Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // ------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4BetheHeitlerModel 33 // 34 // Author: Vladimir Ivanchenko on base 35 // 36 // Creation date: 15.03.2005 37 // 38 // Modifications by Vladimir Ivanchenko, Miche 39 // 40 // Class Description: 41 // 42 // ------------------------------------------- 43 // 44 45 #include "G4BetheHeitlerModel.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4Electron.hh" 49 #include "G4Positron.hh" 50 #include "G4Gamma.hh" 51 #include "Randomize.hh" 52 #include "G4ParticleChangeForGamma.hh" 53 #include "G4Pow.hh" 54 #include "G4Exp.hh" 55 #include "G4ModifiedTsai.hh" 56 #include "G4EmParameters.hh" 57 #include "G4EmElementXS.hh" 58 #include "G4AutoLock.hh" 59 60 const G4int G4BetheHeitlerModel::gMaxZet = 120 61 std::vector<G4BetheHeitlerModel::ElementData*> 62 63 namespace 64 { 65 G4Mutex theBetheHMutex = G4MUTEX_INITIALIZER 66 } 67 68 G4BetheHeitlerModel::G4BetheHeitlerModel(const 69 const 70 : G4VEmModel(nam), 71 fG4Calc(G4Pow::GetInstance()), fTheGamma(G4G 72 fTheElectron(G4Electron::Electron()), fThePo 73 fParticleChange(nullptr) 74 { 75 SetAngularDistribution(new G4ModifiedTsai()) 76 } 77 78 G4BetheHeitlerModel::~G4BetheHeitlerModel() 79 { 80 if (isFirstInstance) { 81 for (auto const & ptr : gElementData) { de 82 gElementData.clear(); 83 } 84 delete fXSection; 85 } 86 87 void G4BetheHeitlerModel::Initialise(const G4P 88 const G4D 89 { 90 if (!fParticleChange) { fParticleChange = Ge 91 92 if (isFirstInstance || gElementData.empty()) 93 G4AutoLock l(&theBetheHMutex); 94 if (gElementData.empty()) { 95 isFirstInstance = true; 96 gElementData.resize(gMaxZet+1, nullptr); 97 98 // EPICS2017 flag should be checked only 99 useEPICS2017 = G4EmParameters::Instance( 100 if (useEPICS2017) { 101 fXSection = new G4EmElementXS(1, 100, "convE 102 } 103 } 104 // static data should be initialised only 105 InitialiseElementData(); 106 l.unlock(); 107 } 108 // element selectors should be initialised i 109 if(IsMaster()) { 110 InitialiseElementSelectors(p, cuts); 111 } 112 } 113 114 void G4BetheHeitlerModel::InitialiseLocal(cons 115 G4VE 116 { 117 SetElementSelectors(masterModel->GetElementS 118 } 119 120 // Calculates the microscopic cross section in 121 // A parametrized formula from L. Urban is use 122 // the total cross section. 123 // It gives a good description of the data fro 124 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEn 125 // *(GammaEn 126 G4double 127 G4BetheHeitlerModel::ComputeCrossSectionPerAto 128 129 130 { 131 G4double xSection = 0.0 ; 132 // short versions 133 static const G4double kMC2 = CLHEP::electro 134 // zero cross section below the kinematical 135 if (Z < 0.9 || gammaEnergy <= 2.0*kMC2) { re 136 137 G4int iZ = G4lrint(Z); 138 if (useEPICS2017 && iZ < 101) { 139 return fXSection->GetXS(iZ, gammaEnergy); 140 } 141 142 // 143 static const G4double gammaEnergyLimit = 1.5 144 // set coefficients a, b c 145 static const G4double a0 = 8.7842e+2*CLHEP: 146 static const G4double a1 = -1.9625e+3*CLHEP: 147 static const G4double a2 = 1.2949e+3*CLHEP: 148 static const G4double a3 = -2.0028e+2*CLHEP: 149 static const G4double a4 = 1.2575e+1*CLHEP: 150 static const G4double a5 = -2.8333e-1*CLHEP: 151 152 static const G4double b0 = -1.0342e+1*CLHEP: 153 static const G4double b1 = 1.7692e+1*CLHEP: 154 static const G4double b2 = -8.2381 *CLHEP: 155 static const G4double b3 = 1.3063 *CLHEP: 156 static const G4double b4 = -9.0815e-2*CLHEP: 157 static const G4double b5 = 2.3586e-3*CLHEP: 158 159 static const G4double c0 = -4.5263e+2*CLHEP: 160 static const G4double c1 = 1.1161e+3*CLHEP: 161 static const G4double c2 = -8.6749e+2*CLHEP: 162 static const G4double c3 = 2.1773e+2*CLHEP: 163 static const G4double c4 = -2.0467e+1*CLHEP: 164 static const G4double c5 = 6.5372e-1*CLHEP: 165 // check low energy limit of the approximati 166 G4double gammaEnergyOrg = gammaEnergy; 167 if (gammaEnergy < gammaEnergyLimit) { gammaE 168 // compute gamma energy variables 169 const G4double x = G4Log(gammaEnergy/kMC2); 170 const G4double x2 = x *x; 171 const G4double x3 = x2*x; 172 const G4double x4 = x3*x; 173 const G4double x5 = x4*x; 174 // 175 const G4double F1 = a0 + a1*x + a2*x2 + a3*x 176 const G4double F2 = b0 + b1*x + b2*x2 + b3*x 177 const G4double F3 = c0 + c1*x + c2*x2 + c3*x 178 // compute the approximated cross section 179 xSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3); 180 // check if we are below the limit of the ap 181 if (gammaEnergyOrg < gammaEnergyLimit) { 182 const G4double dum = (gammaEnergyOrg-2.*kM 183 xSection *= dum*dum; 184 } 185 // make sure that the cross section is never 186 xSection = std::max(xSection, 0.); 187 return xSection; 188 } 189 190 // The secondaries e+e- energies are sampled u 191 // cross sections with Coulomb correction. 192 // A modified version of the random number tec 193 // is used (Nuc Phys 20(1960),15). 194 // 195 // GEANT4 internal units. 196 // 197 // Note 1 : Effects due to the breakdown of th 198 // low energy are ignored. 199 // Note 2 : The differential cross section imp 200 // pair creation in both nuclear and 201 // However triplet prodution is not g 202 void G4BetheHeitlerModel::SampleSecondaries(st 203 co 204 co 205 G4 206 { 207 // set some constant values 208 const G4double gammaEnergy = aDynamicGamm 209 const G4double eps0 = CLHEP::elect 210 // 211 // check kinematical limit: gamma energy(Eg) 212 if (eps0 > 0.5) { return; } 213 // 214 // select target element of the material (pr 215 const G4Element* anElement = SelectTargetAto 216 aDyn 217 218 // 219 // get the random engine 220 CLHEP::HepRandomEngine* rndmEngine = G4Rando 221 // 222 // 'eps' is the total energy transferred to 223 // gamma energy units Eg. Since the correspo 224 // the kinematical limits for eps0=mc^2/Eg < 225 // 1. 'eps' is sampled uniformly on the [eps 226 // 2. otherwise, on the [eps_min, 0.5] inter 227 G4double eps; 228 // case 1. 229 static const G4double Egsmall = 2.*CLHEP::Me 230 if (gammaEnergy < Egsmall) { 231 eps = eps0 + (0.5-eps0)*rndmEngine->flat() 232 } else { 233 // case 2. 234 // get the Coulomb factor for the target e 235 // F(Z) = 8*ln(Z)/3 if Eg <= 50 236 // F(Z) = 8*ln(Z)/3 + 8*fc(Z) if Eg > 50 237 // 238 // The screening variable 'delta(eps)' = 1 239 // Due to the Coulomb correction, the DCS 240 // kinematicaly allowed eps > eps0 values. 241 // range with negative DCS, the minimum ep 242 // max[eps0, epsp] with epsp is the soluti 243 // with SF being the screening function (S 244 // The solution is epsp = 0.5 - 0.5*sqrt[ 245 // with deltap = Exp[(42.038-F(Z))/8.29]-0 246 // - when eps=eps_max = 0.5 => 247 // - epsp = 0.5 - 0.5*sqrt[ 1 - delta_min/ 248 // - and eps_min = max[eps0, epsp] 249 static const G4double midEnergy = 50.*CLHE 250 const G4int iZet = std::min(gMa 251 const G4double deltaFactor = 136.*eps0/an 252 G4double deltaMax = gElementData 253 G4double FZ = 8.*anElement 254 if (gammaEnergy > midEnergy) { 255 FZ += 8.*(anElement->GetfCoulomb()) 256 deltaMax = gElementData[iZet]->fDeltaMax 257 } 258 const G4double deltaMin = 4.*deltaFactor; 259 // 260 // compute the limits of eps 261 const G4double epsp = 0.5 - 0.5*std::s 262 const G4double epsMin = std::max(eps0,ep 263 const G4double epsRange = 0.5 - epsMin; 264 // 265 // sample the energy rate (eps) of the cre 266 G4double F10, F20; 267 ScreenFunction12(deltaMin, F10, F20); 268 F10 -= FZ; 269 F20 -= FZ; 270 const G4double NormF1 = std::max(F10 * e 271 const G4double NormF2 = std::max(1.5 * F 272 const G4double NormCond = NormF1/(NormF1 + 273 // we will need 3 uniform random number fo 274 G4double rndmv[3]; 275 G4double greject = 0.; 276 do { 277 rndmEngine->flatArray(3, rndmv); 278 if (NormCond > rndmv[0]) { 279 eps = 0.5 - epsRange * fG4Calc->A13(rn 280 const G4double delta = deltaFactor/(ep 281 greject = (ScreenFunction1(delta)-FZ)/ 282 } else { 283 eps = epsMin + epsRange*rndmv[1]; 284 const G4double delta = deltaFactor/(ep 285 greject = (ScreenFunction2(delta)-FZ)/ 286 } 287 // Loop checking, 03-Aug-2015, Vladimir 288 } while (greject < rndmv[2]); 289 } // end of eps sampling 290 // 291 // select charges randomly 292 G4double eTotEnergy, pTotEnergy; 293 if (rndmEngine->flat() > 0.5) { 294 eTotEnergy = (1.-eps)*gammaEnergy; 295 pTotEnergy = eps*gammaEnergy; 296 } else { 297 pTotEnergy = (1.-eps)*gammaEnergy; 298 eTotEnergy = eps*gammaEnergy; 299 } 300 // 301 // sample pair kinematics 302 const G4double eKinEnergy = std::max(0.,eTot 303 const G4double pKinEnergy = std::max(0.,pTot 304 // 305 G4ThreeVector eDirection, pDirection; 306 // 307 GetAngularDistribution()->SamplePairDirectio 308 309 310 // create G4DynamicParticle object for the p 311 auto aParticle1= new G4DynamicParticle(fTheE 312 // create G4DynamicParticle object for the p 313 auto aParticle2= new G4DynamicParticle(fTheP 314 // Fill output vector 315 fvect->push_back(aParticle1); 316 fvect->push_back(aParticle2); 317 // kill incident photon 318 fParticleChange->SetProposedKineticEnergy(0. 319 fParticleChange->ProposeTrackStatus(fStopAnd 320 } 321 322 // should be called only by the master and at 323 void G4BetheHeitlerModel::InitialiseElementDat 324 { 325 // create for all elements that are in the d 326 auto elemTable = G4Element::GetElementTable( 327 for (auto const & elem : *elemTable) { 328 const G4int Z = elem->GetZasInt(); 329 const G4int iz = std::min(gMaxZet, Z); 330 if (nullptr == gElementData[iz]) { // crea 331 G4double FZLow = 8.*elem->GetIonisat 332 G4double FZHigh = FZLow + 8.*elem->Ge 333 auto elD = new ElementData(); 334 elD->fDeltaMaxLow = G4Exp((42.038 - FZL 335 elD->fDeltaMaxHigh = G4Exp((42.038 - FZH 336 gElementData[iz] = elD; 337 } 338 if (useEPICS2017 && Z < 101) { 339 fXSection->Retrieve(Z); 340 } 341 } 342 343 } 344 345