Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4BetheHeitlerModel 33 // File name: G4BetheHeitlerModel 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Michel Maire code 35 // 36 // 36 // Creation date: 15.03.2005 37 // Creation date: 15.03.2005 37 // 38 // 38 // Modifications by Vladimir Ivanchenko, Miche << 39 // Modifications: >> 40 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko) >> 41 // 24-06-05 Increase number of bins to 200 (V.Ivantchenko) >> 42 // 16-11-05 replace shootBit() by G4UniformRand() mma >> 43 // 04-12-05 SetProposedKineticEnergy(0.) for the killed photon (mma) >> 44 // 20-02-07 SelectRandomElement is called for any initial gamma energy >> 45 // in order to have selected element for polarized model (VI) >> 46 // 25-10-10 Removed unused table, added element selector (VI) 39 // 47 // 40 // Class Description: 48 // Class Description: 41 // 49 // 42 // ------------------------------------------- 50 // ------------------------------------------------------------------- 43 // 51 // >> 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 54 45 #include "G4BetheHeitlerModel.hh" 55 #include "G4BetheHeitlerModel.hh" 46 #include "G4PhysicalConstants.hh" 56 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 57 #include "G4SystemOfUnits.hh" 48 #include "G4Electron.hh" 58 #include "G4Electron.hh" 49 #include "G4Positron.hh" 59 #include "G4Positron.hh" 50 #include "G4Gamma.hh" 60 #include "G4Gamma.hh" 51 #include "Randomize.hh" 61 #include "Randomize.hh" 52 #include "G4ParticleChangeForGamma.hh" 62 #include "G4ParticleChangeForGamma.hh" 53 #include "G4Pow.hh" << 54 #include "G4Exp.hh" << 55 #include "G4ModifiedTsai.hh" << 56 #include "G4EmParameters.hh" << 57 #include "G4EmElementXS.hh" << 58 #include "G4AutoLock.hh" << 59 63 60 const G4int G4BetheHeitlerModel::gMaxZet = 120 << 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 std::vector<G4BetheHeitlerModel::ElementData*> << 62 65 63 namespace << 66 using namespace std; 64 { << 65 G4Mutex theBetheHMutex = G4MUTEX_INITIALIZER << 66 } << 67 67 68 G4BetheHeitlerModel::G4BetheHeitlerModel(const << 68 G4BetheHeitlerModel::G4BetheHeitlerModel(const G4ParticleDefinition*, 69 const << 69 const G4String& nam) 70 : G4VEmModel(nam), << 70 : G4VEmModel(nam) 71 fG4Calc(G4Pow::GetInstance()), fTheGamma(G4G << 72 fTheElectron(G4Electron::Electron()), fThePo << 73 fParticleChange(nullptr) << 74 { 71 { 75 SetAngularDistribution(new G4ModifiedTsai()) << 72 fParticleChange = 0; >> 73 theGamma = G4Gamma::Gamma(); >> 74 thePositron = G4Positron::Positron(); >> 75 theElectron = G4Electron::Electron(); 76 } 76 } 77 77 >> 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 79 78 G4BetheHeitlerModel::~G4BetheHeitlerModel() 80 G4BetheHeitlerModel::~G4BetheHeitlerModel() 79 { << 81 {} 80 if (isFirstInstance) { << 81 for (auto const & ptr : gElementData) { de << 82 gElementData.clear(); << 83 } << 84 delete fXSection; << 85 } << 86 82 87 void G4BetheHeitlerModel::Initialise(const G4P << 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 88 const G4D << 89 { << 90 if (!fParticleChange) { fParticleChange = Ge << 91 84 92 if (isFirstInstance || gElementData.empty()) << 85 void G4BetheHeitlerModel::Initialise(const G4ParticleDefinition* p, 93 G4AutoLock l(&theBetheHMutex); << 86 const G4DataVector& cuts) 94 if (gElementData.empty()) { << 95 isFirstInstance = true; << 96 gElementData.resize(gMaxZet+1, nullptr); << 97 << 98 // EPICS2017 flag should be checked only << 99 useEPICS2017 = G4EmParameters::Instance( << 100 if (useEPICS2017) { << 101 fXSection = new G4EmElementXS(1, 100, "convE << 102 } << 103 } << 104 // static data should be initialised only << 105 InitialiseElementData(); << 106 l.unlock(); << 107 } << 108 // element selectors should be initialised i << 109 if(IsMaster()) { << 110 InitialiseElementSelectors(p, cuts); << 111 } << 112 } << 113 << 114 void G4BetheHeitlerModel::InitialiseLocal(cons << 115 G4VE << 116 { 87 { 117 SetElementSelectors(masterModel->GetElementS << 88 if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); } >> 89 InitialiseElementSelectors(p, cuts); 118 } 90 } 119 91 >> 92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 93 >> 94 G4double >> 95 G4BetheHeitlerModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, >> 96 G4double GammaEnergy, G4double Z, >> 97 G4double, G4double, G4double) 120 // Calculates the microscopic cross section in 98 // Calculates the microscopic cross section in GEANT4 internal units. 121 // A parametrized formula from L. Urban is use 99 // A parametrized formula from L. Urban is used to estimate 122 // the total cross section. 100 // the total cross section. 123 // It gives a good description of the data fro 101 // It gives a good description of the data from 1.5 MeV to 100 GeV. 124 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEn 102 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEnergy-2electronmass) 125 // *(GammaEn 103 // *(GammaEnergy-2electronmass) 126 G4double << 127 G4BetheHeitlerModel::ComputeCrossSectionPerAto << 128 << 129 << 130 { 104 { >> 105 static const G4double GammaEnergyLimit = 1.5*MeV; 131 G4double xSection = 0.0 ; 106 G4double xSection = 0.0 ; 132 // short versions << 107 if ( Z < 0.9 || GammaEnergy <= 2.0*electron_mass_c2 ) { return xSection; } 133 static const G4double kMC2 = CLHEP::electro << 108 134 // zero cross section below the kinematical << 109 static const G4double 135 if (Z < 0.9 || gammaEnergy <= 2.0*kMC2) { re << 110 a0= 8.7842e+2*microbarn, a1=-1.9625e+3*microbarn, a2= 1.2949e+3*microbarn, 136 << 111 a3=-2.0028e+2*microbarn, a4= 1.2575e+1*microbarn, a5=-2.8333e-1*microbarn; 137 G4int iZ = G4lrint(Z); << 112 138 if (useEPICS2017 && iZ < 101) { << 113 static const G4double 139 return fXSection->GetXS(iZ, gammaEnergy); << 114 b0=-1.0342e+1*microbarn, b1= 1.7692e+1*microbarn, b2=-8.2381 *microbarn, 140 } << 115 b3= 1.3063 *microbarn, b4=-9.0815e-2*microbarn, b5= 2.3586e-3*microbarn; >> 116 >> 117 static const G4double >> 118 c0=-4.5263e+2*microbarn, c1= 1.1161e+3*microbarn, c2=-8.6749e+2*microbarn, >> 119 c3= 2.1773e+2*microbarn, c4=-2.0467e+1*microbarn, c5= 6.5372e-1*microbarn; >> 120 >> 121 G4double GammaEnergySave = GammaEnergy; >> 122 if (GammaEnergy < GammaEnergyLimit) { GammaEnergy = GammaEnergyLimit; } >> 123 >> 124 G4double X=log(GammaEnergy/electron_mass_c2), X2=X*X, X3=X2*X, X4=X3*X, X5=X4*X; >> 125 >> 126 G4double F1 = a0 + a1*X + a2*X2 + a3*X3 + a4*X4 + a5*X5, >> 127 F2 = b0 + b1*X + b2*X2 + b3*X3 + b4*X4 + b5*X5, >> 128 F3 = c0 + c1*X + c2*X2 + c3*X3 + c4*X4 + c5*X5; 141 129 142 // << 143 static const G4double gammaEnergyLimit = 1.5 << 144 // set coefficients a, b c << 145 static const G4double a0 = 8.7842e+2*CLHEP: << 146 static const G4double a1 = -1.9625e+3*CLHEP: << 147 static const G4double a2 = 1.2949e+3*CLHEP: << 148 static const G4double a3 = -2.0028e+2*CLHEP: << 149 static const G4double a4 = 1.2575e+1*CLHEP: << 150 static const G4double a5 = -2.8333e-1*CLHEP: << 151 << 152 static const G4double b0 = -1.0342e+1*CLHEP: << 153 static const G4double b1 = 1.7692e+1*CLHEP: << 154 static const G4double b2 = -8.2381 *CLHEP: << 155 static const G4double b3 = 1.3063 *CLHEP: << 156 static const G4double b4 = -9.0815e-2*CLHEP: << 157 static const G4double b5 = 2.3586e-3*CLHEP: << 158 << 159 static const G4double c0 = -4.5263e+2*CLHEP: << 160 static const G4double c1 = 1.1161e+3*CLHEP: << 161 static const G4double c2 = -8.6749e+2*CLHEP: << 162 static const G4double c3 = 2.1773e+2*CLHEP: << 163 static const G4double c4 = -2.0467e+1*CLHEP: << 164 static const G4double c5 = 6.5372e-1*CLHEP: << 165 // check low energy limit of the approximati << 166 G4double gammaEnergyOrg = gammaEnergy; << 167 if (gammaEnergy < gammaEnergyLimit) { gammaE << 168 // compute gamma energy variables << 169 const G4double x = G4Log(gammaEnergy/kMC2); << 170 const G4double x2 = x *x; << 171 const G4double x3 = x2*x; << 172 const G4double x4 = x3*x; << 173 const G4double x5 = x4*x; << 174 // << 175 const G4double F1 = a0 + a1*x + a2*x2 + a3*x << 176 const G4double F2 = b0 + b1*x + b2*x2 + b3*x << 177 const G4double F3 = c0 + c1*x + c2*x2 + c3*x << 178 // compute the approximated cross section << 179 xSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3); 130 xSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3); 180 // check if we are below the limit of the ap << 131 181 if (gammaEnergyOrg < gammaEnergyLimit) { << 132 if (GammaEnergySave < GammaEnergyLimit) { 182 const G4double dum = (gammaEnergyOrg-2.*kM << 133 183 xSection *= dum*dum; << 134 X = (GammaEnergySave - 2.*electron_mass_c2) >> 135 / (GammaEnergyLimit - 2.*electron_mass_c2); >> 136 xSection *= X*X; 184 } 137 } 185 // make sure that the cross section is never << 138 186 xSection = std::max(xSection, 0.); << 139 if (xSection < 0.) { xSection = 0.; } 187 return xSection; 140 return xSection; 188 } 141 } 189 142 >> 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 144 >> 145 void G4BetheHeitlerModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, >> 146 const G4MaterialCutsCouple* couple, >> 147 const G4DynamicParticle* aDynamicGamma, >> 148 G4double, >> 149 G4double) 190 // The secondaries e+e- energies are sampled u 150 // The secondaries e+e- energies are sampled using the Bethe - Heitler 191 // cross sections with Coulomb correction. 151 // cross sections with Coulomb correction. 192 // A modified version of the random number tec 152 // A modified version of the random number techniques of Butcher & Messel 193 // is used (Nuc Phys 20(1960),15). 153 // is used (Nuc Phys 20(1960),15). 194 // 154 // 195 // GEANT4 internal units. 155 // GEANT4 internal units. 196 // 156 // 197 // Note 1 : Effects due to the breakdown of th 157 // Note 1 : Effects due to the breakdown of the Born approximation at 198 // low energy are ignored. 158 // low energy are ignored. 199 // Note 2 : The differential cross section imp 159 // Note 2 : The differential cross section implicitly takes account of 200 // pair creation in both nuclear and 160 // pair creation in both nuclear and atomic electron fields. 201 // However triplet prodution is not g 161 // However triplet prodution is not generated. 202 void G4BetheHeitlerModel::SampleSecondaries(st << 203 co << 204 co << 205 G4 << 206 { 162 { 207 // set some constant values << 163 const G4Material* aMaterial = couple->GetMaterial(); 208 const G4double gammaEnergy = aDynamicGamm << 164 209 const G4double eps0 = CLHEP::elect << 165 G4double GammaEnergy = aDynamicGamma->GetKineticEnergy(); 210 // << 166 G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection(); 211 // check kinematical limit: gamma energy(Eg) << 167 212 if (eps0 > 0.5) { return; } << 168 G4double epsil ; 213 // << 169 G4double epsil0 = electron_mass_c2/GammaEnergy ; 214 // select target element of the material (pr << 170 if(epsil0 > 1.0) { return; } 215 const G4Element* anElement = SelectTargetAto << 171 216 aDyn << 172 // do it fast if GammaEnergy < 2. MeV 217 << 173 static const G4double Egsmall=2.*MeV; 218 // << 174 219 // get the random engine << 175 // select randomly one element constituing the material 220 CLHEP::HepRandomEngine* rndmEngine = G4Rando << 176 const G4Element* anElement = SelectRandomAtom(aMaterial, theGamma, GammaEnergy); 221 // << 177 222 // 'eps' is the total energy transferred to << 178 if (GammaEnergy < Egsmall) { 223 // gamma energy units Eg. Since the correspo << 179 224 // the kinematical limits for eps0=mc^2/Eg < << 180 epsil = epsil0 + (0.5-epsil0)*G4UniformRand(); 225 // 1. 'eps' is sampled uniformly on the [eps << 181 226 // 2. otherwise, on the [eps_min, 0.5] inter << 227 G4double eps; << 228 // case 1. << 229 static const G4double Egsmall = 2.*CLHEP::Me << 230 if (gammaEnergy < Egsmall) { << 231 eps = eps0 + (0.5-eps0)*rndmEngine->flat() << 232 } else { 182 } else { 233 // case 2. << 183 // now comes the case with GammaEnergy >= 2. MeV 234 // get the Coulomb factor for the target e << 184 235 // F(Z) = 8*ln(Z)/3 if Eg <= 50 << 185 // Extract Coulomb factor for this Element 236 // F(Z) = 8*ln(Z)/3 + 8*fc(Z) if Eg > 50 << 186 G4double FZ = 8.*(anElement->GetIonisation()->GetlogZ3()); >> 187 if (GammaEnergy > 50.*MeV) { FZ += 8.*(anElement->GetfCoulomb()); } >> 188 >> 189 // limits of the screening variable >> 190 G4double screenfac = 136.*epsil0/(anElement->GetIonisation()->GetZ3()); >> 191 G4double screenmax = exp ((42.24 - FZ)/8.368) - 0.952 ; >> 192 G4double screenmin = min(4.*screenfac,screenmax); >> 193 >> 194 // limits of the energy sampling >> 195 G4double epsil1 = 0.5 - 0.5*sqrt(1. - screenmin/screenmax) ; >> 196 G4double epsilmin = max(epsil0,epsil1) , epsilrange = 0.5 - epsilmin; >> 197 237 // 198 // 238 // The screening variable 'delta(eps)' = 1 << 199 // sample the energy rate of the created electron (or positron) 239 // Due to the Coulomb correction, the DCS << 240 // kinematicaly allowed eps > eps0 values. << 241 // range with negative DCS, the minimum ep << 242 // max[eps0, epsp] with epsp is the soluti << 243 // with SF being the screening function (S << 244 // The solution is epsp = 0.5 - 0.5*sqrt[ << 245 // with deltap = Exp[(42.038-F(Z))/8.29]-0 << 246 // - when eps=eps_max = 0.5 => << 247 // - epsp = 0.5 - 0.5*sqrt[ 1 - delta_min/ << 248 // - and eps_min = max[eps0, epsp] << 249 static const G4double midEnergy = 50.*CLHE << 250 const G4int iZet = std::min(gMa << 251 const G4double deltaFactor = 136.*eps0/an << 252 G4double deltaMax = gElementData << 253 G4double FZ = 8.*anElement << 254 if (gammaEnergy > midEnergy) { << 255 FZ += 8.*(anElement->GetfCoulomb()) << 256 deltaMax = gElementData[iZet]->fDeltaMax << 257 } << 258 const G4double deltaMin = 4.*deltaFactor; << 259 // << 260 // compute the limits of eps << 261 const G4double epsp = 0.5 - 0.5*std::s << 262 const G4double epsMin = std::max(eps0,ep << 263 const G4double epsRange = 0.5 - epsMin; << 264 // 200 // 265 // sample the energy rate (eps) of the cre << 201 //G4double epsil, screenvar, greject ; 266 G4double F10, F20; << 202 G4double screenvar, greject ; 267 ScreenFunction12(deltaMin, F10, F20); << 203 268 F10 -= FZ; << 204 G4double F10 = ScreenFunction1(screenmin) - FZ; 269 F20 -= FZ; << 205 G4double F20 = ScreenFunction2(screenmin) - FZ; 270 const G4double NormF1 = std::max(F10 * e << 206 G4double NormF1 = max(F10*epsilrange*epsilrange,0.); 271 const G4double NormF2 = std::max(1.5 * F << 207 G4double NormF2 = max(1.5*F20,0.); 272 const G4double NormCond = NormF1/(NormF1 + << 208 273 // we will need 3 uniform random number fo << 274 G4double rndmv[3]; << 275 G4double greject = 0.; << 276 do { 209 do { 277 rndmEngine->flatArray(3, rndmv); << 210 if ( NormF1/(NormF1+NormF2) > G4UniformRand() ) { 278 if (NormCond > rndmv[0]) { << 211 epsil = 0.5 - epsilrange*pow(G4UniformRand(), 0.333333); 279 eps = 0.5 - epsRange * fG4Calc->A13(rn << 212 screenvar = screenfac/(epsil*(1-epsil)); 280 const G4double delta = deltaFactor/(ep << 213 greject = (ScreenFunction1(screenvar) - FZ)/F10; 281 greject = (ScreenFunction1(delta)-FZ)/ << 214 282 } else { 215 } else { 283 eps = epsMin + epsRange*rndmv[1]; << 216 epsil = epsilmin + epsilrange*G4UniformRand(); 284 const G4double delta = deltaFactor/(ep << 217 screenvar = screenfac/(epsil*(1-epsil)); 285 greject = (ScreenFunction2(delta)-FZ)/ << 218 greject = (ScreenFunction2(screenvar) - FZ)/F20; 286 } 219 } 287 // Loop checking, 03-Aug-2015, Vladimir << 220 288 } while (greject < rndmv[2]); << 221 } while( greject < G4UniformRand() ); 289 } // end of eps sampling << 222 >> 223 } // end of epsil sampling >> 224 >> 225 // >> 226 // fixe charges randomly 290 // 227 // 291 // select charges randomly << 228 292 G4double eTotEnergy, pTotEnergy; << 229 G4double ElectTotEnergy, PositTotEnergy; 293 if (rndmEngine->flat() > 0.5) { << 230 if (G4UniformRand() > 0.5) { 294 eTotEnergy = (1.-eps)*gammaEnergy; << 231 295 pTotEnergy = eps*gammaEnergy; << 232 ElectTotEnergy = (1.-epsil)*GammaEnergy; >> 233 PositTotEnergy = epsil*GammaEnergy; >> 234 296 } else { 235 } else { 297 pTotEnergy = (1.-eps)*gammaEnergy; << 236 298 eTotEnergy = eps*gammaEnergy; << 237 PositTotEnergy = (1.-epsil)*GammaEnergy; >> 238 ElectTotEnergy = epsil*GammaEnergy; 299 } 239 } >> 240 >> 241 // >> 242 // scattered electron (positron) angles. ( Z - axis along the parent photon) 300 // 243 // 301 // sample pair kinematics << 244 // universal distribution suggested by L. Urban 302 const G4double eKinEnergy = std::max(0.,eTot << 245 // (Geant3 manual (1993) Phys211), 303 const G4double pKinEnergy = std::max(0.,pTot << 246 // derived from Tsai distribution (Rev Mod Phys 49,421(1977)) >> 247 >> 248 G4double u; >> 249 const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ; >> 250 >> 251 if (9./(9.+d) >G4UniformRand()) u= - log(G4UniformRand()*G4UniformRand())/a1; >> 252 else u= - log(G4UniformRand()*G4UniformRand())/a2; >> 253 >> 254 G4double TetEl = u*electron_mass_c2/ElectTotEnergy; >> 255 G4double TetPo = u*electron_mass_c2/PositTotEnergy; >> 256 G4double Phi = twopi * G4UniformRand(); >> 257 G4double dxEl= sin(TetEl)*cos(Phi),dyEl= sin(TetEl)*sin(Phi),dzEl=cos(TetEl); >> 258 G4double dxPo=-sin(TetPo)*cos(Phi),dyPo=-sin(TetPo)*sin(Phi),dzPo=cos(TetPo); >> 259 304 // 260 // 305 G4ThreeVector eDirection, pDirection; << 261 // kinematic of the created pair 306 // 262 // 307 GetAngularDistribution()->SamplePairDirectio << 263 // the electron and positron are assumed to have a symetric 308 << 264 // angular distribution with respect to the Z axis along the parent photon. 309 << 265 310 // create G4DynamicParticle object for the p << 266 G4double ElectKineEnergy = max(0.,ElectTotEnergy - electron_mass_c2); 311 auto aParticle1= new G4DynamicParticle(fTheE << 267 312 // create G4DynamicParticle object for the p << 268 G4ThreeVector ElectDirection (dxEl, dyEl, dzEl); 313 auto aParticle2= new G4DynamicParticle(fTheP << 269 ElectDirection.rotateUz(GammaDirection); >> 270 >> 271 // create G4DynamicParticle object for the particle1 >> 272 G4DynamicParticle* aParticle1= new G4DynamicParticle( >> 273 theElectron,ElectDirection,ElectKineEnergy); >> 274 >> 275 // the e+ is always created (even with Ekine=0) for further annihilation. >> 276 >> 277 G4double PositKineEnergy = max(0.,PositTotEnergy - electron_mass_c2); >> 278 >> 279 G4ThreeVector PositDirection (dxPo, dyPo, dzPo); >> 280 PositDirection.rotateUz(GammaDirection); >> 281 >> 282 // create G4DynamicParticle object for the particle2 >> 283 G4DynamicParticle* aParticle2= new G4DynamicParticle( >> 284 thePositron,PositDirection,PositKineEnergy); >> 285 314 // Fill output vector 286 // Fill output vector 315 fvect->push_back(aParticle1); 287 fvect->push_back(aParticle1); 316 fvect->push_back(aParticle2); 288 fvect->push_back(aParticle2); >> 289 317 // kill incident photon 290 // kill incident photon 318 fParticleChange->SetProposedKineticEnergy(0. 291 fParticleChange->SetProposedKineticEnergy(0.); 319 fParticleChange->ProposeTrackStatus(fStopAnd 292 fParticleChange->ProposeTrackStatus(fStopAndKill); 320 } 293 } 321 294 322 // should be called only by the master and at << 295 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 323 void G4BetheHeitlerModel::InitialiseElementDat << 324 { << 325 // create for all elements that are in the d << 326 auto elemTable = G4Element::GetElementTable( << 327 for (auto const & elem : *elemTable) { << 328 const G4int Z = elem->GetZasInt(); << 329 const G4int iz = std::min(gMaxZet, Z); << 330 if (nullptr == gElementData[iz]) { // crea << 331 G4double FZLow = 8.*elem->GetIonisat << 332 G4double FZHigh = FZLow + 8.*elem->Ge << 333 auto elD = new ElementData(); << 334 elD->fDeltaMaxLow = G4Exp((42.038 - FZL << 335 elD->fDeltaMaxHigh = G4Exp((42.038 - FZH << 336 gElementData[iz] = elD; << 337 } << 338 if (useEPICS2017 && Z < 101) { << 339 fXSection->Retrieve(Z); << 340 } << 341 } << 342 << 343 } << 344 << 345 296