Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4BetheHeitlerModel 33 // File name: G4BetheHeitlerModel 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Michel Maire code 35 // 36 // 36 // Creation date: 15.03.2005 37 // Creation date: 15.03.2005 37 // 38 // 38 // Modifications by Vladimir Ivanchenko, Miche << 39 // Modifications: >> 40 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko) >> 41 // 24-06-05 Increase number of bins to 200 (V.Ivantchenko) >> 42 // 16-11-05 replace shootBit() by G4UniformRand() mma >> 43 // 04-12-05 SetProposedKineticEnergy(0.) for the killed photon (mma) >> 44 // 20-02-07 SelectRandomElement is called for any initial gamma energy >> 45 // in order to have selected element for polarized model (VI) >> 46 // 25-10-10 Removed unused table, added element selector (VI) 39 // 47 // 40 // Class Description: 48 // Class Description: 41 // 49 // 42 // ------------------------------------------- 50 // ------------------------------------------------------------------- 43 // 51 // >> 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 54 45 #include "G4BetheHeitlerModel.hh" 55 #include "G4BetheHeitlerModel.hh" 46 #include "G4PhysicalConstants.hh" 56 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 57 #include "G4SystemOfUnits.hh" 48 #include "G4Electron.hh" 58 #include "G4Electron.hh" 49 #include "G4Positron.hh" 59 #include "G4Positron.hh" 50 #include "G4Gamma.hh" 60 #include "G4Gamma.hh" 51 #include "Randomize.hh" 61 #include "Randomize.hh" 52 #include "G4ParticleChangeForGamma.hh" 62 #include "G4ParticleChangeForGamma.hh" 53 #include "G4Pow.hh" 63 #include "G4Pow.hh" 54 #include "G4Exp.hh" << 55 #include "G4ModifiedTsai.hh" << 56 #include "G4EmParameters.hh" << 57 #include "G4EmElementXS.hh" << 58 #include "G4AutoLock.hh" << 59 64 60 const G4int G4BetheHeitlerModel::gMaxZet = 120 << 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 std::vector<G4BetheHeitlerModel::ElementData*> << 62 66 63 namespace << 67 using namespace std; 64 { << 68 65 G4Mutex theBetheHMutex = G4MUTEX_INITIALIZER << 69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 66 } << 67 70 68 G4BetheHeitlerModel::G4BetheHeitlerModel(const << 71 G4BetheHeitlerModel::G4BetheHeitlerModel(const G4ParticleDefinition*, 69 const << 72 const G4String& nam) 70 : G4VEmModel(nam), << 73 : G4VEmModel(nam) 71 fG4Calc(G4Pow::GetInstance()), fTheGamma(G4G << 72 fTheElectron(G4Electron::Electron()), fThePo << 73 fParticleChange(nullptr) << 74 { 74 { 75 SetAngularDistribution(new G4ModifiedTsai()) << 75 fParticleChange = nullptr; >> 76 theGamma = G4Gamma::Gamma(); >> 77 thePositron = G4Positron::Positron(); >> 78 theElectron = G4Electron::Electron(); >> 79 g4calc = G4Pow::GetInstance(); 76 } 80 } 77 81 >> 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 83 78 G4BetheHeitlerModel::~G4BetheHeitlerModel() 84 G4BetheHeitlerModel::~G4BetheHeitlerModel() 79 { << 85 {} 80 if (isFirstInstance) { << 81 for (auto const & ptr : gElementData) { de << 82 gElementData.clear(); << 83 } << 84 delete fXSection; << 85 } << 86 86 87 void G4BetheHeitlerModel::Initialise(const G4P << 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 88 const G4D << 89 { << 90 if (!fParticleChange) { fParticleChange = Ge << 91 88 92 if (isFirstInstance || gElementData.empty()) << 89 void G4BetheHeitlerModel::Initialise(const G4ParticleDefinition* p, 93 G4AutoLock l(&theBetheHMutex); << 90 const G4DataVector& cuts) 94 if (gElementData.empty()) { << 91 { 95 isFirstInstance = true; << 92 if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); } 96 gElementData.resize(gMaxZet+1, nullptr); << 93 if(IsMaster()) { InitialiseElementSelectors(p, cuts); } 97 << 98 // EPICS2017 flag should be checked only << 99 useEPICS2017 = G4EmParameters::Instance( << 100 if (useEPICS2017) { << 101 fXSection = new G4EmElementXS(1, 100, "convE << 102 } << 103 } << 104 // static data should be initialised only << 105 InitialiseElementData(); << 106 l.unlock(); << 107 } << 108 // element selectors should be initialised i << 109 if(IsMaster()) { << 110 InitialiseElementSelectors(p, cuts); << 111 } << 112 } 94 } 113 95 114 void G4BetheHeitlerModel::InitialiseLocal(cons << 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 115 G4VE << 97 >> 98 void G4BetheHeitlerModel::InitialiseLocal(const G4ParticleDefinition*, >> 99 G4VEmModel* masterModel) 116 { 100 { 117 SetElementSelectors(masterModel->GetElementS 101 SetElementSelectors(masterModel->GetElementSelectors()); 118 } 102 } 119 103 >> 104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 105 >> 106 G4double >> 107 G4BetheHeitlerModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, >> 108 G4double GammaEnergy, G4double Z, >> 109 G4double, G4double, G4double) 120 // Calculates the microscopic cross section in 110 // Calculates the microscopic cross section in GEANT4 internal units. 121 // A parametrized formula from L. Urban is use 111 // A parametrized formula from L. Urban is used to estimate 122 // the total cross section. 112 // the total cross section. 123 // It gives a good description of the data fro 113 // It gives a good description of the data from 1.5 MeV to 100 GeV. 124 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEn 114 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEnergy-2electronmass) 125 // *(GammaEn 115 // *(GammaEnergy-2electronmass) 126 G4double << 127 G4BetheHeitlerModel::ComputeCrossSectionPerAto << 128 << 129 << 130 { 116 { 131 G4double xSection = 0.0 ; 117 G4double xSection = 0.0 ; 132 // short versions << 118 if ( Z < 0.9 || GammaEnergy <= 2.0*electron_mass_c2 ) { return xSection; } 133 static const G4double kMC2 = CLHEP::electro << 119 134 // zero cross section below the kinematical << 120 static const G4double GammaEnergyLimit = 1.5*MeV; 135 if (Z < 0.9 || gammaEnergy <= 2.0*kMC2) { re << 121 static const G4double 136 << 122 a0= 8.7842e+2*microbarn, a1=-1.9625e+3*microbarn, a2= 1.2949e+3*microbarn, 137 G4int iZ = G4lrint(Z); << 123 a3=-2.0028e+2*microbarn, a4= 1.2575e+1*microbarn, a5=-2.8333e-1*microbarn; 138 if (useEPICS2017 && iZ < 101) { << 124 139 return fXSection->GetXS(iZ, gammaEnergy); << 125 static const G4double 140 } << 126 b0=-1.0342e+1*microbarn, b1= 1.7692e+1*microbarn, b2=-8.2381 *microbarn, >> 127 b3= 1.3063 *microbarn, b4=-9.0815e-2*microbarn, b5= 2.3586e-3*microbarn; >> 128 >> 129 static const G4double >> 130 c0=-4.5263e+2*microbarn, c1= 1.1161e+3*microbarn, c2=-8.6749e+2*microbarn, >> 131 c3= 2.1773e+2*microbarn, c4=-2.0467e+1*microbarn, c5= 6.5372e-1*microbarn; >> 132 >> 133 G4double GammaEnergySave = GammaEnergy; >> 134 if (GammaEnergy < GammaEnergyLimit) { GammaEnergy = GammaEnergyLimit; } >> 135 >> 136 G4double X=G4Log(GammaEnergy/electron_mass_c2), X2=X*X, X3=X2*X, X4=X3*X, X5=X4*X; >> 137 >> 138 G4double F1 = a0 + a1*X + a2*X2 + a3*X3 + a4*X4 + a5*X5, >> 139 F2 = b0 + b1*X + b2*X2 + b3*X3 + b4*X4 + b5*X5, >> 140 F3 = c0 + c1*X + c2*X2 + c3*X3 + c4*X4 + c5*X5; 141 141 142 // << 143 static const G4double gammaEnergyLimit = 1.5 << 144 // set coefficients a, b c << 145 static const G4double a0 = 8.7842e+2*CLHEP: << 146 static const G4double a1 = -1.9625e+3*CLHEP: << 147 static const G4double a2 = 1.2949e+3*CLHEP: << 148 static const G4double a3 = -2.0028e+2*CLHEP: << 149 static const G4double a4 = 1.2575e+1*CLHEP: << 150 static const G4double a5 = -2.8333e-1*CLHEP: << 151 << 152 static const G4double b0 = -1.0342e+1*CLHEP: << 153 static const G4double b1 = 1.7692e+1*CLHEP: << 154 static const G4double b2 = -8.2381 *CLHEP: << 155 static const G4double b3 = 1.3063 *CLHEP: << 156 static const G4double b4 = -9.0815e-2*CLHEP: << 157 static const G4double b5 = 2.3586e-3*CLHEP: << 158 << 159 static const G4double c0 = -4.5263e+2*CLHEP: << 160 static const G4double c1 = 1.1161e+3*CLHEP: << 161 static const G4double c2 = -8.6749e+2*CLHEP: << 162 static const G4double c3 = 2.1773e+2*CLHEP: << 163 static const G4double c4 = -2.0467e+1*CLHEP: << 164 static const G4double c5 = 6.5372e-1*CLHEP: << 165 // check low energy limit of the approximati << 166 G4double gammaEnergyOrg = gammaEnergy; << 167 if (gammaEnergy < gammaEnergyLimit) { gammaE << 168 // compute gamma energy variables << 169 const G4double x = G4Log(gammaEnergy/kMC2); << 170 const G4double x2 = x *x; << 171 const G4double x3 = x2*x; << 172 const G4double x4 = x3*x; << 173 const G4double x5 = x4*x; << 174 // << 175 const G4double F1 = a0 + a1*x + a2*x2 + a3*x << 176 const G4double F2 = b0 + b1*x + b2*x2 + b3*x << 177 const G4double F3 = c0 + c1*x + c2*x2 + c3*x << 178 // compute the approximated cross section << 179 xSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3); 142 xSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3); 180 // check if we are below the limit of the ap << 143 181 if (gammaEnergyOrg < gammaEnergyLimit) { << 144 if (GammaEnergySave < GammaEnergyLimit) { 182 const G4double dum = (gammaEnergyOrg-2.*kM << 145 183 xSection *= dum*dum; << 146 X = (GammaEnergySave - 2.*electron_mass_c2) >> 147 / (GammaEnergyLimit - 2.*electron_mass_c2); >> 148 xSection *= X*X; 184 } 149 } 185 // make sure that the cross section is never << 150 186 xSection = std::max(xSection, 0.); 151 xSection = std::max(xSection, 0.); 187 return xSection; 152 return xSection; 188 } 153 } 189 154 >> 155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 156 >> 157 void G4BetheHeitlerModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, >> 158 const G4MaterialCutsCouple* couple, >> 159 const G4DynamicParticle* aDynamicGamma, >> 160 G4double, >> 161 G4double) 190 // The secondaries e+e- energies are sampled u 162 // The secondaries e+e- energies are sampled using the Bethe - Heitler 191 // cross sections with Coulomb correction. 163 // cross sections with Coulomb correction. 192 // A modified version of the random number tec 164 // A modified version of the random number techniques of Butcher & Messel 193 // is used (Nuc Phys 20(1960),15). 165 // is used (Nuc Phys 20(1960),15). 194 // 166 // 195 // GEANT4 internal units. 167 // GEANT4 internal units. 196 // 168 // 197 // Note 1 : Effects due to the breakdown of th 169 // Note 1 : Effects due to the breakdown of the Born approximation at 198 // low energy are ignored. 170 // low energy are ignored. 199 // Note 2 : The differential cross section imp 171 // Note 2 : The differential cross section implicitly takes account of 200 // pair creation in both nuclear and 172 // pair creation in both nuclear and atomic electron fields. 201 // However triplet prodution is not g 173 // However triplet prodution is not generated. 202 void G4BetheHeitlerModel::SampleSecondaries(st << 203 co << 204 co << 205 G4 << 206 { 174 { 207 // set some constant values << 175 const G4Material* aMaterial = couple->GetMaterial(); 208 const G4double gammaEnergy = aDynamicGamm << 176 209 const G4double eps0 = CLHEP::elect << 177 G4double GammaEnergy = aDynamicGamma->GetKineticEnergy(); 210 // << 178 G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection(); 211 // check kinematical limit: gamma energy(Eg) << 179 212 if (eps0 > 0.5) { return; } << 180 G4double epsil ; 213 // << 181 G4double epsil0 = electron_mass_c2/GammaEnergy; 214 // select target element of the material (pr << 182 if(epsil0 > 1.0) { return; } 215 const G4Element* anElement = SelectTargetAto << 183 216 aDyn << 184 // do it fast if GammaEnergy < Egsmall >> 185 // select randomly one element constituing the material >> 186 const G4Element* anElement = >> 187 SelectRandomAtom(aMaterial, theGamma, GammaEnergy); 217 188 218 // << 219 // get the random engine << 220 CLHEP::HepRandomEngine* rndmEngine = G4Rando 189 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine(); 221 // << 190 222 // 'eps' is the total energy transferred to << 191 static const G4double Egsmall=2.*CLHEP::MeV; 223 // gamma energy units Eg. Since the correspo << 192 if (GammaEnergy < Egsmall) { 224 // the kinematical limits for eps0=mc^2/Eg < << 193 225 // 1. 'eps' is sampled uniformly on the [eps << 194 epsil = epsil0 + (0.5-epsil0)*rndmEngine->flat(); 226 // 2. otherwise, on the [eps_min, 0.5] inter << 195 227 G4double eps; << 228 // case 1. << 229 static const G4double Egsmall = 2.*CLHEP::Me << 230 if (gammaEnergy < Egsmall) { << 231 eps = eps0 + (0.5-eps0)*rndmEngine->flat() << 232 } else { 196 } else { 233 // case 2. << 197 // now comes the case with GammaEnergy >= 2. MeV 234 // get the Coulomb factor for the target e << 198 235 // F(Z) = 8*ln(Z)/3 if Eg <= 50 << 199 // Extract Coulomb factor for this Element 236 // F(Z) = 8*ln(Z)/3 + 8*fc(Z) if Eg > 50 << 200 G4double FZ = 8.*(anElement->GetIonisation()->GetlogZ3()); 237 // << 238 // The screening variable 'delta(eps)' = 1 << 239 // Due to the Coulomb correction, the DCS << 240 // kinematicaly allowed eps > eps0 values. << 241 // range with negative DCS, the minimum ep << 242 // max[eps0, epsp] with epsp is the soluti << 243 // with SF being the screening function (S << 244 // The solution is epsp = 0.5 - 0.5*sqrt[ << 245 // with deltap = Exp[(42.038-F(Z))/8.29]-0 << 246 // - when eps=eps_max = 0.5 => << 247 // - epsp = 0.5 - 0.5*sqrt[ 1 - delta_min/ << 248 // - and eps_min = max[eps0, epsp] << 249 static const G4double midEnergy = 50.*CLHE 201 static const G4double midEnergy = 50.*CLHEP::MeV; 250 const G4int iZet = std::min(gMa << 202 if (GammaEnergy > midEnergy) { FZ += 8.*(anElement->GetfCoulomb()); } 251 const G4double deltaFactor = 136.*eps0/an << 203 252 G4double deltaMax = gElementData << 204 // limits of the screening variable 253 G4double FZ = 8.*anElement << 205 G4double screenfac = 136.*epsil0/(anElement->GetIonisation()->GetZ3()); 254 if (gammaEnergy > midEnergy) { << 206 G4double screenmax = G4Exp ((42.24 - FZ)/8.368) + 0.952 ; 255 FZ += 8.*(anElement->GetfCoulomb()) << 207 G4double screenmin = std::min(4.*screenfac, screenmax); 256 deltaMax = gElementData[iZet]->fDeltaMax << 208 257 } << 209 // limits of the energy sampling 258 const G4double deltaMin = 4.*deltaFactor; << 210 G4double epsil1 = 0.5 - 0.5*sqrt(1. - screenmin/screenmax) ; 259 // << 211 G4double epsilmin = std::max(epsil0,epsil1); 260 // compute the limits of eps << 212 G4double epsilrange = 0.5 - epsilmin; 261 const G4double epsp = 0.5 - 0.5*std::s << 213 262 const G4double epsMin = std::max(eps0,ep << 263 const G4double epsRange = 0.5 - epsMin; << 264 // 214 // 265 // sample the energy rate (eps) of the cre << 215 // sample the energy rate of the created electron (or positron) 266 G4double F10, F20; << 216 // 267 ScreenFunction12(deltaMin, F10, F20); << 217 //G4double epsil, screenvar, greject ; 268 F10 -= FZ; << 218 G4double screenvar, greject ; 269 F20 -= FZ; << 219 270 const G4double NormF1 = std::max(F10 * e << 220 G4double F10 = ScreenFunction1(screenmin) - FZ; 271 const G4double NormF2 = std::max(1.5 * F << 221 G4double F20 = ScreenFunction2(screenmin) - FZ; 272 const G4double NormCond = NormF1/(NormF1 + << 222 G4double NormF1 = std::max(F10*epsilrange*epsilrange, 0.); 273 // we will need 3 uniform random number fo << 223 G4double NormF2 = std::max(1.5*F20, 0.); 274 G4double rndmv[3]; << 224 275 G4double greject = 0.; << 276 do { 225 do { 277 rndmEngine->flatArray(3, rndmv); << 226 if ( NormF1/(NormF1+NormF2) > rndmEngine->flat()) { 278 if (NormCond > rndmv[0]) { << 227 epsil = 0.5 - epsilrange*g4calc->A13(rndmEngine->flat()); 279 eps = 0.5 - epsRange * fG4Calc->A13(rn << 228 screenvar = screenfac/(epsil*(1-epsil)); 280 const G4double delta = deltaFactor/(ep << 229 greject = (ScreenFunction1(screenvar) - FZ)/F10; 281 greject = (ScreenFunction1(delta)-FZ)/ << 230 282 } else { 231 } else { 283 eps = epsMin + epsRange*rndmv[1]; << 232 epsil = epsilmin + epsilrange*rndmEngine->flat(); 284 const G4double delta = deltaFactor/(ep << 233 screenvar = screenfac/(epsil*(1-epsil)); 285 greject = (ScreenFunction2(delta)-FZ)/ << 234 greject = (ScreenFunction2(screenvar) - FZ)/F20; 286 } 235 } >> 236 287 // Loop checking, 03-Aug-2015, Vladimir 237 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 288 } while (greject < rndmv[2]); << 238 } while( greject < rndmEngine->flat()); 289 } // end of eps sampling << 239 >> 240 } // end of epsil sampling >> 241 >> 242 // >> 243 // fixe charges randomly 290 // 244 // 291 // select charges randomly << 245 292 G4double eTotEnergy, pTotEnergy; << 246 G4double ElectTotEnergy, PositTotEnergy; 293 if (rndmEngine->flat() > 0.5) { 247 if (rndmEngine->flat() > 0.5) { 294 eTotEnergy = (1.-eps)*gammaEnergy; << 248 295 pTotEnergy = eps*gammaEnergy; << 249 ElectTotEnergy = (1.-epsil)*GammaEnergy; >> 250 PositTotEnergy = epsil*GammaEnergy; >> 251 296 } else { 252 } else { 297 pTotEnergy = (1.-eps)*gammaEnergy; << 253 298 eTotEnergy = eps*gammaEnergy; << 254 PositTotEnergy = (1.-epsil)*GammaEnergy; >> 255 ElectTotEnergy = epsil*GammaEnergy; 299 } 256 } >> 257 >> 258 // >> 259 // scattered electron (positron) angles. ( Z - axis along the parent photon) 300 // 260 // 301 // sample pair kinematics << 261 // universal distribution suggested by L. Urban 302 const G4double eKinEnergy = std::max(0.,eTot << 262 // (Geant3 manual (1993) Phys211), 303 const G4double pKinEnergy = std::max(0.,pTot << 263 // derived from Tsai distribution (Rev Mod Phys 49,421(1977)) >> 264 >> 265 static const G4double a1 = 1.6; >> 266 static const G4double a2 = a1/3.; >> 267 G4double uu = -G4Log(rndmEngine->flat()*rndmEngine->flat()); >> 268 G4double u = (0.25 > rndmEngine->flat()) ? uu*a1 : uu*a2; >> 269 >> 270 G4double thetaEle = u*electron_mass_c2/ElectTotEnergy; >> 271 G4double sinte = std::sin(thetaEle); >> 272 G4double coste = std::cos(thetaEle); >> 273 >> 274 G4double thetaPos = u*electron_mass_c2/PositTotEnergy; >> 275 G4double sintp = std::sin(thetaPos); >> 276 G4double costp = std::cos(thetaPos); >> 277 >> 278 G4double phi = twopi * rndmEngine->flat(); >> 279 G4double sinp = std::sin(phi); >> 280 G4double cosp = std::cos(phi); >> 281 304 // 282 // 305 G4ThreeVector eDirection, pDirection; << 283 // kinematic of the created pair 306 // 284 // 307 GetAngularDistribution()->SamplePairDirectio << 285 // the electron and positron are assumed to have a symetric 308 << 286 // angular distribution with respect to the Z axis along the parent photon. 309 << 287 310 // create G4DynamicParticle object for the p << 288 G4double ElectKineEnergy = std::max(0.,ElectTotEnergy - electron_mass_c2); 311 auto aParticle1= new G4DynamicParticle(fTheE << 289 312 // create G4DynamicParticle object for the p << 290 G4ThreeVector ElectDirection (sinte*cosp, sinte*sinp, coste); 313 auto aParticle2= new G4DynamicParticle(fTheP << 291 ElectDirection.rotateUz(GammaDirection); >> 292 >> 293 // create G4DynamicParticle object for the particle1 >> 294 G4DynamicParticle* aParticle1= new G4DynamicParticle( >> 295 theElectron,ElectDirection,ElectKineEnergy); >> 296 >> 297 // the e+ is always created (even with Ekine=0) for further annihilation. >> 298 >> 299 G4double PositKineEnergy = std::max(0.,PositTotEnergy - electron_mass_c2); >> 300 G4ThreeVector PositDirection (-sintp*cosp, -sintp*sinp, costp); >> 301 PositDirection.rotateUz(GammaDirection); >> 302 >> 303 // create G4DynamicParticle object for the particle2 >> 304 G4DynamicParticle* aParticle2= new G4DynamicParticle( >> 305 thePositron,PositDirection,PositKineEnergy); >> 306 314 // Fill output vector 307 // Fill output vector 315 fvect->push_back(aParticle1); 308 fvect->push_back(aParticle1); 316 fvect->push_back(aParticle2); 309 fvect->push_back(aParticle2); >> 310 317 // kill incident photon 311 // kill incident photon 318 fParticleChange->SetProposedKineticEnergy(0. 312 fParticleChange->SetProposedKineticEnergy(0.); 319 fParticleChange->ProposeTrackStatus(fStopAnd 313 fParticleChange->ProposeTrackStatus(fStopAndKill); 320 } 314 } 321 315 322 // should be called only by the master and at << 316 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 323 void G4BetheHeitlerModel::InitialiseElementDat << 324 { << 325 // create for all elements that are in the d << 326 auto elemTable = G4Element::GetElementTable( << 327 for (auto const & elem : *elemTable) { << 328 const G4int Z = elem->GetZasInt(); << 329 const G4int iz = std::min(gMaxZet, Z); << 330 if (nullptr == gElementData[iz]) { // crea << 331 G4double FZLow = 8.*elem->GetIonisat << 332 G4double FZHigh = FZLow + 8.*elem->Ge << 333 auto elD = new ElementData(); << 334 elD->fDeltaMaxLow = G4Exp((42.038 - FZL << 335 elD->fDeltaMaxHigh = G4Exp((42.038 - FZH << 336 gElementData[iz] = elD; << 337 } << 338 if (useEPICS2017 && Z < 101) { << 339 fXSection->Retrieve(Z); << 340 } << 341 } << 342 << 343 } << 344 << 345 317