Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4DeltaAngle.cc 68380 2013-03-22 18:39:29Z vnivanch $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4DeltaAngle 33 // File name: G4DeltaAngle 33 // 34 // 34 // Author: Vladimir Ivantcheko 35 // Author: Vladimir Ivantcheko 35 // 36 // 36 // Creation date: 23 August 2013 37 // Creation date: 23 August 2013 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // Class Description: 41 // Class Description: 41 // 42 // 42 // Delta-electron Angular Distribution Generat 43 // Delta-electron Angular Distribution Generation 43 // 44 // 44 // Class Description: End 45 // Class Description: End 45 // 46 // 46 // ------------------------------------------- 47 // ------------------------------------------------------------------- 47 // 48 // 48 49 49 #include "G4DeltaAngle.hh" 50 #include "G4DeltaAngle.hh" 50 #include "G4PhysicalConstants.hh" 51 #include "G4PhysicalConstants.hh" 51 #include "Randomize.hh" 52 #include "Randomize.hh" 52 #include "G4ParticleDefinition.hh" 53 #include "G4ParticleDefinition.hh" 53 #include "G4Electron.hh" 54 #include "G4Electron.hh" 54 #include "G4AtomicShells.hh" 55 #include "G4AtomicShells.hh" 55 #include "G4SystemOfUnits.hh" << 56 #include "G4Log.hh" 56 #include "G4Log.hh" 57 57 58 using namespace std; 58 using namespace std; 59 59 60 G4DeltaAngle::G4DeltaAngle(const G4String&) 60 G4DeltaAngle::G4DeltaAngle(const G4String&) 61 : G4VEmAngularDistribution("deltaVI") 61 : G4VEmAngularDistribution("deltaVI") 62 { 62 { 63 fElectron = G4Electron::Electron(); 63 fElectron = G4Electron::Electron(); 64 nprob = 26; 64 nprob = 26; 65 fShellIdx = -1; << 66 prob.resize(nprob,0.0); 65 prob.resize(nprob,0.0); 67 } 66 } 68 67 69 G4DeltaAngle::~G4DeltaAngle() = default; << 68 G4DeltaAngle::~G4DeltaAngle() 70 << 69 {} 71 G4ThreeVector& << 72 G4DeltaAngle::SampleDirectionForShell(const G4 << 73 G4double kinEner << 74 const G4Material << 75 { << 76 fShellIdx = idx; << 77 return SampleDirection(dp, kinEnergyFinal,Z, << 78 } << 79 70 80 G4ThreeVector& 71 G4ThreeVector& 81 G4DeltaAngle::SampleDirection(const G4DynamicP 72 G4DeltaAngle::SampleDirection(const G4DynamicParticle* dp, 82 G4double kinEner << 73 G4double kinEnergyFinal, G4int Z, 83 const G4Material << 74 const G4Material*) 84 { 75 { 85 G4int nShells = G4AtomicShells::GetNumberOfS 76 G4int nShells = G4AtomicShells::GetNumberOfShells(Z); 86 G4int idx = fShellIdx; << 77 if(nShells> nprob) { 87 << 78 nprob = nShells; 88 // if idx is not properly defined sample she << 79 prob.resize(nprob,0.0); 89 if(idx < 0 || idx >= nShells) { << 80 } 90 if(nShells> nprob) { << 81 G4int idx; 91 nprob = nShells; << 82 G4double sum = 0.0; 92 prob.resize(nprob,0.0); << 83 for(idx=0; idx<nShells; ++idx) { 93 } << 84 sum += G4AtomicShells::GetNumberOfElectrons(Z, idx) 94 G4double sum = 0.0; << 85 /G4AtomicShells::GetBindingEnergy(Z, idx); 95 for(idx=0; idx<nShells; ++idx) { << 86 prob[idx] = sum; 96 sum += G4AtomicShells::GetNumberOfElectr << 87 } 97 /G4AtomicShells::GetBindingEnergy(Z, i << 88 sum *= G4UniformRand(); 98 prob[idx] = sum; << 89 for(idx=0; idx<nShells; ++idx) { 99 } << 90 if(sum <= prob[idx]) { break; } 100 sum *= G4UniformRand(); << 101 for(idx=0; idx<nShells; ++idx) { << 102 if(sum <= prob[idx]) { break; } << 103 } << 104 } 91 } 105 G4double bindingEnergy = G4AtomicShells::Get 92 G4double bindingEnergy = G4AtomicShells::GetBindingEnergy(Z, idx); 106 G4double cost; << 93 G4double mass = dp->GetParticleDefinition()->GetPDGMass(); 107 /* << 94 108 G4cout << "E(keV)= " << kinEnergyFinal/keV << 95 G4ThreeVector bst(0.0,0.0,0.0); 109 << " Ebind(keV)= " << bindingEnergy << 96 G4double cost, en, mom; 110 << " idx= " << idx << " nShells= " << << 97 111 */ << 112 G4int n = 0; << 113 G4bool isOK = false; << 114 static const G4int nmax = 100; << 115 do { 98 do { 116 ++n; << 99 117 // the atomic electron 100 // the atomic electron 118 G4double x = -G4Log(G4UniformRand()); 101 G4double x = -G4Log(G4UniformRand()); 119 G4double eKinEnergy = bindingEnergy*x; 102 G4double eKinEnergy = bindingEnergy*x; 120 G4double ePotEnergy = bindingEnergy*(1.0 + 103 G4double ePotEnergy = bindingEnergy*(1.0 + x); 121 G4double e = kinEnergyFinal + ePotEnergy + 104 G4double e = kinEnergyFinal + ePotEnergy + electron_mass_c2; 122 G4double p = sqrt((e + electron_mass_c2)*( << 123 105 124 G4double totEnergy = dp->GetTotalEnergy(); 106 G4double totEnergy = dp->GetTotalEnergy(); 125 G4double totMomentum = dp->GetTotalMomentu 107 G4double totMomentum = dp->GetTotalMomentum(); 126 if(dp->GetParticleDefinition() == fElectro 108 if(dp->GetParticleDefinition() == fElectron) { 127 totEnergy += ePotEnergy; 109 totEnergy += ePotEnergy; 128 totMomentum = sqrt((totEnergy + electron 110 totMomentum = sqrt((totEnergy + electron_mass_c2) 129 *(totEnergy - electro << 111 *(totEnergy - electron_mass_c2)); 130 } 112 } 131 113 132 G4double eTotEnergy = eKinEnergy + electro << 114 G4double eTotMomentum = sqrt(eKinEnergy*(eKinEnergy + 2*electron_mass_c2)); 133 G4double eTotMomentum = sqrt(eKinEnergy*(e << 115 G4double phi = G4UniformRand()*twopi; 134 G4double costet = 2*G4UniformRand() - 1; 116 G4double costet = 2*G4UniformRand() - 1; 135 G4double sintet = sqrt((1 - costet)*(1 + c 117 G4double sintet = sqrt((1 - costet)*(1 + costet)); >> 118 >> 119 G4LorentzVector lv0(eTotMomentum*sintet*cos(phi), >> 120 eTotMomentum*sintet*sin(phi), >> 121 eTotMomentum*costet + totMomentum, >> 122 eKinEnergy + electron_mass_c2 + totEnergy); >> 123 bst = lv0.boostVector(); >> 124 >> 125 G4double m0 = lv0.mag(); >> 126 G4double bet = lv0.beta(); >> 127 G4double gam = lv0.gamma(); >> 128 >> 129 en = 0.5*(m0*m0 - mass*mass + electron_mass_c2*electron_mass_c2)/m0; >> 130 mom = sqrt((en + electron_mass_c2)*(en - electron_mass_c2)); >> 131 >> 132 cost= (e/gam - en)/(mom*bet); >> 133 >> 134 //G4cout << "e= " << e << " gam= " << gam << " en= " << en >> 135 // << " mom= " << mom << " beta= " << bet << " cost= " << cost >> 136 // << G4endl; 136 137 137 cost = 1.0; << 138 } while(std::fabs(cost) > 1.0); 138 if(n >= nmax) { << 139 /* << 140 G4ExceptionDescription ed; << 141 ed << "### G4DeltaAngle Warning: " << n << 142 << " iterations - stop the loop with << 143 << " for " << dp->GetDefinition()->Ge << 144 << " Ekin(MeV)= " << dp->GetKineticEn << 145 << " Efinal(MeV)= " << kinEnergyFinal << 146 << " Ebinding(MeV)= " << bindingEnerg << 147 G4Exception("G4DeltaAngle::SampleDirecti << 148 JustWarning, ed,""); << 149 */ << 150 if(0.0 == bindingEnergy) { isOK = true; << 151 bindingEnergy = 0.0; << 152 } << 153 << 154 G4double x0 = p*(totMomentum + eTotMomentu << 155 /* << 156 G4cout << " x0= " << x0 << " p= " << p << 157 << " ptot= " << totMomentum << " p << 158 << " e= " << e << " totMom= " << t << 159 << G4endl; << 160 */ << 161 if(x0 > 0.0) { << 162 G4double x1 = p*eTotMomentum*sintet; << 163 G4double x2 = totEnergy*(eTotEnergy - e) << 164 - totMomentum*eTotMomentum*costet + el << 165 G4double y = -x2/x0; << 166 if(std::abs(y) <= 1.0) { << 167 cost = -(x2 + x1*sqrt(1. - y*y))/x0; << 168 if(std::abs(cost) <= 1.0) { isOK = tru << 169 else { cost = 1.0; } << 170 } << 171 << 172 /* << 173 G4cout << " Ekin(MeV)= " << dp->GetKinet << 174 << " e1(keV)= " << eKinEnergy/ke << 175 << " e2(keV)= " << (e - electron_ << 176 << " 1-cost= " << 1-cost << 177 << " x0= " << x0 << " x1= " << x1 << 178 << G4endl; << 179 */ << 180 } << 181 << 182 // Loop checking, 03-Aug-2015, Vladimir Iv << 183 } while(!isOK); << 184 139 185 G4double sint = sqrt((1 - cost)*(1 + cost)); 140 G4double sint = sqrt((1 - cost)*(1 + cost)); 186 G4double phi = twopi*G4UniformRand(); 141 G4double phi = twopi*G4UniformRand(); 187 142 188 fLocalDirection.set(sint*cos(phi), sint*sin( << 143 G4LorentzVector lv1(sint*std::cos(phi)*mom, sint*std::sin(phi)*mom, >> 144 mom*cost, en); >> 145 lv1.boost(bst); >> 146 >> 147 fLocalDirection.set(lv1.x(), lv1.y(), lv1.z()); >> 148 fLocalDirection = fLocalDirection.unit(); 189 fLocalDirection.rotateUz(dp->GetMomentumDire 149 fLocalDirection.rotateUz(dp->GetMomentumDirection()); 190 150 191 return fLocalDirection; 151 return fLocalDirection; 192 } 152 } >> 153 >> 154 void G4DeltaAngle::PrintGeneratorInformation() const >> 155 {} 193 156