Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4BetheHeitlerModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4BetheHeitlerModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4BetheHeitlerModel.cc (Version 9.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4BetheHeitlerModel.cc,v 1.15 2010-10-25 19:02:32 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: not supported by cvs2svn $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4BetheHeitlerModel              34 // File name:     G4BetheHeitlerModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of Michel Maire code
 35 //                                                 37 //
 36 // Creation date: 15.03.2005                       38 // Creation date: 15.03.2005
 37 //                                                 39 //
 38 // Modifications by Vladimir Ivanchenko, Miche <<  40 // Modifications:
                                                   >>  41 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
                                                   >>  42 // 24-06-05 Increase number of bins to 200 (V.Ivantchenko)
                                                   >>  43 // 16-11-05 replace shootBit() by G4UniformRand()  mma
                                                   >>  44 // 04-12-05 SetProposedKineticEnergy(0.) for the killed photon (mma)
                                                   >>  45 // 20-02-07 SelectRandomElement is called for any initial gamma energy 
                                                   >>  46 //          in order to have selected element for polarized model (VI)
                                                   >>  47 // 25-10-10 Removed unused table, added element selector (VI) 
 39 //                                                 48 //
 40 // Class Description:                              49 // Class Description:
 41 //                                                 50 //
 42 // -------------------------------------------     51 // -------------------------------------------------------------------
 43 //                                                 52 //
                                                   >>  53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 44                                                    55 
 45 #include "G4BetheHeitlerModel.hh"                  56 #include "G4BetheHeitlerModel.hh"
 46 #include "G4PhysicalConstants.hh"              << 
 47 #include "G4SystemOfUnits.hh"                  << 
 48 #include "G4Electron.hh"                           57 #include "G4Electron.hh"
 49 #include "G4Positron.hh"                           58 #include "G4Positron.hh"
 50 #include "G4Gamma.hh"                              59 #include "G4Gamma.hh"
 51 #include "Randomize.hh"                            60 #include "Randomize.hh"
 52 #include "G4ParticleChangeForGamma.hh"             61 #include "G4ParticleChangeForGamma.hh"
 53 #include "G4Pow.hh"                            << 
 54 #include "G4Exp.hh"                            << 
 55 #include "G4ModifiedTsai.hh"                   << 
 56 #include "G4EmParameters.hh"                   << 
 57 #include "G4EmElementXS.hh"                    << 
 58 #include "G4AutoLock.hh"                       << 
 59                                                    62 
 60 const G4int G4BetheHeitlerModel::gMaxZet = 120 <<  63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 61 std::vector<G4BetheHeitlerModel::ElementData*> << 
 62                                                    64 
 63 namespace                                      <<  65 using namespace std;
 64 {                                              << 
 65   G4Mutex theBetheHMutex = G4MUTEX_INITIALIZER << 
 66 }                                              << 
 67                                                    66 
 68 G4BetheHeitlerModel::G4BetheHeitlerModel(const <<  67 G4BetheHeitlerModel::G4BetheHeitlerModel(const G4ParticleDefinition*,
 69                                          const <<  68            const G4String& nam)
 70 : G4VEmModel(nam),                             <<  69   : G4VEmModel(nam)
 71   fG4Calc(G4Pow::GetInstance()), fTheGamma(G4G << 
 72   fTheElectron(G4Electron::Electron()), fThePo << 
 73   fParticleChange(nullptr)                     << 
 74 {                                                  70 {
 75   SetAngularDistribution(new G4ModifiedTsai()) <<  71   fParticleChange = 0;
                                                   >>  72   theGamma    = G4Gamma::Gamma();
                                                   >>  73   thePositron = G4Positron::Positron();
                                                   >>  74   theElectron = G4Electron::Electron();
 76 }                                                  75 }
 77                                                    76 
                                                   >>  77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  78 
 78 G4BetheHeitlerModel::~G4BetheHeitlerModel()        79 G4BetheHeitlerModel::~G4BetheHeitlerModel()
 79 {                                              <<  80 {}
 80   if (isFirstInstance) {                       << 
 81     for (auto const & ptr : gElementData) { de << 
 82     gElementData.clear();                      << 
 83   }                                            << 
 84   delete fXSection;                            << 
 85 }                                              << 
 86                                                    81 
 87 void G4BetheHeitlerModel::Initialise(const G4P <<  82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 88                                      const G4D << 
 89 {                                              << 
 90   if (!fParticleChange) { fParticleChange = Ge << 
 91                                                    83 
 92   if (isFirstInstance || gElementData.empty()) <<  84 void G4BetheHeitlerModel::Initialise(const G4ParticleDefinition* p,
 93     G4AutoLock l(&theBetheHMutex);             <<  85              const G4DataVector& cuts)
 94     if (gElementData.empty()) {                << 
 95       isFirstInstance = true;                  << 
 96       gElementData.resize(gMaxZet+1, nullptr); << 
 97                                                << 
 98       // EPICS2017 flag should be checked only << 
 99       useEPICS2017 = G4EmParameters::Instance( << 
100       if (useEPICS2017) {                      << 
101   fXSection = new G4EmElementXS(1, 100, "convE << 
102       }                                        << 
103     }                                          << 
104     // static data should be initialised only  << 
105     InitialiseElementData();                   << 
106     l.unlock();                                << 
107   }                                            << 
108   // element selectors should be initialised i << 
109   if(IsMaster()) {                             << 
110     InitialiseElementSelectors(p, cuts);       << 
111   }                                            << 
112 }                                              << 
113                                                << 
114 void G4BetheHeitlerModel::InitialiseLocal(cons << 
115                                           G4VE << 
116 {                                                  86 {
117   SetElementSelectors(masterModel->GetElementS <<  87   if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); }
                                                   >>  88   InitialiseElementSelectors(p, cuts);
118 }                                                  89 }
119                                                    90 
                                                   >>  91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  92 
                                                   >>  93 G4double 
                                                   >>  94 G4BetheHeitlerModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
                                                   >>  95             G4double GammaEnergy, G4double Z,
                                                   >>  96             G4double, G4double, G4double)
120 // Calculates the microscopic cross section in     97 // Calculates the microscopic cross section in GEANT4 internal units.
121 // A parametrized formula from L. Urban is use     98 // A parametrized formula from L. Urban is used to estimate
122 // the total cross section.                        99 // the total cross section.
123 // It gives a good description of the data fro    100 // It gives a good description of the data from 1.5 MeV to 100 GeV.
124 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEn    101 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEnergy-2electronmass)
125 //                                   *(GammaEn    102 //                                   *(GammaEnergy-2electronmass) 
126 G4double                                       << 
127 G4BetheHeitlerModel::ComputeCrossSectionPerAto << 
128                                                << 
129                                                << 
130 {                                                 103 {
131   G4double xSection = 0.0 ;                    << 104   static const G4double GammaEnergyLimit = 1.5*MeV;
132   // short versions                            << 105   G4double CrossSection = 0.0 ;
133   static const G4double kMC2  = CLHEP::electro << 106   if ( Z < 0.9 || GammaEnergy <= 2.0*electron_mass_c2 ) { return CrossSection; }
134   // zero cross section below the kinematical  << 
135   if (Z < 0.9 || gammaEnergy <= 2.0*kMC2) { re << 
136                                                << 
137   G4int iZ = G4lrint(Z);                       << 
138   if (useEPICS2017 && iZ < 101) {              << 
139     return fXSection->GetXS(iZ, gammaEnergy);  << 
140   }                                            << 
141                                                   107 
142   //                                           << 108   static const G4double
143   static const G4double gammaEnergyLimit = 1.5 << 109     a0= 8.7842e+2*microbarn, a1=-1.9625e+3*microbarn, a2= 1.2949e+3*microbarn,
144   // set coefficients a, b c                   << 110     a3=-2.0028e+2*microbarn, a4= 1.2575e+1*microbarn, a5=-2.8333e-1*microbarn;
145   static const G4double a0 =  8.7842e+2*CLHEP: << 111 
146   static const G4double a1 = -1.9625e+3*CLHEP: << 112   static const G4double
147   static const G4double a2 =  1.2949e+3*CLHEP: << 113     b0=-1.0342e+1*microbarn, b1= 1.7692e+1*microbarn, b2=-8.2381   *microbarn,
148   static const G4double a3 = -2.0028e+2*CLHEP: << 114     b3= 1.3063   *microbarn, b4=-9.0815e-2*microbarn, b5= 2.3586e-3*microbarn;
149   static const G4double a4 =  1.2575e+1*CLHEP: << 115 
150   static const G4double a5 = -2.8333e-1*CLHEP: << 116   static const G4double
151                                                << 117     c0=-4.5263e+2*microbarn, c1= 1.1161e+3*microbarn, c2=-8.6749e+2*microbarn,
152   static const G4double b0 = -1.0342e+1*CLHEP: << 118     c3= 2.1773e+2*microbarn, c4=-2.0467e+1*microbarn, c5= 6.5372e-1*microbarn;
153   static const G4double b1 =  1.7692e+1*CLHEP: << 119 
154   static const G4double b2 = -8.2381   *CLHEP: << 120   G4double GammaEnergySave = GammaEnergy;
155   static const G4double b3 =  1.3063   *CLHEP: << 121   if (GammaEnergy < GammaEnergyLimit) { GammaEnergy = GammaEnergyLimit; }
156   static const G4double b4 = -9.0815e-2*CLHEP: << 122 
157   static const G4double b5 =  2.3586e-3*CLHEP: << 123   G4double X=log(GammaEnergy/electron_mass_c2), X2=X*X, X3=X2*X, X4=X3*X, X5=X4*X;
158                                                << 124 
159   static const G4double c0 = -4.5263e+2*CLHEP: << 125   G4double F1 = a0 + a1*X + a2*X2 + a3*X3 + a4*X4 + a5*X5,
160   static const G4double c1 =  1.1161e+3*CLHEP: << 126            F2 = b0 + b1*X + b2*X2 + b3*X3 + b4*X4 + b5*X5,
161   static const G4double c2 = -8.6749e+2*CLHEP: << 127            F3 = c0 + c1*X + c2*X2 + c3*X3 + c4*X4 + c5*X5;     
162   static const G4double c3 =  2.1773e+2*CLHEP: << 128 
163   static const G4double c4 = -2.0467e+1*CLHEP: << 129   CrossSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3);
164   static const G4double c5 =  6.5372e-1*CLHEP: << 130 
165   // check low energy limit of the approximati << 131   if (GammaEnergySave < GammaEnergyLimit) {
166   G4double gammaEnergyOrg = gammaEnergy;       << 132 
167   if (gammaEnergy < gammaEnergyLimit) { gammaE << 133     X = (GammaEnergySave  - 2.*electron_mass_c2)
168   // compute gamma energy variables            << 134       / (GammaEnergyLimit - 2.*electron_mass_c2);
169   const G4double x  = G4Log(gammaEnergy/kMC2); << 135     CrossSection *= X*X;
170   const G4double x2 = x *x;                    << 
171   const G4double x3 = x2*x;                    << 
172   const G4double x4 = x3*x;                    << 
173   const G4double x5 = x4*x;                    << 
174   //                                           << 
175   const G4double F1 = a0 + a1*x + a2*x2 + a3*x << 
176   const G4double F2 = b0 + b1*x + b2*x2 + b3*x << 
177   const G4double F3 = c0 + c1*x + c2*x2 + c3*x << 
178   // compute the approximated cross section    << 
179   xSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3);    << 
180   // check if we are below the limit of the ap << 
181   if (gammaEnergyOrg < gammaEnergyLimit) {     << 
182     const G4double dum = (gammaEnergyOrg-2.*kM << 
183     xSection *= dum*dum;                       << 
184   }                                               136   }
185   // make sure that the cross section is never << 137 
186   xSection = std::max(xSection, 0.);           << 138   if (CrossSection < 0.) { CrossSection = 0.; }
187   return xSection;                             << 139   return CrossSection;
188 }                                                 140 }
189                                                   141 
                                                   >> 142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >> 143 
                                                   >> 144 void G4BetheHeitlerModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
                                                   >> 145               const G4MaterialCutsCouple* couple,
                                                   >> 146               const G4DynamicParticle* aDynamicGamma,
                                                   >> 147               G4double,
                                                   >> 148               G4double)
190 // The secondaries e+e- energies are sampled u    149 // The secondaries e+e- energies are sampled using the Bethe - Heitler
191 // cross sections with Coulomb correction.        150 // cross sections with Coulomb correction.
192 // A modified version of the random number tec    151 // A modified version of the random number techniques of Butcher & Messel
193 // is used (Nuc Phys 20(1960),15).                152 // is used (Nuc Phys 20(1960),15).
194 //                                                153 //
195 // GEANT4 internal units.                         154 // GEANT4 internal units.
196 //                                                155 //
197 // Note 1 : Effects due to the breakdown of th    156 // Note 1 : Effects due to the breakdown of the Born approximation at
198 //          low energy are ignored.               157 //          low energy are ignored.
199 // Note 2 : The differential cross section imp    158 // Note 2 : The differential cross section implicitly takes account of 
200 //          pair creation in both nuclear and     159 //          pair creation in both nuclear and atomic electron fields.
201 //          However triplet prodution is not g    160 //          However triplet prodution is not generated.
202 void G4BetheHeitlerModel::SampleSecondaries(st << 
203                                             co << 
204                                             co << 
205                                             G4 << 
206 {                                                 161 {
207   // set some constant values                  << 162   const G4Material* aMaterial = couple->GetMaterial();
208   const G4double    gammaEnergy = aDynamicGamm << 163 
209   const G4double    eps0        = CLHEP::elect << 164   G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
210   //                                           << 165   G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
211   // check kinematical limit: gamma energy(Eg) << 166 
212   if (eps0 > 0.5) { return; }                  << 167   G4double epsil ;
213   //                                           << 168   G4double epsil0 = electron_mass_c2/GammaEnergy ;
214   // select target element of the material (pr << 169   if(epsil0 > 1.0) { return; }
215   const G4Element* anElement = SelectTargetAto << 170 
216                                           aDyn << 171   // do it fast if GammaEnergy < 2. MeV
217                                                << 172   static const G4double Egsmall=2.*MeV;
218   //                                           << 173 
219   // get the random engine                     << 174   // select randomly one element constituing the material
220   CLHEP::HepRandomEngine* rndmEngine = G4Rando << 175   const G4Element* anElement = SelectRandomAtom(aMaterial, theGamma, GammaEnergy);
221   //                                           << 176 
222   // 'eps' is the total energy transferred to  << 177   if (GammaEnergy < Egsmall) {
223   // gamma energy units Eg. Since the correspo << 178 
224   // the kinematical limits for eps0=mc^2/Eg < << 179     epsil = epsil0 + (0.5-epsil0)*G4UniformRand();
225   // 1. 'eps' is sampled uniformly on the [eps << 180 
226   // 2. otherwise, on the [eps_min, 0.5] inter << 
227   G4double eps;                                << 
228   // case 1.                                   << 
229   static const G4double Egsmall = 2.*CLHEP::Me << 
230   if (gammaEnergy < Egsmall) {                 << 
231     eps = eps0 + (0.5-eps0)*rndmEngine->flat() << 
232   } else {                                        181   } else {
233   // case 2.                                   << 182     // now comes the case with GammaEnergy >= 2. MeV
234     // get the Coulomb factor for the target e << 183 
235     // F(Z) = 8*ln(Z)/3           if Eg <= 50  << 184     // Extract Coulomb factor for this Element
236     // F(Z) = 8*ln(Z)/3 + 8*fc(Z) if Eg  > 50  << 185     G4double FZ = 8.*(anElement->GetIonisation()->GetlogZ3());
                                                   >> 186     if (GammaEnergy > 50.*MeV) { FZ += 8.*(anElement->GetfCoulomb()); }
                                                   >> 187 
                                                   >> 188     // limits of the screening variable
                                                   >> 189     G4double screenfac = 136.*epsil0/(anElement->GetIonisation()->GetZ3());
                                                   >> 190     G4double screenmax = exp ((42.24 - FZ)/8.368) - 0.952 ;
                                                   >> 191     G4double screenmin = min(4.*screenfac,screenmax);
                                                   >> 192 
                                                   >> 193     // limits of the energy sampling
                                                   >> 194     G4double epsil1 = 0.5 - 0.5*sqrt(1. - screenmin/screenmax) ;
                                                   >> 195     G4double epsilmin = max(epsil0,epsil1) , epsilrange = 0.5 - epsilmin;
                                                   >> 196 
237     //                                            197     //
238     // The screening variable 'delta(eps)' = 1 << 198     // sample the energy rate of the created electron (or positron)
239     // Due to the Coulomb correction, the DCS  << 
240     // kinematicaly allowed eps > eps0 values. << 
241     // range with negative DCS, the minimum ep << 
242     // max[eps0, epsp] with epsp is the soluti << 
243     // with SF being the screening function (S << 
244     // The solution is epsp = 0.5 - 0.5*sqrt[  << 
245     // with deltap = Exp[(42.038-F(Z))/8.29]-0 << 
246     // - when eps=eps_max = 0.5            =>  << 
247     // - epsp = 0.5 - 0.5*sqrt[ 1 - delta_min/ << 
248     // - and eps_min = max[eps0, epsp]         << 
249     static const G4double midEnergy = 50.*CLHE << 
250     const  G4int           iZet = std::min(gMa << 
251     const  G4double deltaFactor = 136.*eps0/an << 
252     G4double           deltaMax = gElementData << 
253     G4double                 FZ = 8.*anElement << 
254     if (gammaEnergy > midEnergy) {             << 
255       FZ      += 8.*(anElement->GetfCoulomb()) << 
256       deltaMax = gElementData[iZet]->fDeltaMax << 
257     }                                          << 
258     const G4double deltaMin = 4.*deltaFactor;  << 
259     //                                         << 
260     // compute the limits of eps               << 
261     const G4double epsp     = 0.5 - 0.5*std::s << 
262     const G4double epsMin   = std::max(eps0,ep << 
263     const G4double epsRange = 0.5 - epsMin;    << 
264     //                                            199     //
265     // sample the energy rate (eps) of the cre << 200     //G4double epsil, screenvar, greject ;
266     G4double F10, F20;                         << 201     G4double  screenvar, greject ;
267     ScreenFunction12(deltaMin, F10, F20);      << 202 
268     F10 -= FZ;                                 << 203     G4double F10 = ScreenFunction1(screenmin) - FZ;
269     F20 -= FZ;                                 << 204     G4double F20 = ScreenFunction2(screenmin) - FZ;
270     const G4double NormF1   = std::max(F10 * e << 205     G4double NormF1 = max(F10*epsilrange*epsilrange,0.); 
271     const G4double NormF2   = std::max(1.5 * F << 206     G4double NormF2 = max(1.5*F20,0.);
272     const G4double NormCond = NormF1/(NormF1 + << 207 
273     // we will need 3 uniform random number fo << 
274     G4double rndmv[3];                         << 
275     G4double greject = 0.;                     << 
276     do {                                          208     do {
277       rndmEngine->flatArray(3, rndmv);         << 209       if ( NormF1/(NormF1+NormF2) > G4UniformRand() ) {
278       if (NormCond > rndmv[0]) {               << 210   epsil = 0.5 - epsilrange*pow(G4UniformRand(), 0.333333);
279         eps = 0.5 - epsRange * fG4Calc->A13(rn << 211   screenvar = screenfac/(epsil*(1-epsil));
280         const G4double delta = deltaFactor/(ep << 212   greject = (ScreenFunction1(screenvar) - FZ)/F10;
281         greject = (ScreenFunction1(delta)-FZ)/ << 213               
282       } else {                                    214       } else { 
283         eps = epsMin + epsRange*rndmv[1];      << 215   epsil = epsilmin + epsilrange*G4UniformRand();
284         const G4double delta = deltaFactor/(ep << 216   screenvar = screenfac/(epsil*(1-epsil));
285         greject = (ScreenFunction2(delta)-FZ)/ << 217   greject = (ScreenFunction2(screenvar) - FZ)/F20;
286       }                                           218       }
287       // Loop checking, 03-Aug-2015, Vladimir  << 219 
288     } while (greject < rndmv[2]);              << 220     } while( greject < G4UniformRand() );
289   } //  end of eps sampling                    << 221 
                                                   >> 222   }   //  end of epsil sampling
                                                   >> 223    
                                                   >> 224   //
                                                   >> 225   // fixe charges randomly
290   //                                              226   //
291   // select charges randomly                   << 227 
292   G4double eTotEnergy, pTotEnergy;             << 228   G4double ElectTotEnergy, PositTotEnergy;
293   if (rndmEngine->flat() > 0.5) {              << 229   if (G4UniformRand() > 0.5) {
294     eTotEnergy = (1.-eps)*gammaEnergy;         << 230 
295     pTotEnergy = eps*gammaEnergy;              << 231     ElectTotEnergy = (1.-epsil)*GammaEnergy;
                                                   >> 232     PositTotEnergy = epsil*GammaEnergy;
                                                   >> 233      
296   } else {                                        234   } else {
297     pTotEnergy = (1.-eps)*gammaEnergy;         << 235     
298     eTotEnergy = eps*gammaEnergy;              << 236     PositTotEnergy = (1.-epsil)*GammaEnergy;
                                                   >> 237     ElectTotEnergy = epsil*GammaEnergy;
299   }                                               238   }
                                                   >> 239 
                                                   >> 240   //
                                                   >> 241   // scattered electron (positron) angles. ( Z - axis along the parent photon)
300   //                                              242   //
301   // sample pair kinematics                    << 243   //  universal distribution suggested by L. Urban 
302   const G4double eKinEnergy = std::max(0.,eTot << 244   // (Geant3 manual (1993) Phys211),
303   const G4double pKinEnergy = std::max(0.,pTot << 245   //  derived from Tsai distribution (Rev Mod Phys 49,421(1977))
                                                   >> 246 
                                                   >> 247   G4double u;
                                                   >> 248   const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ;
                                                   >> 249 
                                                   >> 250   if (9./(9.+d) >G4UniformRand()) u= - log(G4UniformRand()*G4UniformRand())/a1;
                                                   >> 251   else                            u= - log(G4UniformRand()*G4UniformRand())/a2;
                                                   >> 252 
                                                   >> 253   G4double TetEl = u*electron_mass_c2/ElectTotEnergy;
                                                   >> 254   G4double TetPo = u*electron_mass_c2/PositTotEnergy;
                                                   >> 255   G4double Phi  = twopi * G4UniformRand();
                                                   >> 256   G4double dxEl= sin(TetEl)*cos(Phi),dyEl= sin(TetEl)*sin(Phi),dzEl=cos(TetEl);
                                                   >> 257   G4double dxPo=-sin(TetPo)*cos(Phi),dyPo=-sin(TetPo)*sin(Phi),dzPo=cos(TetPo);
                                                   >> 258    
304   //                                              259   //
305   G4ThreeVector eDirection, pDirection;        << 260   // kinematic of the created pair
306   //                                              261   //
307   GetAngularDistribution()->SamplePairDirectio << 262   // the electron and positron are assumed to have a symetric
308                                                << 263   // angular distribution with respect to the Z axis along the parent photon.
309                                                << 264 
310   // create G4DynamicParticle object for the p << 265   G4double ElectKineEnergy = max(0.,ElectTotEnergy - electron_mass_c2);
311   auto aParticle1= new G4DynamicParticle(fTheE << 266 
312   // create G4DynamicParticle object for the p << 267   G4ThreeVector ElectDirection (dxEl, dyEl, dzEl);
313   auto aParticle2= new G4DynamicParticle(fTheP << 268   ElectDirection.rotateUz(GammaDirection);   
                                                   >> 269 
                                                   >> 270   // create G4DynamicParticle object for the particle1  
                                                   >> 271   G4DynamicParticle* aParticle1= new G4DynamicParticle(
                                                   >> 272          theElectron,ElectDirection,ElectKineEnergy);
                                                   >> 273   
                                                   >> 274   // the e+ is always created (even with Ekine=0) for further annihilation.
                                                   >> 275 
                                                   >> 276   G4double PositKineEnergy = max(0.,PositTotEnergy - electron_mass_c2);
                                                   >> 277 
                                                   >> 278   G4ThreeVector PositDirection (dxPo, dyPo, dzPo);
                                                   >> 279   PositDirection.rotateUz(GammaDirection);   
                                                   >> 280 
                                                   >> 281   // create G4DynamicParticle object for the particle2 
                                                   >> 282   G4DynamicParticle* aParticle2= new G4DynamicParticle(
                                                   >> 283                       thePositron,PositDirection,PositKineEnergy);
                                                   >> 284 
314   // Fill output vector                           285   // Fill output vector
315   fvect->push_back(aParticle1);                   286   fvect->push_back(aParticle1);
316   fvect->push_back(aParticle2);                   287   fvect->push_back(aParticle2);
                                                   >> 288 
317   // kill incident photon                         289   // kill incident photon
318   fParticleChange->SetProposedKineticEnergy(0.    290   fParticleChange->SetProposedKineticEnergy(0.);
319   fParticleChange->ProposeTrackStatus(fStopAnd    291   fParticleChange->ProposeTrackStatus(fStopAndKill);   
320 }                                                 292 }
321                                                   293 
322 // should be called only by the master and at  << 294 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
323 void G4BetheHeitlerModel::InitialiseElementDat << 
324 {                                              << 
325   // create for all elements that are in the d << 
326   auto elemTable = G4Element::GetElementTable( << 
327   for (auto const & elem : *elemTable) {       << 
328     const G4int Z = elem->GetZasInt();         << 
329     const G4int iz = std::min(gMaxZet, Z);     << 
330     if (nullptr == gElementData[iz]) { // crea << 
331       G4double FZLow     = 8.*elem->GetIonisat << 
332       G4double FZHigh    = FZLow + 8.*elem->Ge << 
333       auto elD           = new ElementData();  << 
334       elD->fDeltaMaxLow  = G4Exp((42.038 - FZL << 
335       elD->fDeltaMaxHigh = G4Exp((42.038 - FZH << 
336       gElementData[iz]   = elD;                << 
337     }                                          << 
338     if (useEPICS2017 && Z < 101) {             << 
339       fXSection->Retrieve(Z);                  << 
340     }                                          << 
341   }                                            << 
342                                                << 
343 }                                              << 
344                                                << 
345                                                   295