Novak / (Omrane Kadri) 34 // 35 // 35 // Creation date: 20.02.2009 36 // Creation date: 20.02.2009 36 // 37 // 37 // Modifications: 38 // Modifications: 38 // 04.03.2009 V.Ivanchenko cleanup and format 39 // 04.03.2009 V.Ivanchenko cleanup and format according to Geant4 EM style 39 // 12.05.2010 O.Kadri: adding Qn1 and Qn12 as 40 // 12.05.2010 O.Kadri: adding Qn1 and Qn12 as private doubles 40 // 18.05.2015 M. Novak provide PRELIMINARY ver 41 // 18.05.2015 M. Novak provide PRELIMINARY verison of the revised class 41 // This class has been revised and 42 // This class has been revised and updated, new methods added. 42 // A new version of Kawrakow-Bielaj 43 // A new version of Kawrakow-Bielajew Goudsmit-Saunderson MSC model 43 // based on the screened Rutherford 44 // based on the screened Rutherford DCS for elastic scattering of 44 // electrons/positrons has been int 45 // electrons/positrons has been introduced[1,2]. The corresponding MSC 45 // angular distributions over a 2D 46 // angular distributions over a 2D parameter grid have been recomputed 46 // and the CDFs are now stored in a 47 // and the CDFs are now stored in a variable transformed (smooth) form[2,3] 47 // together with the corresponding 48 // together with the corresponding rational interpolation parameters. 48 // These angular distributions are 49 // These angular distributions are handled by the new 49 // G4GoudsmitSaundersonTable class 50 // G4GoudsmitSaundersonTable class that is responsible to sample if 50 // it was no, single, few or multip 51 // it was no, single, few or multiple scattering case and delivers the 51 // angular deflection (i.e. cos(the 52 // angular deflection (i.e. cos(theta) and sin(theta)). 52 // Two screening options are provid 53 // Two screening options are provided: 53 // - if fIsUsePWATotalXsecData=TRU 54 // - if fIsUsePWATotalXsecData=TRUE i.e. SetOptionPWAScreening(TRUE) 54 // was called before initialisat 55 // was called before initialisation: screening parameter value A is 55 // determined such that the firs 56 // determined such that the first transport coefficient G1(A) 56 // computed according to the scr 57 // computed according to the screened Rutherford DCS for elastic 57 // scattering will reproduce the 58 // scattering will reproduce the one computed from the PWA elastic 58 // and first transport mean free 59 // and first transport mean free paths[4]. 59 // - if fIsUsePWATotalXsecData=FAL 60 // - if fIsUsePWATotalXsecData=FALSE i.e. default value or 60 // SetOptionPWAScreening(FALSE) 61 // SetOptionPWAScreening(FALSE) was called before initialisation: 61 // screening parameter value A i 62 // screening parameter value A is computed according to Moliere's 62 // formula (by using material de 63 // formula (by using material dependent parameters \chi_cc2 and b_c 63 // precomputed for each material 64 // precomputed for each material used at initialization in 64 // G4GoudsmitSaundersonTable) [3 65 // G4GoudsmitSaundersonTable) [3] 65 // Elastic and first trasport mean 66 // Elastic and first trasport mean free paths are used consistently. 66 // The new version is self-consiste 67 // The new version is self-consistent, several times faster, more 67 // robust and accurate compared to 68 // robust and accurate compared to the earlier version. 68 // Spin effects as well as a more a 69 // Spin effects as well as a more accurate energy loss correction and 69 // computations of Lewis moments wi 70 // computations of Lewis moments will be implemented later on. 70 // 02.09.2015 M. Novak: first version of new s 71 // 02.09.2015 M. Novak: first version of new step limit is provided. 71 // fUseSafetyPlus corresponds to Ur 72 // fUseSafetyPlus corresponds to Urban fUseSafety (default) 72 // fUseDistanceToBoundary correspon 73 // fUseDistanceToBoundary corresponds to Urban fUseDistanceToBoundary 73 // fUseSafety corresponds to EGSnr 74 // fUseSafety corresponds to EGSnrc error-free stepping algorithm 74 // Range factor can be significantl 75 // Range factor can be significantly higher at each case than in Urban. 75 // 23.08.2017 M. Novak: added corrections to a << 76 // It can be activated by setting t << 77 // before initialization using the << 78 // The fMottCorrection member is re << 79 // correction (rejection) functions << 80 // Goudsmit-Saunderson agnular dist << 81 // effects and screening correction << 82 // GS angular distributions is: DCS << 83 // # DCS_{SR} is the relativisti << 84 // solution of the Klein-Gordo << 85 // scattering of spinless e- o << 86 // note: the default (without << 87 // are based on this DCS_{SR} << 88 // # DCS_{R} is the Rutherford D << 89 // screening << 90 // # DCS_{Mott} is the Mott DCS << 91 // Coulomb potential i.e. scat << 92 // point-like unscreened Coulo << 93 // # moreover, the screening par << 94 // the DCS_{cor} with this cor << 95 // transport cross sections ob << 96 // (i.e. from elsepa [4]) << 97 // Unlike the default GS, the Mott- << 98 // (different for e- and e+ <= the << 99 // (Z and material) dependent. << 100 // 27.10.2017 M. Novak: << 101 // - Mott-correction flag is set no << 102 // - new form of PWA correction to << 103 // - changed step limit flag conven << 104 // # fUseSafety corresponds to U << 105 // # fUseDistanceToBoundary corr << 106 // # fUseSafetyPlus corresponds << 107 // 02.02.2018 M. Novak: implemented CrossSecti << 108 // 76 // 109 // Class description: 77 // Class description: 110 // Kawrakow-Bielajew Goudsmit-Saunderson MSC << 78 // Kawrakow-Bielajew Goudsmit-Saunderson MSC model based on the screened 111 // for elastic scattering of e-/e+. Option, << 79 // Rutherford DCS for elastic scattering of electrons/positrons. Step limitation 112 // also available now (SetOptionMottCorrecti << 80 // algorithm as well as true to geomerty and geometry to true step length 113 // algorithm (UseSafety) is available beyond << 81 // computations are adopted from Urban model[5]. 114 // and true to geomerty and geometry to true << 115 // from the Urban model[5]. The most accurat << 116 // UseSafetyPlus MSC step limit with Mott-co << 117 // are expected to be set through the G4EmPa << 118 // # G4EmParameters::Instance()->SetMscStep << 119 // # G4EmParameters::Instance()->SetUseMott << 120 // << 121 // 82 // 122 // References: 83 // References: 123 // [1] A.F.Bielajew, NIMB 111 (1996) 195-208 84 // [1] A.F.Bielajew, NIMB 111 (1996) 195-208 124 // [2] I.Kawrakow, A.F.Bielajew, NIMB 134(19 85 // [2] I.Kawrakow, A.F.Bielajew, NIMB 134(1998) 325-336 125 // [3] I.Kawrakow, E.Mainegra-Hing, D.W.O.Ro 86 // [3] I.Kawrakow, E.Mainegra-Hing, D.W.O.Rogers, F.Tessier,B.R.B.Walters, NRCC 126 // Report PIRS-701 (2013) 87 // Report PIRS-701 (2013) 127 // [4] F.Salvat, A.Jablonski, C.J. Powell, C 88 // [4] F.Salvat, A.Jablonski, C.J. Powell, CPC 165(2005) 157-190 128 // [5] L.Urban, Preprint CERN-OPEN-2006-077 89 // [5] L.Urban, Preprint CERN-OPEN-2006-077 (2006) 129 // 90 // 130 // ------------------------------------------- 91 // ----------------------------------------------------------------------------- 131 92 132 93 133 #include "G4GoudsmitSaundersonMscModel.hh" 94 #include "G4GoudsmitSaundersonMscModel.hh" 134 95 135 #include "G4GoudsmitSaundersonTable.hh" 96 #include "G4GoudsmitSaundersonTable.hh" 136 #include "G4GSPWACorrections.hh" << 97 #include "G4PWATotalXsecTable.hh" 137 98 138 #include "G4PhysicalConstants.hh" 99 #include "G4PhysicalConstants.hh" 139 #include "G4SystemOfUnits.hh" 100 #include "G4SystemOfUnits.hh" 140 101 141 #include "G4ParticleChangeForMSC.hh" 102 #include "G4ParticleChangeForMSC.hh" 142 #include "G4DynamicParticle.hh" 103 #include "G4DynamicParticle.hh" 143 #include "G4Electron.hh" 104 #include "G4Electron.hh" 144 #include "G4Positron.hh" 105 #include "G4Positron.hh" 145 106 146 #include "G4LossTableManager.hh" 107 #include "G4LossTableManager.hh" 147 #include "G4EmParameters.hh" << 148 #include "G4Track.hh" 108 #include "G4Track.hh" 149 #include "G4PhysicsTable.hh" 109 #include "G4PhysicsTable.hh" 150 #include "Randomize.hh" 110 #include "Randomize.hh" 151 #include "G4Log.hh" 111 #include "G4Log.hh" 152 #include "G4Exp.hh" 112 #include "G4Exp.hh" 153 #include "G4Pow.hh" 113 #include "G4Pow.hh" 154 #include <fstream> 114 #include <fstream> 155 115 >> 116 G4GoudsmitSaundersonTable* G4GoudsmitSaundersonMscModel::fgGSTable = 0; >> 117 G4PWATotalXsecTable* G4GoudsmitSaundersonMscModel::fgPWAXsecTable = 0; 156 118 157 // set accurate energy loss and dispalcement s 119 // set accurate energy loss and dispalcement sampling to be always on now 158 G4bool G4GoudsmitSaundersonMscModel::gIsUseAcc << 120 G4bool G4GoudsmitSaundersonMscModel::fgIsUseAccurate = true; 159 // set the usual optimization to be always act 121 // set the usual optimization to be always active now 160 G4bool G4GoudsmitSaundersonMscModel::gIsOptimi << 122 G4bool G4GoudsmitSaundersonMscModel::fgIsOptimizationOn = true; 161 << 162 123 >> 124 //////////////////////////////////////////////////////////////////////////////// 163 G4GoudsmitSaundersonMscModel::G4GoudsmitSaunde 125 G4GoudsmitSaundersonMscModel::G4GoudsmitSaundersonMscModel(const G4String& nam) 164 : G4VMscModel(nam) { << 126 : G4VMscModel(nam),lowKEnergy(0.1*keV),highKEnergy(1.*GeV) { 165 charge = 0; << 127 charge = 0; 166 currentMaterialIndex = -1; << 128 currentMaterialIndex = -1; 167 // << 129 168 fr = 0.1; << 130 lambdalimit = 1.*mm ; 169 rangeinit = 1.e+21; << 131 fr = 0.02 ; 170 geombig = 1.e+50*mm; << 132 rangeinit = 0.; 171 geomlimit = geombig; << 133 geombig = 1.e50*mm; 172 tgeom = geombig; << 134 geomlimit = geombig; 173 tlimit = 1.e+10*mm; << 135 tlimit = 1.e+10*mm; 174 presafety = 0.*mm; << 136 presafety = 0.*mm; 175 // << 137 176 particle = nullptr; << 138 particle = 0; 177 theManager = G4LossTableManager: << 139 theManager = G4LossTableManager::Instance(); 178 firstStep = true; << 140 firstStep = true; 179 currentKinEnergy = 0.0; << 141 180 currentRange = 0.0; << 142 tlimitminfix2 = 1.*nm; 181 // << 143 par1=par2=par3= 0.0; 182 tlimitminfix2 = 1.*nm; << 144 tausmall = 1.e-16; 183 tausmall = 1.e-16; << 145 mass = electron_mass_c2; 184 mass = electron_mass_c2; << 146 taulim = 1.e-6; 185 taulim = 1.e-6; << 147 186 // << 148 currentCouple = 0; 187 currentCouple = nullptr; << 149 fParticleChange = 0; 188 fParticleChange = nullptr; << 150 189 // << 151 // by default Moliere screeing parameter will be used but it can be set to the 190 fZeff = 1.; << 152 // PWA screening before calling the Initialise method 191 // << 153 fIsUsePWATotalXsecData = false; 192 par1 = 0.; << 154 193 par2 = 0.; << 155 //***************** 194 par3 = 0.; << 156 fLambda0 = 0.0; // elastic mean free path 195 // << 157 fLambda1 = 0.0; // first transport mean free path 196 // Moliere screeing parameter will be used a << 158 fScrA = 0.0; // screening parameter 197 // appalied to the integrated quantities (sc << 159 fG1 = 0.0; // first transport coef. 198 // and second moments) derived from the corr << 160 //****************** 199 // this PWA correction is ignored if Mott-co << 161 fTheTrueStepLenght = 0.; 200 // Mott-correction contains all these correc << 162 fTheTransportDistance = 0.; 201 fIsUsePWACorrection = true; << 163 fTheZPathLenght = 0.; 202 // << 203 fIsUseMottCorrection = false; << 204 // << 205 fLambda0 = 0.0; // elastic mea << 206 fLambda1 = 0.0; // first trans << 207 fScrA = 0.0; // screening p << 208 fG1 = 0.0; // first trans << 209 // << 210 fMCtoScrA = 1.0; << 211 fMCtoQ1 = 1.0; << 212 fMCtoG2PerG1 = 1.0; << 213 // << 214 fTheTrueStepLenght = 0.; << 215 fTheTransportDistance = 0.; << 216 fTheZPathLenght = 0.; << 217 // << 218 fTheDisplacementVector.set(0.,0.,0.); 164 fTheDisplacementVector.set(0.,0.,0.); 219 fTheNewDirection.set(0.,0.,1.); 165 fTheNewDirection.set(0.,0.,1.); 220 // << 221 fIsEverythingWasDone = false; << 222 fIsMultipleSacettring = false; << 223 fIsSingleScattering = false; << 224 fIsEndedUpOnBoundary = false; << 225 fIsNoScatteringInMSC = false; << 226 fIsNoDisplace = false; << 227 fIsInsideSkin = false; << 228 fIsWasOnBoundary = false; << 229 fIsFirstRealStep = false; << 230 rndmEngineMod = G4Random::getTheEng << 231 // << 232 fGSTable = nullptr; << 233 fPWACorrection = nullptr; << 234 } << 235 166 >> 167 fIsEverythingWasDone = false; >> 168 fIsMultipleSacettring = false; >> 169 fIsSingleScattering = false; >> 170 fIsEndedUpOnBoundary = false; >> 171 fIsNoScatteringInMSC = false; >> 172 fIsNoDisplace = false; >> 173 >> 174 fZeff = 1.; >> 175 //+++++++++++++ >> 176 >> 177 rndmEngineMod = G4Random::getTheEngine(); >> 178 } 236 179 237 G4GoudsmitSaundersonMscModel::~G4GoudsmitSaund << 180 //////////////////////////////////////////////////////////////////////////////// 238 if (IsMaster()) { << 181 G4GoudsmitSaundersonMscModel::~G4GoudsmitSaundersonMscModel(){ 239 if (fGSTable) { << 182 if(IsMaster()){ 240 delete fGSTable; << 183 if(fgGSTable){ 241 fGSTable = nullptr; << 184 delete fgGSTable; >> 185 fgGSTable = 0; 242 } 186 } 243 if (fPWACorrection) { << 187 if(fgPWAXsecTable){ 244 delete fPWACorrection; << 188 delete fgPWAXsecTable; 245 fPWACorrection = nullptr; << 189 fgPWAXsecTable = 0; 246 } 190 } 247 } 191 } 248 } 192 } 249 193 250 194 251 void G4GoudsmitSaundersonMscModel::Initialise( << 195 //////////////////////////////////////////////////////////////////////////////// >> 196 void G4GoudsmitSaundersonMscModel::Initialise(const G4ParticleDefinition* p, >> 197 const G4DataVector&){ >> 198 //skindepth=skin*stepmin; 252 SetParticle(p); 199 SetParticle(p); 253 InitialiseParameters(p); << 254 // -create GoudsmitSaundersonTable and init << 255 // Mott-correction was required << 256 if (IsMaster()) { << 257 // get the Mott-correction flag from EmPar << 258 if (G4EmParameters::Instance()->UseMottCor << 259 fIsUseMottCorrection = true; << 260 } << 261 // Mott-correction includes other way of P << 262 // when Mott-correction is activated by th << 263 if (fIsUseMottCorrection) { << 264 fIsUsePWACorrection = false; << 265 } << 266 // clear GS-table << 267 if (fGSTable) { << 268 delete fGSTable; << 269 fGSTable = nullptr; << 270 } << 271 // clear PWA corrections table if any << 272 if (fPWACorrection) { << 273 delete fPWACorrection; << 274 fPWACorrection = nullptr; << 275 } << 276 // create GS-table << 277 G4bool isElectron = true; << 278 if (p->GetPDGCharge()>0.) { << 279 isElectron = false; << 280 } << 281 fGSTable = new G4GoudsmitSaundersonTable(i << 282 // G4GSTable will be initialised: << 283 // - Screened-Rutherford DCS based GS angu << 284 // - Mott-correction will be initialised i << 285 fGSTable->SetOptionMottCorrection(fIsUseMo << 286 // - set PWA correction (correction to int << 287 fGSTable->SetOptionPWACorrection(fIsUsePWA << 288 // init << 289 fGSTable->Initialise(LowEnergyLimit(),High << 290 // create PWA corrections table if it was << 291 if (fIsUsePWACorrection) { << 292 fPWACorrection = new G4GSPWACorrections( << 293 fPWACorrection->Initialise(); << 294 } << 295 } << 296 fParticleChange = GetParticleChangeForMSC(p) 200 fParticleChange = GetParticleChangeForMSC(p); 297 } << 298 201 >> 202 // >> 203 // -create static GoudsmitSaundersonTable and PWATotalXsecTable is necessary >> 204 // >> 205 if(IsMaster()) { 299 206 300 void G4GoudsmitSaundersonMscModel::InitialiseL << 207 // Could delete as well if they are exist but then the same data are reloaded 301 fGSTable = static_cast<G4Goud << 208 // in case of e+ for example. 302 fIsUseMottCorrection = static_cast<G4Goud << 209 /* if(fgGSTable) { 303 fIsUsePWACorrection = static_cast<G4Goud << 210 delete fgGSTable; 304 fPWACorrection = static_cast<G4Goud << 211 fgGSTable = 0; 305 } << 212 } >> 213 if(fgPWAXsecTable) { >> 214 delete fgPWAXsecTable; >> 215 fgPWAXsecTable = 0; >> 216 } >> 217 */ >> 218 if(!fgGSTable) >> 219 fgGSTable = new G4GoudsmitSaundersonTable(); 306 220 >> 221 // G4GSTable will be initialised (data are loaded) only if they are not there yet. >> 222 fgGSTable->Initialise(); 307 223 308 // computes macroscopic first transport cross << 224 if(fIsUsePWATotalXsecData) { 309 G4double G4GoudsmitSaundersonMscModel::CrossSe << 225 if(!fgPWAXsecTable) 310 const << 226 fgPWAXsecTable = new G4PWATotalXsecTable(); 311 G4dou << 227 312 G4dou << 228 // Makes sure that all (and only those) atomic PWA data are in memory that 313 G4dou << 229 // are in the current MaterilaTable. 314 G4double xsecTr1 = 0.; // cross section per << 230 fgPWAXsecTable->Initialise(); 315 // << 231 } 316 fLambda0 = 0.0; // elastic mean free path << 317 fLambda1 = 0.0; // first transport mean free << 318 fScrA = 0.0; // screening parameter << 319 fG1 = 0.0; // first transport coef. << 320 // use Moliere's screening (with Mott-corret << 321 G4double efEnergy = std::max(kineticEnergy, << 322 // total mometum square << 323 G4double pt2 = efEnergy*(efEnergy+2.0*el << 324 // beta square << 325 G4double beta2 = pt2/(pt2+electron_mass_c2 << 326 // current material index << 327 G4int matindx = (G4int)mat->GetIndex(); << 328 // Moliere's b_c << 329 G4double bc = fGSTable->GetMoliereBc(ma << 330 // get the Mott-correcton factors if Mott-co << 331 fMCtoScrA = 1.0; << 332 fMCtoQ1 = 1.0; << 333 fMCtoG2PerG1 = 1.0; << 334 G4double scpCor = 1.0; << 335 if (fIsUseMottCorrection) { << 336 fGSTable->GetMottCorrectionFactors(G4Log(e << 337 // ! no scattering power correction since << 338 // scpCor = fGSTable->ComputeScatteringPow << 339 } else if (fIsUsePWACorrection) { << 340 fPWACorrection->GetPWACorrectionFactors(G4 << 341 // scpCor = fGSTable->ComputeScatteringPow << 342 } 232 } 343 // screening parameter: << 344 // - if Mott-corretioncorrection: the Screen << 345 // screening parameter gives back the (els << 346 // - if PWA correction: he Screened-Rutherfo << 347 // gives back the (elsepa) PWA first trans << 348 fScrA = fGSTable->GetMoliereXc2(matindx)/ << 349 // elastic mean free path in Geant4 internal << 350 // (if Mott-corretion: the corrected screeni << 351 // corrected with the screening parameter co << 352 fLambda0 = beta2*(1.+fScrA)*fMCtoScrA/bc/scp << 353 // first transport coefficient (if Mott-corr << 354 // consistent with the one used during the p << 355 fG1 = 2.0*fScrA*((1.0+fScrA)*G4Log(1.0/ << 356 // first transport mean free path << 357 fLambda1 = fLambda0/fG1; << 358 xsecTr1 = 1./fLambda1; << 359 return xsecTr1; << 360 } 233 } 361 234 362 235 >> 236 /////////////////////////////////////////////////////////////////////////////// 363 // gives back the first transport mean free pa 237 // gives back the first transport mean free path in internal G4 units 364 G4double 238 G4double 365 G4GoudsmitSaundersonMscModel::GetTransportMean 239 G4GoudsmitSaundersonMscModel::GetTransportMeanFreePath(const G4ParticleDefinition* /*partdef*/, 366 240 G4double kineticEnergy) { 367 // kinetic energy is assumed to be in Geant4 241 // kinetic energy is assumed to be in Geant4 internal energy unit which is MeV 368 G4double efEnergy = kineticEnergy; 242 G4double efEnergy = kineticEnergy; 369 // << 243 if(efEnergy<lowKEnergy) efEnergy=lowKEnergy; >> 244 if(efEnergy>highKEnergy)efEnergy=highKEnergy; >> 245 >> 246 /////////////////////////////////////////// 370 const G4Material* mat = currentCouple->GetM 247 const G4Material* mat = currentCouple->GetMaterial(); 371 // << 248 372 fLambda0 = 0.0; // elastic mean free path 249 fLambda0 = 0.0; // elastic mean free path 373 fLambda1 = 0.0; // first transport mean free 250 fLambda1 = 0.0; // first transport mean free path 374 fScrA = 0.0; // screening parameter 251 fScrA = 0.0; // screening parameter 375 fG1 = 0.0; // first transport coef. 252 fG1 = 0.0; // first transport coef. 376 253 377 // use Moliere's screening (with Mott-corret << 254 if(fIsUsePWATotalXsecData) { 378 if (efEnergy<10.*CLHEP::eV) efEnergy = 10.* << 255 // use PWA total xsec data to determine screening and lambda0 lambda1 379 // total mometum square << 256 const G4ElementVector* theElementVector = mat->GetElementVector(); 380 G4double pt2 = efEnergy*(efEnergy+2.0*el << 257 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume(); 381 // beta square << 258 G4int nelm = mat->GetNumberOfElements(); 382 G4double beta2 = pt2/(pt2+electron_mass_c2 << 259 383 // current material index << 260 int elowindx = fgPWAXsecTable->GetPWATotalXsecForZet( G4lrint((*theElementVector)[0]->GetZ()) ) 384 G4int matindx = (G4int)mat->GetIndex(); << 261 ->GetPWATotalXsecEnergyBinIndex(efEnergy); 385 // Moliere's b_c << 262 for(G4int i=0;i<nelm;i++){ 386 G4double bc = fGSTable->GetMoliereBc(ma << 263 int zet = G4lrint((*theElementVector)[i]->GetZ()); 387 // get the Mott-correcton factors if Mott-co << 264 // total elastic scattering cross section in Geant4 internal length2 units 388 fMCtoScrA = 1.0; << 265 int indx = (G4int)(1.5 + charge*1.5); // specify that want to get the total elastic scattering xsection 389 fMCtoQ1 = 1.0; << 266 double elxsec = (fgPWAXsecTable->GetPWATotalXsecForZet(zet))->GetInterpXsec(efEnergy,elowindx,indx); 390 fMCtoG2PerG1 = 1.0; << 267 // first transport cross section in Geant4 internal length2 units 391 G4double scpCor = 1.0; << 268 indx = (G4int)(2.5 + charge*1.5); // specify that want to get the first tarnsport xsection 392 if (fIsUseMottCorrection) { << 269 double t1xsec = (fgPWAXsecTable->GetPWATotalXsecForZet(zet))->GetInterpXsec(efEnergy,elowindx,indx); 393 fGSTable->GetMottCorrectionFactors(G4Log(e << 270 fLambda0 += (theAtomNumDensityVector[i]*elxsec); 394 scpCor = fGSTable->ComputeScatteringPowerC << 271 fLambda1 += (theAtomNumDensityVector[i]*t1xsec); 395 } else if (fIsUsePWACorrection) { << 272 } 396 fPWACorrection->GetPWACorrectionFactors(G4 << 273 if(fLambda0>0.0) { fLambda0 =1./fLambda0; } 397 // scpCor = fGSTable->ComputeScatteringPow << 274 if(fLambda1>0.0) { fLambda1 =1./fLambda1; } >> 275 >> 276 // determine screening parameter such that it gives back PWA G1 >> 277 fG1=0.0; >> 278 if(fLambda1>0.0) { fG1 = fLambda0/fLambda1; } >> 279 >> 280 fScrA = fgGSTable->GetScreeningParam(fG1); >> 281 } else { >> 282 // Get SCREENING FROM MOLIER >> 283 // total mometum square in Geant4 internal energy2 units which is MeV2 >> 284 >> 285 // below 1 keV it can give bananas so prevet (1 keV) >> 286 if(efEnergy<0.001) efEnergy = 0.001; >> 287 >> 288 G4double pt2 = efEnergy*(efEnergy+2.0*electron_mass_c2); >> 289 G4double beta2 = pt2/(pt2+electron_mass_c2*electron_mass_c2); >> 290 G4int matindx = mat->GetIndex(); >> 291 G4double bc = fgGSTable->GetMoliereBc(matindx); >> 292 fScrA = fgGSTable->GetMoliereXc2(matindx)/(4.0*pt2*bc); >> 293 // total elastic mean free path in Geant4 internal lenght units >> 294 fLambda0 = beta2/bc/(1.+fScrA); >> 295 fG1 = 2.0*fScrA*((1.0+fScrA)*G4Log(1.0/fScrA+1.0)-1.0); >> 296 fLambda1 = fLambda0/fG1; 398 } 297 } 399 // screening parameter: << 400 // - if Mott-corretioncorrection: the Screen << 401 // screening parameter gives back the (els << 402 // - if PWA correction: he Screened-Rutherfo << 403 // gives back the (elsepa) PWA first trans << 404 fScrA = fGSTable->GetMoliereXc2(matindx)/ << 405 // elastic mean free path in Geant4 internal << 406 // (if Mott-corretion: the corrected screeni << 407 // corrected with the screening parameter co << 408 fLambda0 = beta2*(1.+fScrA)*fMCtoScrA/bc/scp << 409 // first transport coefficient (if Mott-corr << 410 // consistent with the one used during the p << 411 fG1 = 2.0*fScrA*((1.0+fScrA)*G4Log(1.0/ << 412 // first transport mean free path << 413 fLambda1 = fLambda0/fG1; << 414 298 415 return fLambda1; 299 return fLambda1; 416 } 300 } 417 301 418 << 302 //////////////////////////////////////////////////////////////////////////////// 419 G4double 303 G4double 420 G4GoudsmitSaundersonMscModel::GetTransportMean 304 G4GoudsmitSaundersonMscModel::GetTransportMeanFreePathOnly(const G4ParticleDefinition* /*partdef*/, 421 305 G4double kineticEnergy) { 422 // kinetic energy is assumed to be in Geant4 306 // kinetic energy is assumed to be in Geant4 internal energy unit which is MeV 423 G4double efEnergy = kineticEnergy; 307 G4double efEnergy = kineticEnergy; 424 // << 308 if(efEnergy<lowKEnergy) efEnergy=lowKEnergy; >> 309 if(efEnergy>highKEnergy)efEnergy=highKEnergy; >> 310 >> 311 /////////////////////////////////////////// 425 const G4Material* mat = currentCouple->GetM 312 const G4Material* mat = currentCouple->GetMaterial(); 426 // << 313 427 G4double lambda0 = 0.0; // elastc mean free 314 G4double lambda0 = 0.0; // elastc mean free path 428 G4double lambda1 = 0.0; // first transport m 315 G4double lambda1 = 0.0; // first transport mean free path 429 G4double scrA = 0.0; // screening paramet 316 G4double scrA = 0.0; // screening parametr 430 G4double g1 = 0.0; // first transport m 317 G4double g1 = 0.0; // first transport mean free path 431 318 432 // use Moliere's screening (with Mott-corret << 319 if(fIsUsePWATotalXsecData) { 433 if (efEnergy<10.*CLHEP::eV) efEnergy = 10.* << 320 // use PWA total xsec data to determine screening and lambda0 lambda1 434 // total mometum square in Geant4 internal e << 321 const G4ElementVector* theElementVector = mat->GetElementVector(); 435 G4double pt2 = efEnergy*(efEnergy+2.0*el << 322 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume(); 436 G4double beta2 = pt2/(pt2+electron_mass_c2 << 323 G4int nelm = mat->GetNumberOfElements(); 437 G4int matindx = (G4int)mat->GetIndex(); << 324 438 G4double bc = fGSTable->GetMoliereBc(ma << 325 int elowindx = fgPWAXsecTable->GetPWATotalXsecForZet( G4lrint((*theElementVector)[0]->GetZ()) ) 439 // get the Mott-correcton factors if Mott-co << 326 ->GetPWATotalXsecEnergyBinIndex(efEnergy); 440 G4double mctoScrA = 1.0; << 327 for(G4int i=0;i<nelm;i++){ 441 G4double mctoQ1 = 1.0; << 328 int zet = G4lrint((*theElementVector)[i]->GetZ()); 442 G4double mctoG2PerG1 = 1.0; << 329 // total elastic scattering cross section in Geant4 internal length2 units 443 G4double scpCor = 1.0; << 330 // int indx = (G4int)(1.5 + charge*1.5); // specify that want to get the total elastic scattering xsection 444 if (fIsUseMottCorrection) { << 331 // double elxsec = (fgPWAXsecTable->GetPWATotalXsecForZet(zet))->GetInterpXsec(efEnergy,elowindx,indx); 445 fGSTable->GetMottCorrectionFactors(G4Log(e << 332 // first transport cross section in Geant4 internal length2 units 446 scpCor = fGSTable->ComputeScatteringPowerC << 333 int indx = (G4int)(2.5 + charge*1.5); // specify that want to get the first tarnsport xsection 447 } else if (fIsUsePWACorrection) { << 334 double t1xsec = (fgPWAXsecTable->GetPWATotalXsecForZet(zet))->GetInterpXsec(efEnergy,elowindx,indx); 448 fPWACorrection->GetPWACorrectionFactors(G4 << 335 // fLambda0 += (theAtomNumDensityVector[i]*elxsec); 449 // scpCor = fGSTable->ComputeScatteringPow << 336 lambda1 += (theAtomNumDensityVector[i]*t1xsec); >> 337 } >> 338 // if(fLambda0>0.0) { fLambda0 =1./fLambda0; } >> 339 if(lambda1>0.0) { lambda1 =1./lambda1; } >> 340 >> 341 } else { >> 342 // Get SCREENING FROM MOLIER >> 343 // total mometum square in Geant4 internal energy2 units which is MeV2 >> 344 >> 345 // below 1 keV it can give bananas so prevet (1 keV) >> 346 if(efEnergy<0.001) efEnergy = 0.001; >> 347 >> 348 G4double pt2 = efEnergy*(efEnergy+2.0*electron_mass_c2); >> 349 G4double beta2 = pt2/(pt2+electron_mass_c2*electron_mass_c2); >> 350 G4int matindx = mat->GetIndex(); >> 351 G4double bc = fgGSTable->GetMoliereBc(matindx); >> 352 scrA = fgGSTable->GetMoliereXc2(matindx)/(4.0*pt2*bc); >> 353 // total elastic mean free path in Geant4 internal lenght units >> 354 lambda0 = beta2/bc/(1.+scrA); >> 355 g1 = 2.0*scrA*((1.0+scrA)*G4Log(1.0/scrA+1.0)-1.0); >> 356 lambda1 = lambda0/g1; 450 } 357 } 451 scrA = fGSTable->GetMoliereXc2(matindx)/( << 452 // total elastic mean free path in Geant4 in << 453 lambda0 = beta2*(1.+scrA)*mctoScrA/bc/scpCor << 454 g1 = 2.0*scrA*((1.0+scrA)*G4Log(1.0/scr << 455 lambda1 = lambda0/g1; << 456 358 457 return lambda1; 359 return lambda1; 458 } 360 } 459 361 460 << 362 //////////////////////////////////////////////////////////////////////////////// 461 void G4GoudsmitSaundersonMscModel::StartTracki << 363 void G4GoudsmitSaundersonMscModel::StartTracking(G4Track* track) >> 364 { 462 SetParticle(track->GetDynamicParticle()->Get 365 SetParticle(track->GetDynamicParticle()->GetDefinition()); 463 firstStep = true; 366 firstStep = true; 464 tlimit = tgeom = rangeinit = geombig; << 465 rangeinit = 1.e+21; << 466 } 367 } 467 368 468 369 469 G4double G4GoudsmitSaundersonMscModel::Compute << 370 //////////////////////////////////////////////////////////////////////////////// 470 << 371 G4double G4GoudsmitSaundersonMscModel::ComputeTruePathLengthLimit( >> 372 const G4Track& track, >> 373 G4double& currentMinimalStep){ >> 374 // some constant >> 375 const G4double almostZero = 1.e-8; >> 376 const G4double almostOne = 1.-almostZero; >> 377 const G4double mlogAlmostZero = -1.*G4Log(almostZero); >> 378 const G4double onemExpmOne = 1.-G4Exp(-1.0); >> 379 471 G4double skindepth = 0.; 380 G4double skindepth = 0.; 472 // << 381 473 const G4DynamicParticle* dp = track.GetDynam 382 const G4DynamicParticle* dp = track.GetDynamicParticle(); 474 G4StepPoint* sp = track.GetStep( << 383 475 G4StepStatus stepStatus = sp->GetStepSta << 384 G4StepPoint* sp = track.GetStep()->GetPreStepPoint(); 476 currentCouple = track.GetMater << 385 G4StepStatus stepStatus = sp->GetStepStatus(); >> 386 currentCouple = track.GetMaterialCutsCouple(); 477 SetCurrentCouple(currentCouple); 387 SetCurrentCouple(currentCouple); 478 currentMaterialIndex = (G4int)current << 388 currentMaterialIndex = currentCouple->GetIndex(); 479 currentKinEnergy = dp->GetKinetic << 389 currentKinEnergy = dp->GetKineticEnergy(); 480 currentRange = GetRange(parti << 390 currentRange = GetRange(particle,currentKinEnergy,currentCouple); 481 dp->G << 391 482 // elastic and first transport mfp, screenin << 392 483 // (Mott-correction will be used if it was r << 393 >> 394 // *** Elastic and first transport mfp, fScrA and fG1 are also set in this !!! 484 fLambda1 = GetTransportMeanFreePath(particle 395 fLambda1 = GetTransportMeanFreePath(particle,currentKinEnergy); >> 396 >> 397 // 485 // Set initial values: 398 // Set initial values: 486 // : lengths are initialised to currentMini 399 // : lengths are initialised to currentMinimalStep which is the true, minimum 487 // step length from all other physics 400 // step length from all other physics 488 fTheTrueStepLenght = currentMinimalStep; 401 fTheTrueStepLenght = currentMinimalStep; 489 fTheTransportDistance = currentMinimalStep; 402 fTheTransportDistance = currentMinimalStep; 490 fTheZPathLenght = currentMinimalStep; 403 fTheZPathLenght = currentMinimalStep; // will need to be converted 491 fTheDisplacementVector.set(0.,0.,0.); 404 fTheDisplacementVector.set(0.,0.,0.); 492 fTheNewDirection.set(0.,0.,1.); 405 fTheNewDirection.set(0.,0.,1.); 493 406 494 // Can everything be done in the step limit 407 // Can everything be done in the step limit phase ? 495 fIsEverythingWasDone = false; 408 fIsEverythingWasDone = false; 496 // Multiple scattering needs to be sample ? 409 // Multiple scattering needs to be sample ? 497 fIsMultipleSacettring = false; 410 fIsMultipleSacettring = false; 498 // Single scattering needs to be sample ? 411 // Single scattering needs to be sample ? 499 fIsSingleScattering = false; 412 fIsSingleScattering = false; 500 // Was zero deflection in multiple scatterin 413 // Was zero deflection in multiple scattering sampling ? 501 fIsNoScatteringInMSC = false; 414 fIsNoScatteringInMSC = false; 502 // Do not care about displacement in MSC sam 415 // Do not care about displacement in MSC sampling 503 // ( used only in the case of gIsOptimizatio << 416 // ( used only in the case of fgIsOptimizationOn = true) 504 fIsNoDisplace = false; 417 fIsNoDisplace = false; >> 418 505 // get pre-step point safety 419 // get pre-step point safety 506 presafety = sp->GetSafety(); 420 presafety = sp->GetSafety(); 507 // << 421 508 fZeff = currentCouple->GetMaterial()->GetIon << 422 fZeff = currentCouple->GetMaterial()->GetTotNbOfElectPerVolume()/ 509 // distance will take into account max-fluct << 423 currentCouple->GetMaterial()->GetTotNbOfAtomsPerVolume(); 510 G4double distance = currentRange; 424 G4double distance = currentRange; 511 distance *= (1.20-fZeff*(1.62e-2-9.22e-5*fZe 425 distance *= (1.20-fZeff*(1.62e-2-9.22e-5*fZeff)); 512 // << 426 513 // Possible optimization : if the distance i << 427 // In G4VMscModel there is a member G4MscStepLimitType steppingAlgoritm; 514 // particle will never leave this volume -> << 428 if( steppingAlgorithm == fUseDistanceToBoundary || steppingAlgorithm == fUseSafety ) { 515 // as the effect of multiple elastic scatter << 429 // Possible optimization : if the range is samller than the safety -> the 516 // Important : this optimization can cause p << 430 // particle will never leave this volume -> dispalcement and angular 517 // in a bigger volume since MSC won't be don << 431 // deflection as the effects of multiple elastic scattering can be skipped 518 // distance < safety so don't use optimized- << 432 // Only true->geometrical->true pathlength conversion is done based on mean 519 if (gIsOptimizationOn && (distance<presafety << 433 // values. In order to be able to do this, only the maximum geometrical step 520 // Indicate that we need to do MSC after << 434 // length will be checked. 521 fIsMultipleSacettring = true; << 435 // Important : this optimization can cause problems if one does scoring 522 fIsNoDisplace = true; << 436 // in a bigger volume since MSC won't be done deep inside the volume when 523 } else if (steppingAlgorithm==fUseDistanceTo << 437 // range < safety so don't use optimized-mode in such case. 524 //Compute geomlimit (and presafety) : << 438 if( fgIsOptimizationOn && (distance < presafety) ) { 525 // - geomlimit will be: << 439 // Do path length conversion using the means and do NOT sample dispalcement. 526 // == the straight line distance to the << 440 // :: according to optimized-mode: 527 // longer than that << 441 // restrict the true step length such that the corresponding 528 // == a big value [geombig = 1.e50*mm] << 442 // transport length is not longer than the first transport mean free path: 529 // the straight line distance to the << 443 // -this is important for the g->t conversion (i.e. fTheZPathLenght -> 530 // - presafety will be updated as well << 444 // fTheTrueStepLenght) that will be invoked later based on the mean 531 // So the particle can travell 'gemlimit' << 445 // values. However, it leads to fTheTrueStepLenght >> lambda1 and 532 // line!) in its current direction: << 446 // the MSC model as condensed simulation model is valid about 533 // (1) before reaching a boundary (geomli << 447 // fTheTrueStepLenght ~ lambda1 that corresponds to <cos(theta)> ~ 1 rad 534 // (2) before reaching its current range << 448 // in one sub-step if we divide the true step length into two parts when 535 geomlimit = ComputeGeomLimit(track, presaf << 449 // sampling the angular distribution. 536 // Record that the particle is on a bounda << 450 fTheTrueStepLenght = std::min(fTheTrueStepLenght, fLambda1*mlogAlmostZero); 537 if ( (stepStatus==fGeomBoundary) || (stepS << 451 fTheZPathLenght = fLambda1*(1.-G4Exp(-fTheTrueStepLenght/fLambda1)); 538 fIsWasOnBoundary = true; << 452 // Indicate that we need to do MSC after transportation and no dispalcement. 539 } << 453 fIsMultipleSacettring = true; 540 // Set skin depth = skin x elastic_mean_fr << 454 fIsNoDisplace = true; 541 skindepth = skin*fLambda0; << 455 } else { 542 // Init the flag that indicates that the p << 456 543 // distance from a boundary << 457 544 fIsInsideSkin = false; << 458 if(steppingAlgorithm == fUseDistanceToBoundary) { 545 // Check if we can try Single Scattering b << 459 geomlimit = ComputeGeomLimit(track, presafety, currentRange); 546 // distance from/to a boundary OR the curr << 547 // shorter than skindepth. NOTICE: the lat << 548 // because the MSC angular sampling is fin << 549 // faster to try single scattering in case << 550 if ((stepStatus==fGeomBoundary) || (presaf << 551 // check if we are within skindepth dist << 552 if ((stepStatus == fGeomBoundary) || (pr << 553 fIsInsideSkin = true; << 554 fIsWasOnBoundary = true; << 555 } << 556 //Try single scattering: << 557 // - sample distance to next single scat << 558 // - compare to current minimum length << 559 // == if sslimit is the shorter: << 560 // - set the step length to ssl << 561 // - indicate that single scatt << 562 // == else : nothing to do << 563 //- in both cases, the step length was v << 564 // true path length are the same << 565 G4double sslimit = -1.*fLambda0*G4Log(G4 << 566 // compare to current minimum step lengt << 567 if (sslimit<fTheTrueStepLenght) { << 568 fTheTrueStepLenght = sslimit; << 569 fIsSingleScattering = true; << 570 } << 571 // short step -> true step length equal << 572 fTheZPathLenght = fTheTrueStepLeng << 573 // Set taht everything is done in step-l << 574 // We will check if we need to perform t << 575 // sampling i.e. if single elastic scatt << 576 fIsEverythingWasDone = true; << 577 } else { << 578 // After checking we know that we cannot << 579 // need to make an MSC step << 580 // Indicate that we need to make and MSC << 581 // do it now i.e. if presafety>final_tru << 582 // fIsEverythingWasDone = false which in << 583 // MSC after transportation. << 584 fIsMultipleSacettring = true; << 585 // Init the first-real-step falg: it wil << 586 // non-single scattering step in this vo << 587 fIsFirstRealStep = false; << 588 // If previously the partcile was on bou << 589 // well. When it is not within skin anym << 590 // so we make the first real MSC step wi << 591 if (fIsWasOnBoundary && !fIsInsideSkin) << 592 // reset the 'was on boundary' indicat << 593 fIsWasOnBoundary = false; << 594 fIsFirstRealStep = true; << 595 } << 596 // If this is the first-real msc step (t << 597 // skin) or this is the first step with << 598 // primary): << 599 // - set the initial range that will b << 600 // (only in this volume, because aft << 601 // first-real MSC step we will reset << 602 // - don't let the partcile to cross th << 603 if (firstStep || fIsFirstRealStep || ran << 604 rangeinit = currentRange; << 605 // If geomlimit < geombig than the par << 606 // along its initial direction before << 607 // Otherwise we can be sure that the p << 608 // before reaching the boundary along << 609 // geometrical limit appalied. [Howeve << 610 // first or the first-real MSC step. A << 611 // MSC step the direction will change << 612 // But we will try to end up within sk << 613 // the actual value of geomlimit(See l << 614 // boundary).] << 615 if (geomlimit<geombig) { << 616 // transfrom straight line distance << 617 // length based on the mean values ( << 618 // first-transport mean free path i. << 619 if ((1.-geomlimit/fLambda1)> 0.) { << 620 geomlimit = -fLambda1*G4Log(1.-geo << 621 } << 622 // the 2-different case that could l << 623 if (firstStep) { << 624 tgeom = 2.*geomlimit/facgeom; << 625 } else { << 626 tgeom = geomlimit/facgeom; << 627 } << 628 } else { 460 } else { 629 tgeom = geombig; << 461 presafety = ComputeSafety(sp->GetPosition(),fTheTrueStepLenght); >> 462 geomlimit = presafety; >> 463 } >> 464 >> 465 // Set limit from range factor even in non-optimized mode. >> 466 // Important: At lower energies the energy loss process continuous limit >> 467 // will converge to range. >> 468 // In this case, we will limit the step to 'facrange x range' as long >> 469 // as the range is higher than safety i.e. the particle can leave the >> 470 // current volume. One can completely eliminate this limit by setting >> 471 // 'facrange = 1.' . >> 472 if(currentRange > presafety) >> 473 fTheTrueStepLenght = std::min(facrange*currentRange, fTheTrueStepLenght); >> 474 >> 475 // Compute skin-depth; fLambda0(elastic-mfp) was already set in >> 476 // GetTransportMeanFreePath(...) >> 477 skindepth = skin*fLambda0; >> 478 >> 479 // Limit the true step -length to the first transport mean free path that >> 480 // is the limit of the MSC model. Note: if the true step lenght is about >> 481 // half transport mean free path i.e. t = 0.5 x lambda_1 the corresponding >> 482 // mean angular deflection <cos(\theta)> = exp(-t/lambda_1) -> \theta ~ >> 483 // 0.919 radian (52.6 degree) that is the aplicability limit of any >> 484 // condensed history techniques. The result will be more and more >> 485 // questionable when condensed history techniques are applied for even >> 486 // longer true step lengts. >> 487 // if( (currentKinEnergy > 0.3) || !fgIsOptimizationOn) >> 488 fTheTrueStepLenght = std::min(fTheTrueStepLenght, fLambda1*almostOne); >> 489 >> 490 // Check if we are within skin depth to/from boundary or making a step >> 491 // that is shorter than skindepth distance => try single scattering:: >> 492 // - if stepStatus is fGeomBoundary -> pre-step point is on boundary >> 493 // - in case of initStep pre-step point status is fUndefined: >> 494 // at the moment I always call the navigator CheckNextStep even from >> 495 // the WORLD that will set presafety; if presafety = 0 then we are on >> 496 // the boundary at initStep >> 497 // - if the currentMinimalStep is already shorter than skindepth we do >> 498 // single scattering. NOTICE: it has only efficieny reasons because >> 499 // the angular sampling is fine for any short steps but much faster to >> 500 // try single scattering in case of short steps. >> 501 if( (stepStatus == fGeomBoundary) || (presafety < skindepth) || (fTheTrueStepLenght < skindepth)){ >> 502 //Try single scattering: >> 503 // - sample distance to next single scattering interaction >> 504 // - compare to current minimum length >> 505 // * if ss-length is the shorter: >> 506 // - set the step length to the ss-length >> 507 // - indicate that single scattering needs to be done >> 508 // * else : nothing to do >> 509 G4double sslimit = -1.*fLambda0*G4Log(G4UniformRand()); >> 510 // compare to current minimum step length >> 511 if(sslimit < fTheTrueStepLenght) { >> 512 fTheTrueStepLenght = sslimit; >> 513 fIsSingleScattering = true; >> 514 // zPathLength = tPathLength >> 515 // single scattering needs to be done >> 516 } //else { >> 517 //- tPathLength = tPathLength >> 518 //- zPathLength = tPathLength >> 519 //-> nothing to do >> 520 //} >> 521 >> 522 // short step -> true step length equal to geometrical path length >> 523 fTheZPathLenght = fTheTrueStepLenght; >> 524 //set taht everything is done in step-limit phase >> 525 fIsEverythingWasDone = true; >> 526 } else { >> 527 // Compare the true step length to presafty to see if we can do safe MSC step >> 528 // - if yes, then performe MSC here >> 529 // - if no, postpone MSC sampling after transportation >> 530 if(fTheTrueStepLenght < presafety) { >> 531 // => we can do safe MSC step because for sure we don't reach boundary >> 532 // do multiple scattering: MSC will give the corresponding transport >> 533 // length i.e. fTheZPathLenght (and new direction, displacement) >> 534 fIsMultipleSacettring = true; >> 535 //set taht everything was done in step-limit phase >> 536 fIsEverythingWasDone = true; >> 537 } else { >> 538 // => we cannot be sure at this point what will be the true step length >> 539 // because transportation can hit boundary. The two step limit version >> 540 // will be different but both case MSC will need to be done: >> 541 // before(fUseSafety) OR after(fUseDistanceToBoundary) transportation. >> 542 fIsMultipleSacettring = true; >> 543 // Important that fIsEverythingWasDone remains false here; >> 544 >> 545 // two versions will be different here >> 546 if(geomlimit > presafety) { >> 547 // => It can happen only if fUseDistanceToBoundary stepping is used >> 548 // - limit geomlimit to a geometrical value, that corresponds >> 549 // to the maximum true step length i.e. to lambda1 >> 550 // - convert the limited geomlimit to true length >> 551 // - take minimum of this and the current minimal true step length >> 552 >> 553 // if geom limit is not huge(real distance to boundary) then shorten it by almost skindepth >> 554 // => we try to end up within the skindepth to the boundary and not on the boundary. >> 555 if( geomlimit < geombig ) >> 556 geomlimit -= 0.999*skindepth; >> 557 >> 558 // Set a maximum geometrical limit: a straight line distance that >> 559 // corresponds to the maximal true step length i.e. lambda1 of >> 560 // the MSC model (it is set based on the mean value). >> 561 geomlimit = std::min(geomlimit, fLambda1*onemExpmOne); >> 562 // convert to true-one >> 563 geomlimit = -fLambda1*G4Log(1.-geomlimit/fLambda1); >> 564 fTheTrueStepLenght = std::min(fTheTrueStepLenght,geomlimit); >> 565 } else { >> 566 // => It can happen only if geomlimit is the safety i.e. fUseSafety >> 567 // steppingAlgorithm. >> 568 // - if we are here, then presafety is for sure shorther than lambda1 so >> 569 // we don't need to restrict >> 570 // -limit the true step-length to presafety: for sure we can >> 571 // perform MSC before transportation. >> 572 fTheTrueStepLenght = presafety; // geomlimit = presafty >> 573 fIsEverythingWasDone = true; >> 574 } >> 575 } 630 } 576 } 631 } 577 } 632 // True step length limit from range fac << 633 // range is used that was set at the fir << 634 // in this volume with this particle. << 635 tlimit = facrange*rangeinit; << 636 // Take the minimum of the true step len << 637 // geometrical constraint or range-facto << 638 tlimit = std::min(tlimit,tgeom); << 639 // Step reduction close to boundary: we << 640 // from the boundary ( Notice: in case o << 641 // because geomlimit is the straigth lin << 642 // the currect direction (if geomlimit<g << 643 // change the initial direction. So te p << 644 // before in a different direction. Howe << 645 // path length to this (straight line) l << 646 // transport distance (straight line) wi << 647 // geomlimit-0.999*skindepth after the c << 648 if (geomlimit<geombig) { << 649 tlimit = std::min(tlimit, geomlimit-0. << 650 } << 651 // randomize 1st step or 1st 'normal' st << 652 if (firstStep || fIsFirstRealStep) { << 653 fTheTrueStepLenght = std::min(fTheTrue << 654 } else { << 655 fTheTrueStepLenght = std::min(fTheTrue << 656 } << 657 } << 658 } else if (steppingAlgorithm==fUseSafetyPlus << 659 presafety = ComputeSafety(sp->GetPosition << 660 geomlimit = presafety; << 661 // Set skin depth = skin x elastic_mean_fr << 662 skindepth = skin*fLambda0; << 663 // Check if we can try Single Scattering b << 664 // distance from/to a boundary OR the curr << 665 // shorter than skindepth. NOTICE: the lat << 666 // because the MSC angular sampling is fin << 667 // faster to try single scattering in case << 668 if ((stepStatus==fGeomBoundary) || (presaf << 669 //Try single scattering: << 670 // - sample distance to next single scat << 671 // - compare to current minimum length << 672 // == if sslimit is the shorter: << 673 // - set the step length to ssl << 674 // - indicate that single scatt << 675 // == else : nothing to do << 676 //- in both cases, the step length was v << 677 // true path length are the same << 678 G4double sslimit = -1.*fLambda0*G4Log(G4 << 679 // compare to current minimum step lengt << 680 if (sslimit<fTheTrueStepLenght) { << 681 fTheTrueStepLenght = sslimit; << 682 fIsSingleScattering = true; << 683 } << 684 // short step -> true step length equal << 685 fTheZPathLenght = fTheTrueStepLeng << 686 // Set taht everything is done in step-l << 687 // We will check if we need to perform t << 688 // sampling i.e. if single elastic scatt << 689 fIsEverythingWasDone = true; << 690 } else { << 691 // After checking we know that we cannot << 692 // need to make an MSC step << 693 // Indicate that we need to make and MSC << 694 fIsMultipleSacettring = true; << 695 fIsEverythingWasDone = true; << 696 // limit from range factor << 697 fTheTrueStepLenght = std::min(fTheTru << 698 // never let the particle go further tha << 699 // if we are here we are out of the skin << 700 if (fTheTrueStepLenght>presafety) { << 701 fTheTrueStepLenght = std::min(fTheTrue << 702 } << 703 // make sure that we are still within th << 704 // i.e. true step length is not longer t << 705 // We schould take into account energy l << 706 // step length as well. So let it 0.5 x << 707 fTheTrueStepLenght = std::min(fTheTrueSt << 708 } << 709 } else { 578 } else { >> 579 710 // This is the default stepping algorithm: 580 // This is the default stepping algorithm: the fastest but the least 711 // accurate that corresponds to fUseSafety 581 // accurate that corresponds to fUseSafety in Urban model. Note, that GS 712 // model can handle any short steps so we 582 // model can handle any short steps so we do not need the minimum limits 713 // << 583 if( stepStatus != fGeomBoundary ) { 714 // NO single scattering in case of skin or << 584 presafety = ComputeSafety(sp->GetPosition(),fTheTrueStepLenght); 715 // model will be single or even no scatter << 716 // compared to the elastic mean free path. << 717 // << 718 // indicate that MSC needs to be done (alw << 719 fIsMultipleSacettring = true; << 720 if (stepStatus!=fGeomBoundary) { << 721 presafety = ComputeSafety(sp->GetPositio << 722 } << 723 // Far from boundary-> in optimized mode d << 724 if ((distance<presafety) && (gIsOptimizati << 725 fIsNoDisplace = true; << 726 } else { << 727 // Urban like << 728 if (firstStep || (stepStatus==fGeomBound << 729 rangeinit = currentRange; << 730 fr = facrange; << 731 // We don't use this: we won't converge to the << 732 // decreasing range-factor. << 733 // rangeinit = std::max(rangeinit << 734 // if(fLambda1 > lambdalimit) { << 735 // fr *= (0.75+0.25*fLambda1/la << 736 // } << 737 << 738 } 585 } 739 //step limit << 586 740 tlimit = std::max(fr*rangeinit, facsafet << 587 // Far from boundary-> in optimized mode do not sample dispalcement. 741 // first step randomization << 588 if( (currentRange < presafety) && (fgIsOptimizationOn)) { 742 if (firstStep || stepStatus==fGeomBounda << 589 // fTheTrueStepLenght = std::min(fTheTrueStepLenght, fLambda1*mlogAlmostZero); 743 fTheTrueStepLenght = std::min(fTheTrue << 590 // fTheZPathLenght = fLambda1*(1.-G4Exp(-fTheTrueStepLenght/fLambda1)); >> 591 fIsNoDisplace = true; 744 } else { 592 } else { 745 fTheTrueStepLenght = std::min(fTheTrue << 593 // Urban like >> 594 if(firstStep || (stepStatus == fGeomBoundary)) { >> 595 rangeinit = currentRange; >> 596 fr = facrange; >> 597 rangeinit = std::max(rangeinit, fLambda1); >> 598 if(fLambda1 > lambdalimit) { >> 599 fr *= (0.75+0.25*fLambda1/lambdalimit); >> 600 } >> 601 } >> 602 >> 603 //step limit >> 604 tlimit = std::max(fr*rangeinit, facsafety*presafety); >> 605 >> 606 // first step randomization >> 607 if(firstStep || stepStatus == fGeomBoundary) { >> 608 fTheTrueStepLenght = std::min(fTheTrueStepLenght, Randomizetlimit()); >> 609 } else { >> 610 fTheTrueStepLenght = std::min(fTheTrueStepLenght, tlimit); >> 611 } >> 612 >> 613 // Do not let the true step length to be longer than the one that has a >> 614 // corresponding geometrical length almost one first transport mean free >> 615 // path. It is important for the g->t conversion. >> 616 fTheTrueStepLenght = std::min(fTheTrueStepLenght, fLambda1*mlogAlmostZero); 746 } 617 } 747 } << 618 >> 619 // indicate that MSC needs to be done (always after transportation) >> 620 fIsMultipleSacettring = true; 748 } 621 } 749 // << 622 750 // unset first-step 623 // unset first-step 751 firstStep =false; 624 firstStep =false; >> 625 752 // performe single scattering, multiple scat 626 // performe single scattering, multiple scattering if this later can be done safely here 753 if (fIsEverythingWasDone) { << 627 if(fIsEverythingWasDone){ 754 if (fIsSingleScattering) { << 628 if(fIsSingleScattering){ 755 // sample single scattering 629 // sample single scattering 756 //G4double ekin = 0.5*(currentKinEnerg << 630 G4double cost,sint,cosPhi,sinPhi; 757 G4double lekin = G4Log(currentKinEnergy << 631 SingleScattering(cost, sint); 758 G4double pt2 = currentKinEnergy*(curr << 632 G4double phi = CLHEP::twopi*G4UniformRand(); 759 G4double beta2 = pt2/(pt2+CLHEP::electr << 633 sinPhi = std::sin(phi); 760 G4double cost = fGSTable->SingleScatte << 634 cosPhi = std::cos(phi); 761 // protection << 762 if (cost<-1.) cost = -1.; << 763 if (cost> 1.) cost = 1.; << 764 // compute sint << 765 G4double dum = 1.-cost; << 766 G4double sint = std::sqrt(dum*(2.-dum) << 767 G4double phi = CLHEP::twopi*G4Uniform << 768 G4double sinPhi = std::sin(phi); << 769 G4double cosPhi = std::cos(phi); << 770 fTheNewDirection.set(sint*cosPhi,sint*si 635 fTheNewDirection.set(sint*cosPhi,sint*sinPhi,cost); 771 } else if (fIsMultipleSacettring) { << 636 } else if(fIsMultipleSacettring){ 772 // sample multiple scattering 637 // sample multiple scattering 773 SampleMSC(); // fTheZPathLenght, fTheDis 638 SampleMSC(); // fTheZPathLenght, fTheDisplacementVector and fTheNewDirection will be set 774 } // and if single scattering but it was l 639 } // and if single scattering but it was longer => nothing to do 775 } //else { do nothing here but after transpo 640 } //else { do nothing here but after transportation 776 // << 641 777 return ConvertTrueToGeom(fTheTrueStepLenght, 642 return ConvertTrueToGeom(fTheTrueStepLenght,currentMinimalStep); 778 } 643 } 779 644 780 645 781 G4double G4GoudsmitSaundersonMscModel::Compute << 646 //////////////////////////////////////////////////////////////////////////////// >> 647 G4double G4GoudsmitSaundersonMscModel::ComputeGeomPathLength(G4double) >> 648 { >> 649 // 782 // convert true ->geom 650 // convert true ->geom 783 // It is called from the step limitation Com 651 // It is called from the step limitation ComputeTruePathLengthLimit if 784 // !fIsEverythingWasDone but protect: 652 // !fIsEverythingWasDone but protect: 785 par1 = -1.; << 653 // 786 par2 = par3 = 0.; << 654 par1 = -1. ; >> 655 par2 = par3 = 0. ; >> 656 787 // if fIsEverythingWasDone = TRUE => fTheZP 657 // if fIsEverythingWasDone = TRUE => fTheZPathLenght is already set 788 // so return with the already known value 658 // so return with the already known value 789 // Otherwise: 659 // Otherwise: 790 if (!fIsEverythingWasDone) { << 660 if(!fIsEverythingWasDone) { 791 // this correction needed to run MSC with << 661 // this correction needed to run MSC with eIoni and eBrem inactivated 792 // and makes no harm for a normal run << 662 // and makes no harm for a normal run 793 fTheTrueStepLenght = std::min(fTheTrueStep << 663 fTheTrueStepLenght = std::min(fTheTrueStepLenght,currentRange); 794 // do the true -> geom transformation << 664 795 fTheZPathLenght = fTheTrueStepLenght; << 665 // do the true -> geom transformation 796 // z = t for very small true-path-length << 666 fTheZPathLenght = fTheTrueStepLenght; 797 if (fTheTrueStepLenght<tlimitminfix2) { << 667 798 return fTheZPathLenght; << 668 // z = t for very small true-path-length 799 } << 669 if(fTheTrueStepLenght < tlimitminfix2) return fTheZPathLenght; 800 G4double tau = fTheTrueStepLenght/fLambda1 << 670 801 if (tau<=tausmall) { << 671 G4double tau = fTheTrueStepLenght/fLambda1; 802 fTheZPathLenght = std::min(fTheTrueStepL << 672 803 } else if (fTheTrueStepLenght<currentRang << 673 if (tau <= tausmall) { 804 if (tau<taulim) fTheZPathLenght = fTheTr << 674 fTheZPathLenght = std::min(fTheTrueStepLenght, fLambda1); 805 else fTheZPathLenght = fLambd << 675 } else if (fTheTrueStepLenght < currentRange*dtrl) { 806 } else if (currentKinEnergy<mass || fTheTr << 676 if(tau < taulim) fTheZPathLenght = fTheTrueStepLenght*(1.-0.5*tau) ; 807 par1 = 1./currentRange ; // alpha =1 << 677 else fTheZPathLenght = fLambda1*(1.-G4Exp(-tau)); 808 par2 = 1./(par1*fLambda1) ; // 1/(alpha << 678 } else if(currentKinEnergy < mass || fTheTrueStepLenght == currentRange) { 809 par3 = 1.+par2 ; // 1+1/ << 679 par1 = 1./currentRange ; // alpha =1/range_init for Ekin<mass 810 if (fTheTrueStepLenght<currentRange) { << 680 par2 = 1./(par1*fLambda1) ; // 1/(alphaxlambda01) 811 fTheZPathLenght = 1./(par1*par3) * (1. << 681 par3 = 1.+par2 ; // 1+1/ 812 } else { << 682 if(fTheTrueStepLenght < currentRange) { 813 fTheZPathLenght = 1./(par1*par3); << 683 fTheZPathLenght = 1./(par1*par3) * (1.-std::pow(1.-par1*fTheTrueStepLenght,par3)); 814 } << 684 } else { >> 685 fTheZPathLenght = 1./(par1*par3); >> 686 } >> 687 815 } else { 688 } else { 816 G4double rfin = std::max(currentRange << 689 G4double rfin = std::max(currentRange-fTheTrueStepLenght, 0.01*currentRange); 817 G4double T1 = GetEnergy(particle,rf << 690 G4double T1 = GetEnergy(particle,rfin,currentCouple); 818 G4double lambda1 = GetTransportMeanFreeP 691 G4double lambda1 = GetTransportMeanFreePathOnly(particle,T1); 819 // << 692 820 par1 = (fLambda1-lambda1)/(fLambda1*fThe 693 par1 = (fLambda1-lambda1)/(fLambda1*fTheTrueStepLenght); // alpha 821 par2 = 1./(par1*fLambda1); 694 par2 = 1./(par1*fLambda1); 822 par3 = 1.+par2 ; 695 par3 = 1.+par2 ; 823 G4Pow *g4calc = G4Pow::GetInstance(); << 696 G4Pow *g4pow = G4Pow::GetInstance(); 824 fTheZPathLenght = 1./(par1*par3) * (1.-g << 697 fTheZPathLenght = 1./(par1*par3) * (1.-g4pow->powA(1.-par1*fTheTrueStepLenght,par3)); 825 } 698 } >> 699 >> 700 fTheZPathLenght = std::min(fTheZPathLenght, fLambda1); 826 } 701 } 827 fTheZPathLenght = std::min(fTheZPathLenght, << 828 // << 829 return fTheZPathLenght; << 830 } << 831 702 >> 703 return fTheZPathLenght; >> 704 } 832 705 833 G4double G4GoudsmitSaundersonMscModel::Compute << 706 //////////////////////////////////////////////////////////////////////////////// >> 707 G4double G4GoudsmitSaundersonMscModel::ComputeTrueStepLength(G4double geomStepLength) >> 708 { 834 // init 709 // init 835 fIsEndedUpOnBoundary = false; 710 fIsEndedUpOnBoundary = false; >> 711 836 // step defined other than transportation 712 // step defined other than transportation 837 if (geomStepLength==fTheZPathLenght) { << 713 if(geomStepLength == fTheZPathLenght) { 838 return fTheTrueStepLenght; 714 return fTheTrueStepLenght; 839 } 715 } >> 716 840 // else :: 717 // else :: 841 // - set the flag that transportation was th 718 // - set the flag that transportation was the winer so DoNothin in DOIT !! 842 // - convert geom -> true by using the mean 719 // - convert geom -> true by using the mean value 843 fIsEndedUpOnBoundary = true; // OR LAST STEP 720 fIsEndedUpOnBoundary = true; // OR LAST STEP 844 fTheZPathLenght = geomStepLength; << 721 845 // was a short single scattering step << 722 fTheZPathLenght = geomStepLength; 846 if (fIsEverythingWasDone && !fIsMultipleSace << 723 847 fTheTrueStepLenght = geomStepLength; << 848 return fTheTrueStepLenght; << 849 } << 850 // t = z for very small step 724 // t = z for very small step 851 if (geomStepLength<tlimitminfix2) { << 725 if(geomStepLength < tlimitminfix2) { 852 fTheTrueStepLenght = geomStepLength; 726 fTheTrueStepLenght = geomStepLength; 853 // recalculation 727 // recalculation 854 } else { 728 } else { 855 G4double tlength = geomStepLength; 729 G4double tlength = geomStepLength; 856 if (geomStepLength>fLambda1*tausmall) { << 730 if(geomStepLength > fLambda1*tausmall ) { 857 if (par1< 0.) { << 731 if(par1 < 0.) { 858 tlength = -fLambda1*G4Log(1.-geomStepL 732 tlength = -fLambda1*G4Log(1.-geomStepLength/fLambda1) ; 859 } else { 733 } else { 860 if (par1*par3*geomStepLength<1.) { << 734 if(par1*par3*geomStepLength < 1.) { 861 G4Pow *g4calc = G4Pow::GetInstance() << 735 G4Pow *g4pow = G4Pow::GetInstance(); 862 tlength = (1.-g4calc->powA( 1.-par1* << 736 tlength = (1.-g4pow->powA( 1.-par1*par3*geomStepLength,1./par3))/par1; 863 } else { 737 } else { 864 tlength = currentRange; 738 tlength = currentRange; 865 } 739 } 866 } 740 } 867 if (tlength<geomStepLength || tlength>fT << 741 if(tlength < geomStepLength) { tlength = geomStepLength; } 868 tlength = geomStepLength; << 742 else if(tlength > fTheTrueStepLenght) { tlength = geomStepLength; } 869 } << 870 } 743 } 871 fTheTrueStepLenght = tlength; 744 fTheTrueStepLenght = tlength; 872 } 745 } 873 // << 874 return fTheTrueStepLenght; 746 return fTheTrueStepLenght; 875 } 747 } 876 748 >> 749 //////////////////////////////////////////////////////////////////////////////// 877 G4ThreeVector& 750 G4ThreeVector& 878 G4GoudsmitSaundersonMscModel::SampleScattering << 751 G4GoudsmitSaundersonMscModel::SampleScattering(const G4ThreeVector& oldDirection, 879 if (steppingAlgorithm==fUseDistanceToBoundar << 752 G4double) 880 // single scattering was and scattering ha << 753 { 881 fTheNewDirection.rotateUz(oldDirection); << 754 882 fParticleChange->ProposeMomentumDirection( << 755 883 return fTheDisplacementVector; << 756 if(fIsEndedUpOnBoundary && ( (steppingAlgorithm == fUseSafety) || (steppingAlgorithm == fUseDistanceToBoundary) )){ 884 } else if (steppingAlgorithm==fUseSafetyPlus << 757 // transportation was the winer => do nothing 885 if (fIsEndedUpOnBoundary) { // do nothing << 758 fTheDisplacementVector.set(0.,0.,0.); 886 return fTheDisplacementVector; << 759 return fTheDisplacementVector; 887 } else if (fIsEverythingWasDone) { // evry << 760 } else if(fIsEverythingWasDone) { 888 // check single scattering and see if it << 761 // everything was done in the step limit => rotate and return 889 if (fIsSingleScattering) { << 762 // but do it only something happend in the MSC 890 fTheNewDirection.rotateUz(oldDirection << 763 if(!fIsNoScatteringInMSC) { 891 fParticleChange->ProposeMomentumDirect << 764 fTheNewDirection.rotateUz(oldDirection); 892 return fTheDisplacementVector; << 893 } << 894 // check if multiple scattering happened << 895 if (fIsMultipleSacettring && !fIsNoScatt << 896 fTheNewDirection.rotateUz(oldDirect << 897 fTheDisplacementVector.rotateUz(old << 898 fParticleChange->ProposeMomentumDir << 899 } << 900 // The only thing that could happen if w << 901 // is that single scattering was tried << 902 // So no displacement and no scattering << 903 return fTheDisplacementVector; << 904 } << 905 // << 906 // The only thing that could still happen << 907 // optimization branch: so sample MSC angl << 908 } << 909 //else MSC needs to be done here << 910 SampleMSC(); << 911 if (!fIsNoScatteringInMSC) { << 912 fTheNewDirection.rotateUz(oldDirection); << 913 fParticleChange->ProposeMomentumDirection( << 914 if (!fIsNoDisplace) { << 915 fTheDisplacementVector.rotateUz(oldDirec 765 fTheDisplacementVector.rotateUz(oldDirection); 916 } << 766 fParticleChange->ProposeMomentumDirection(fTheNewDirection); 917 } << 767 } 918 // << 768 return fTheDisplacementVector; 919 return fTheDisplacementVector; << 769 } >> 770 >> 771 //else { >> 772 // MSC needs to be done here: cause we went further than safety but did not hit boundary >> 773 SampleMSC(); >> 774 if(!fIsNoScatteringInMSC) { >> 775 fTheNewDirection.rotateUz(oldDirection); >> 776 fTheDisplacementVector.rotateUz(oldDirection); >> 777 fParticleChange->ProposeMomentumDirection(fTheNewDirection); >> 778 } >> 779 return fTheDisplacementVector; 920 } 780 } 921 781 922 782 923 void G4GoudsmitSaundersonMscModel::SampleMSC() << 783 void G4GoudsmitSaundersonMscModel::SingleScattering(G4double &cost, G4double &sint){ >> 784 G4double rand1 = G4UniformRand(); >> 785 // sampling 1-cos(theta) >> 786 G4double dum0 = 2.0*fScrA*rand1/(1.0 - rand1 + fScrA); >> 787 // add protections >> 788 if(dum0 < 0.0) dum0 = 0.0; >> 789 else if(dum0 > 2.0 ) dum0 = 2.0; >> 790 // compute cos(theta) and sin(theta) >> 791 cost = 1.0 - dum0; >> 792 sint = std::sqrt(dum0*(2.0 - dum0)); >> 793 } >> 794 >> 795 >> 796 >> 797 //////////////////////////////////////////////////////////////////////////////// >> 798 void G4GoudsmitSaundersonMscModel::SampleMSC(){ 924 fIsNoScatteringInMSC = false; 799 fIsNoScatteringInMSC = false; 925 // kinetic energy is assumed to be in Geant4 800 // kinetic energy is assumed to be in Geant4 internal energy unit which is MeV 926 G4double kineticEnergy = currentKinEnergy; 801 G4double kineticEnergy = currentKinEnergy; 927 // << 802 >> 803 /////////////////////////////////////////// 928 // Energy loss correction: 2 version 804 // Energy loss correction: 2 version 929 G4double eloss = 0.0; 805 G4double eloss = 0.0; 930 // if (fTheTrueStepLenght > currentRange*dtrl << 806 if (fTheTrueStepLenght > currentRange*dtrl) { 931 eloss = kineticEnergy - GetEnergy(particle,c << 807 eloss = kineticEnergy - 932 // } else { << 808 GetEnergy(particle,currentRange-fTheTrueStepLenght,currentCouple); 933 // eloss = fTheTrueStepLenght*GetDEDX(parti << 809 } else { 934 // } << 810 eloss = fTheTrueStepLenght*GetDEDX(particle,kineticEnergy,currentCouple); >> 811 } >> 812 935 813 936 G4double tau = 0.;// = kineticEnergy/ele 814 G4double tau = 0.;// = kineticEnergy/electron_mass_c2; // where kinEnergy is the mean kinetic energy 937 G4double tau2 = 0.;// = tau*tau; 815 G4double tau2 = 0.;// = tau*tau; 938 G4double eps0 = 0.;// = eloss/kineticEnerg 816 G4double eps0 = 0.;// = eloss/kineticEnergy0; // energy loss fraction to the begin step energy 939 G4double epsm = 0.;// = eloss/kineticEnerg 817 G4double epsm = 0.;// = eloss/kineticEnergy; // energy loss fraction to the mean step energy 940 818 >> 819 941 // - init. 820 // - init. 942 G4double efEnergy = kineticEnergy; 821 G4double efEnergy = kineticEnergy; 943 G4double efStep = fTheTrueStepLenght; 822 G4double efStep = fTheTrueStepLenght; 944 823 945 G4double kineticEnergy0 = kineticEnergy; << 824 if(fgIsUseAccurate) { // - use accurate energy loss correction 946 if (gIsUseAccurate) { // - use accurate e << 825 G4double kineticEnergy0 = kineticEnergy; 947 kineticEnergy -= 0.5*eloss; // mean ener << 826 kineticEnergy -= 0.5*eloss; // mean energy along the full step 948 // other parameters for energy loss correc << 827 949 tau = kineticEnergy/electron_m << 828 // other parameters for energy loss corrections 950 tau2 = tau*tau; << 829 tau = kineticEnergy/electron_mass_c2; // where kinEnergy is the mean kinetic energy 951 eps0 = eloss/kineticEnergy0; // << 830 tau2 = tau*tau; 952 epsm = eloss/kineticEnergy; // << 831 eps0 = eloss/kineticEnergy0; // energy loss fraction to the begin step energy 953 << 832 epsm = eloss/kineticEnergy; // energy loss fraction to the mean step energy 954 efEnergy = kineticEnergy * (1.-epsm << 833 // efEnergy = kineticEnergy0 * (1.0 - epsm*(6.0+10.0*tau+5.0*tau2)/(24.0*tau2+72.0*tau+48.0)); 955 G4double dum = 0.166666*(4.+tau*(6.+tau << 834 efEnergy = kineticEnergy0 * ( 1.0 - 0.5*eps0 - eps0*eps0/(12.0*(2.0-eps0))* ( (5.*tau2 +10.*tau +6.)/( (tau+1.)*(tau+2.) ) ) ); 956 efStep = fTheTrueStepLenght*(1.-d << 835 >> 836 // the real efStep will be s*(1-efStep) >> 837 // G4double efStep = 0.166666*epsilon*epsilonp*(tau2*tau2+4.0*tau2*tau+7.0*tau2+6.0*tau+4.0)/((tau2+3.0*tau+2)2); >> 838 >> 839 // efStep = 0.166666*eps0*epsm*(4.0+tau*(6.0+tau*(7.0+tau*(4.0+tau)))); >> 840 // efStep /= ((tau2+3.0*tau+2)*(tau2+3.0*tau+2)); >> 841 // efStep = fTheTrueStepLenght*(1.0-efStep); >> 842 efStep = (1.-eps0*eps0/(3.*(2.-eps0))* (tau2*tau2 + 4.*tau2*tau + 7.*tau2 +6.*tau +4.)/( ((tau+1.)*(tau+2.))*((tau+1.)*(tau+2.)) ) ); >> 843 efStep *=fTheTrueStepLenght; 957 } else { // - t 844 } else { // - take only mean energy 958 kineticEnergy -= 0.5*eloss; // mean ener << 845 kineticEnergy -= 0.5*eloss; // mean energy along the full step 959 efEnergy = kineticEnergy; << 846 efEnergy = kineticEnergy; 960 G4double factor = 1./(1.+0.9784671*kinetic << 847 efStep = fTheTrueStepLenght; 961 eps0 = eloss/kineticEnergy0; << 962 epsm = eps0/(1.-0.5*eps0); << 963 G4double temp = 0.3*(1 -factor*(1.-0.333 << 964 efStep = fTheTrueStepLenght*(1.+t << 965 } 848 } 966 // << 849 ///////////////////////////////////////////////////////////////////////// 967 // compute elastic mfp, first transport mfp, << 850 968 // if it was requested by the user) << 851 969 fLambda1 = GetTransportMeanFreePath(particle << 852 /////////////////////////////////////////// 970 // s/lambda_el << 853 // Compute elastic mfp, first transport mfp, screening parameter, and G1 >> 854 fLambda1 = GetTransportMeanFreePath(particle,efEnergy); >> 855 971 G4double lambdan=0.; 856 G4double lambdan=0.; 972 if (fLambda0>0.0) { << 857 973 lambdan=efStep/fLambda0; << 858 if(fLambda0>0.0) { lambdan=efStep/fLambda0; } 974 } << 859 if(lambdan<=1.0e-12) { 975 if (lambdan<=1.0e-12) { << 860 if(fIsEverythingWasDone) 976 if (fIsEverythingWasDone) { << 977 fTheZPathLenght = fTheTrueStepLenght; 861 fTheZPathLenght = fTheTrueStepLenght; 978 } << 979 fIsNoScatteringInMSC = true; 862 fIsNoScatteringInMSC = true; 980 return; 863 return; 981 } 864 } 982 // first moment: 2.* lambdan *scrA*((1.+scrA << 865 983 G4double Qn1 = lambdan *fG1; << 866 G4double Qn1 = lambdan *fG1;//2.* lambdan *scrA*((1.+scrA)*log(1.+1./scrA)-1.); 984 // sample scattering angles << 867 985 // new direction, relative to the orriginal << 868 ///////////////////////////////////////////////////////////////////////////// 986 G4double cosTheta1 = 1.0, sinTheta1 = 0.0, c << 869 // Sample scattering angles 987 G4double cosPhi1 = 1.0, sinPhi1 = 0.0, c << 870 // new direction, relative to the orriginal one is in {us,vs,ws} 988 G4double uss = 0.0, vss = 0.0, w << 871 G4double cosTheta1 =1.0,sinTheta1 =0.0, cosTheta2 =1.0, sinTheta2 =0.0; 989 G4double x_coord = 0.0, y_coord = 0.0, z << 872 G4double cosPhi1=1.0,sinPhi1=0.0, cosPhi2 =1.0, sinPhi2 =0.0; 990 G4double u2 = 0.0, v2 = 0.0; << 873 G4double us=0.0,vs=0.0,ws=1.0,x_coord=0.0,y_coord=0.0,z_coord=1.0; >> 874 G4double u2=0.0,v2=0.0; >> 875 991 // if we are above the upper grid limit with 876 // if we are above the upper grid limit with lambdaxG1=true-length/first-trans-mfp 992 // => izotropic distribution: lambG1_max =7. << 877 // => izotropic distribution: lambG1_max =7.992 993 if (0.5*Qn1 > 7.0){ << 878 if(0.5*Qn1 > 7.99){ 994 cosTheta1 = 1.-2.*G4UniformRand(); << 879 cosTheta1 = 1.-2.*G4UniformRand(); 995 sinTheta1 = std::sqrt((1.-cosTheta1)*(1.+c << 880 sinTheta1 = std::sqrt((1.-cosTheta1)*(1.+cosTheta1)); 996 cosTheta2 = 1.-2.*G4UniformRand(); << 881 G4double phi1 = CLHEP::twopi*G4UniformRand(); 997 sinTheta2 = std::sqrt((1.-cosTheta2)*(1.+c << 882 sinPhi1 = std::sin(phi1); >> 883 cosPhi1 = std::cos(phi1); >> 884 us = sinTheta1*cosPhi1; >> 885 vs = sinTheta1*sinPhi1; >> 886 ws = cosTheta1; 998 } else { 887 } else { 999 // sample 2 scattering cost1, sint1, cost 888 // sample 2 scattering cost1, sint1, cost2 and sint2 for half path 1000 G4double lekin = G4Log(efEnergy); << 889 fgGSTable->Sampling(0.5*lambdan, 0.5*Qn1, fScrA, cosTheta1, sinTheta1); 1001 G4double pt2 = efEnergy*(efEnergy+2.0 << 890 fgGSTable->Sampling(0.5*lambdan, 0.5*Qn1, fScrA, cosTheta2, sinTheta2); 1002 G4double beta2 = pt2/(pt2+CLHEP::electr << 891 if(cosTheta1 + cosTheta2 == 2.) { // no scattering happened 1003 // backup GS angular dtr pointer (kineti << 892 if(fIsEverythingWasDone) 1004 // if the first was an msc sampling (the << 1005 G4GoudsmitSaundersonTable::GSMSCAngularD << 1006 G4int mcEkinIdx = -1; << 1007 G4int mcDeltIdx = -1; << 1008 G4double transfPar = 0.; << 1009 G4bool isMsc = fGSTable->Sampling(0.5*la << 1010 curren << 1011 true); << 1012 fGSTable->Sampling(0.5*lambdan, 0.5*Qn1, << 1013 currentMaterialIndex, << 1014 if (cosTheta1+cosTheta2==2.) { // no sca << 1015 if (fIsEverythingWasDone) << 1016 fTheZPathLenght = fTheTrueStepLeng 893 fTheZPathLenght = fTheTrueStepLenght; 1017 fIsNoScatteringInMSC = true; 894 fIsNoScatteringInMSC = true; 1018 return; 895 return; 1019 } 896 } >> 897 >> 898 // sample 2 azimuthal angles >> 899 G4double phi1 = CLHEP::twopi*G4UniformRand(); >> 900 sinPhi1 = std::sin(phi1); >> 901 cosPhi1 = std::cos(phi1); >> 902 G4double phi2 = CLHEP::twopi*G4UniformRand(); >> 903 sinPhi2 = std::sin(phi2); >> 904 cosPhi2 = std::cos(phi2); >> 905 >> 906 // compute final direction realtive to z-dir >> 907 u2 = sinTheta2*cosPhi2; >> 908 v2 = sinTheta2*sinPhi2; >> 909 G4double u2p = cosTheta1*u2 + sinTheta1*cosTheta2; >> 910 us = u2p*cosPhi1 - v2*sinPhi1; >> 911 vs = u2p*sinPhi1 + v2*cosPhi1; >> 912 ws = cosTheta1*cosTheta2 - sinTheta1*u2; 1020 } 913 } 1021 // sample 2 azimuthal angles << 1022 G4double phi1 = CLHEP::twopi*G4UniformRand( << 1023 sinPhi1 = std::sin(phi1); << 1024 cosPhi1 = std::cos(phi1); << 1025 G4double phi2 = CLHEP::twopi*G4UniformRand( << 1026 sinPhi2 = std::sin(phi2); << 1027 cosPhi2 = std::cos(phi2); << 1028 << 1029 // compute final direction realtive to z-di << 1030 u2 = sinTheta2*cosPhi2; << 1031 v2 = sinTheta2*sinPhi2; << 1032 G4double u2p = cosTheta1*u2 + sinTheta1*cos << 1033 uss = u2p*cosPhi1 - v2*sinPhi1; << 1034 vss = u2p*sinPhi1 + v2*cosPhi1; << 1035 wss = cosTheta1*cosTheta2 - sinTheta1*u2; << 1036 914 1037 // set new direction (is scattering frame) << 915 //////////////////////////////////////////////////////////////////// 1038 fTheNewDirection.set(uss,vss,wss); << 916 fTheNewDirection.set(us,vs,ws); 1039 917 1040 // set the fTheZPathLenght if we don't samp 918 // set the fTheZPathLenght if we don't sample displacement and 1041 // we should do everything at the step-limi 919 // we should do everything at the step-limit-phase before we return 1042 if(fIsNoDisplace && fIsEverythingWasDone) 920 if(fIsNoDisplace && fIsEverythingWasDone) 1043 fTheZPathLenght = fTheTrueStepLenght; 921 fTheZPathLenght = fTheTrueStepLenght; 1044 922 1045 // in optimized-mode if the current-safety 923 // in optimized-mode if the current-safety > current-range we do not use dispalcement 1046 if(fIsNoDisplace) 924 if(fIsNoDisplace) 1047 return; 925 return; 1048 926 1049 /////////////////////////////////////////// 927 ////////////////////////////////////////////////////////////////////// 1050 // Compute final position 928 // Compute final position 1051 Qn1 *= fMCtoQ1; << 929 if(fgIsUseAccurate) { 1052 if (gIsUseAccurate) { << 930 // correction parameters 1053 // correction parameter << 931 1054 G4double par =1.; << 932 G4double par =1.; 1055 if(Qn1<0.7) par = 1.; << 933 if(Qn1<1.0) par = 1.; 1056 else if (Qn1<7.0) par = -0.031376*Qn1+1. << 934 else if (Qn1<7.8) par = -0.031376*Qn1+1.01356; 1057 else par = 0.79; << 935 else par = 0.76; >> 936 >> 937 // >> 938 // Compute elastic mfp, first transport mfp, screening parameter, and G1 >> 939 // for the initial energy >> 940 fLambda1 = GetTransportMeanFreePath(particle,currentKinEnergy); 1058 941 1059 // Moments with energy loss correction 942 // Moments with energy loss correction 1060 // --first the uncorrected (for energy l 943 // --first the uncorrected (for energy loss) values of gamma, eta, a1=a2=0.5*(1-eta), delta 1061 // gamma = G_2/G_1 based on G2 computed 944 // gamma = G_2/G_1 based on G2 computed from A by using the Wentzel DCS form of G2 1062 G4double loga = G4Log(1.0+1.0/fScrA); 945 G4double loga = G4Log(1.0+1.0/fScrA); 1063 G4double gamma = 6.0*fScrA*(1.0 + fScrA 946 G4double gamma = 6.0*fScrA*(1.0 + fScrA)*(loga*(1.0 + 2.0*fScrA) - 2.0)/fG1; 1064 gamma *= fMCtoG2PerG1; << 1065 // sample eta from p(eta)=2*eta i.e. P(e 947 // sample eta from p(eta)=2*eta i.e. P(eta) = eta_square ;-> P(eta) = rand --> eta = sqrt(rand) 1066 G4double eta = std::sqrt(G4UniformRan << 948 G4double rand1 = G4UniformRand(); >> 949 G4double eta = std::sqrt(rand1); 1067 G4double eta1 = 0.5*(1 - eta); // use 950 G4double eta1 = 0.5*(1 - eta); // used more than once 1068 // 0.5 +sqrt(6)/6 = 0.9082483; 951 // 0.5 +sqrt(6)/6 = 0.9082483; 1069 // 1/(4*sqrt(6)) = 0.1020621; 952 // 1/(4*sqrt(6)) = 0.1020621; 1070 // (4-sqrt(6)/(24*sqrt(6))) = 0.02637471 953 // (4-sqrt(6)/(24*sqrt(6))) = 0.026374715 1071 // delta = 0.9082483-(0.1020621-0.026374 954 // delta = 0.9082483-(0.1020621-0.0263747*gamma)*Qn1 without energy loss cor. >> 955 Qn1=fTheTrueStepLenght/fLambda0*fG1; // without energy loss 1072 G4double delta = 0.9082483-(0.1020621-0 956 G4double delta = 0.9082483-(0.1020621-0.0263747*gamma)*Qn1; 1073 957 1074 // compute alpha1 and alpha2 for energy 958 // compute alpha1 and alpha2 for energy loss correction 1075 G4double temp1 = 2.0 + tau; 959 G4double temp1 = 2.0 + tau; 1076 G4double temp = (2.0+tau*temp1)/((tau+1 960 G4double temp = (2.0+tau*temp1)/((tau+1.0)*temp1); 1077 //Take logarithmic dependence 961 //Take logarithmic dependence 1078 temp = temp - (tau+1.0)/((tau+2.0)*(loga 962 temp = temp - (tau+1.0)/((tau+2.0)*(loga*(1.0+fScrA)-1.0)); 1079 temp = temp * epsm; 963 temp = temp * epsm; 1080 temp1 = 1.0 - temp; 964 temp1 = 1.0 - temp; 1081 delta = delta + 0.40824829*(eps0*(tau+1. 965 delta = delta + 0.40824829*(eps0*(tau+1.0)/((tau+2.0)* 1082 (loga*(1.0+fScrA)-1.0)*(loga*(1. 966 (loga*(1.0+fScrA)-1.0)*(loga*(1.0+2.0*fScrA)-2.0)) - 0.25*temp*temp); 1083 G4double b = eta*delta; 967 G4double b = eta*delta; 1084 G4double c = eta*(1.0-delta); 968 G4double c = eta*(1.0-delta); 1085 969 1086 //Calculate transport direction cosines: 970 //Calculate transport direction cosines: 1087 // ut,vt,wt is the final position divide 971 // ut,vt,wt is the final position divided by the true step length 1088 G4double w1v2 = cosTheta1*v2; 972 G4double w1v2 = cosTheta1*v2; 1089 G4double ut = b*sinTheta1*cosPhi1 + c* << 973 G4double ut = b*sinTheta1*cosPhi1 + c*(cosPhi1*u2 - sinPhi1*w1v2) + eta1*us*temp1; 1090 G4double vt = b*sinTheta1*sinPhi1 + c* << 974 G4double vt = b*sinTheta1*sinPhi1 + c*(sinPhi1*u2 + cosPhi1*w1v2) + eta1*vs*temp1; 1091 G4double wt = eta1*(1+temp) + b* << 975 G4double wt = eta1*(1+temp) + b*cosTheta1 + c*cosTheta2 + eta1*ws*temp1; 1092 976 1093 // long step correction 977 // long step correction 1094 ut *=par; 978 ut *=par; 1095 vt *=par; 979 vt *=par; 1096 wt *=par; 980 wt *=par; 1097 981 1098 // final position relative to the pre-st 982 // final position relative to the pre-step point in the scattering frame 1099 // ut = x_f/s so needs to multiply by s 983 // ut = x_f/s so needs to multiply by s 1100 x_coord = ut*fTheTrueStepLenght; 984 x_coord = ut*fTheTrueStepLenght; 1101 y_coord = vt*fTheTrueStepLenght; 985 y_coord = vt*fTheTrueStepLenght; 1102 z_coord = wt*fTheTrueStepLenght; 986 z_coord = wt*fTheTrueStepLenght; 1103 987 1104 if(fIsEverythingWasDone){ 988 if(fIsEverythingWasDone){ 1105 // We sample in the step limit so set 989 // We sample in the step limit so set fTheZPathLenght = transportDistance 1106 // and lateral displacement (x_coord,y 990 // and lateral displacement (x_coord,y_coord,z_coord-transportDistance) 1107 //Calculate transport distance 991 //Calculate transport distance 1108 G4double transportDistance = std::sqr 992 G4double transportDistance = std::sqrt(x_coord*x_coord+y_coord*y_coord+z_coord*z_coord); 1109 // protection 993 // protection 1110 if(transportDistance>fTheTrueStepLengh 994 if(transportDistance>fTheTrueStepLenght) 1111 transportDistance = fTheTrueStepLen 995 transportDistance = fTheTrueStepLenght; 1112 fTheZPathLenght = transportDistance; 996 fTheZPathLenght = transportDistance; 1113 } 997 } 1114 // else:: we sample in the DoIt so 998 // else:: we sample in the DoIt so 1115 // the fTheZPathLenght was already 999 // the fTheZPathLenght was already set and was taken as transport along zet 1116 fTheDisplacementVector.set(x_coord,y_coo 1000 fTheDisplacementVector.set(x_coord,y_coord,z_coord-fTheZPathLenght); 1117 } else { 1001 } else { 1118 // compute zz = <z>/tPathLength 1002 // compute zz = <z>/tPathLength 1119 // s -> true-path-length 1003 // s -> true-path-length 1120 // z -> geom-path-length:: when PRESTA i 1004 // z -> geom-path-length:: when PRESTA is used z =(def.) <z> 1121 // r -> lateral displacement = s/2 sin(t 1005 // r -> lateral displacement = s/2 sin(theta) => x_f = r cos(phi); y_f = r sin(phi) 1122 G4double zz = 0.0; 1006 G4double zz = 0.0; 1123 if(fIsEverythingWasDone){ 1007 if(fIsEverythingWasDone){ 1124 // We sample in the step limit so set 1008 // We sample in the step limit so set fTheZPathLenght = transportDistance 1125 // and lateral displacement (x_coord, 1009 // and lateral displacement (x_coord,y_coord,z_coord-transportDistance) 1126 if(Qn1<0.1) { // use 3-order Taylor a 1010 if(Qn1<0.1) { // use 3-order Taylor approximation of (1-exp(-x))/x around x=0 1127 zz = 1.0 - Qn1*(0.5 - Qn1*(0.166666 1011 zz = 1.0 - Qn1*(0.5 - Qn1*(0.166666667 - 0.041666667*Qn1)); // 1/6 =0.166..7 ; 1/24=0.041.. 1128 } else { 1012 } else { 1129 zz = (1.-G4Exp(-Qn1))/Qn1; 1013 zz = (1.-G4Exp(-Qn1))/Qn1; 1130 } 1014 } 1131 } else { 1015 } else { 1132 // we sample in the DoIt so 1016 // we sample in the DoIt so 1133 // the fTheZPathLenght was already se 1017 // the fTheZPathLenght was already set and was taken as transport along zet 1134 zz = fTheZPathLenght/fTheTrueStepLeng 1018 zz = fTheZPathLenght/fTheTrueStepLenght; 1135 } 1019 } 1136 1020 1137 G4double rr = (1.-zz*zz)/(1.-wss*wss); / << 1021 G4double rr = (1.-zz*zz)/(1.-ws*ws); // s^2 >= <z>^2+r^2 :: where r^2 = s^2/4 sin^2(theta) 1138 if(rr >= 0.25) rr = 0.25; // 1022 if(rr >= 0.25) rr = 0.25; // (1-<z>^2/s^2)/sin^2(theta) >= r^2/(s^2 sin^2(theta)) = 1/4 must hold 1139 G4double rperp = fTheTrueStepLenght*std: 1023 G4double rperp = fTheTrueStepLenght*std::sqrt(rr); // this is r/sint 1140 x_coord = rperp*uss; << 1024 x_coord = rperp*us; 1141 y_coord = rperp*vss; << 1025 y_coord = rperp*vs; 1142 z_coord = zz*fTheTrueStepLenght; 1026 z_coord = zz*fTheTrueStepLenght; 1143 1027 1144 if(fIsEverythingWasDone){ 1028 if(fIsEverythingWasDone){ 1145 G4double transportDistance = std::sqrt 1029 G4double transportDistance = std::sqrt(x_coord*x_coord + y_coord*y_coord + z_coord*z_coord); 1146 fTheZPathLenght = transportDistance; 1030 fTheZPathLenght = transportDistance; 1147 } 1031 } 1148 1032 1149 fTheDisplacementVector.set(x_coord,y_coo 1033 fTheDisplacementVector.set(x_coord,y_coord,z_coord- fTheZPathLenght); 1150 } 1034 } 1151 } 1035 } 1152 1036