Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4AllisonPositronAtRestModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4AllisonPositronAtRestModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4AllisonPositronAtRestModel.cc (Version 10.3.p2)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // GEANT4 Class file                              
 28 //                                                
 29 //                                                
 30 // File name:     G4AllisonPositronAtRestModel    
 31 //                                                
 32 // Author:        Vladimir Ivanchenko             
 33 //                                                
 34 // Creation date: 14 May 2024                     
 35 //                                                
 36 // -------------------------------------------    
 37 //                                                
 38                                                   
 39 #include "G4AllisonPositronAtRestModel.hh"        
 40 #include "G4DynamicParticle.hh"                   
 41 #include "G4Material.hh"                          
 42 #include "Randomize.hh"                           
 43 #include "G4Gamma.hh"                             
 44 #include "G4RandomDirection.hh"                   
 45 #include "G4ThreeVector.hh"                       
 46 #include "G4PhysicalConstants.hh"                 
 47 #include "G4SystemOfUnits.hh"                     
 48                                                   
 49 //....oooOO0OOooo........oooOO0OOooo........oo    
 50                                                   
 51 G4AllisonPositronAtRestModel::G4AllisonPositro    
 52   : G4VPositronAtRestModel("Allison")             
 53 {}                                                
 54                                                   
 55 //....oooOO0OOooo........oooOO0OOooo........oo    
 56                                                   
 57 void G4AllisonPositronAtRestModel::SampleSecon    
 58              std::vector<G4DynamicParticle*>&     
 59              G4double&, const G4Material* mate    
 60 {                                                 
 61   const G4double eGamma = CLHEP::electron_mass    
 62                                                   
 63   // In rest frame of positronium gammas are b    
 64   const G4ThreeVector& dir1 = G4RandomDirectio    
 65   const G4ThreeVector& dir2 = -dir1;              
 66   auto aGamma1 = new G4DynamicParticle(G4Gamma    
 67   auto aGamma2 = new G4DynamicParticle(G4Gamma    
 68                                                   
 69   // In rest frame the gammas are polarised pe    
 70   // Pryce and Ward, Nature No 4065 (1947) p.4    
 71   // Snyder et al, Physical Review 73 (1948) p    
 72   G4ThreeVector pol1 = (G4RandomDirection().cr    
 73   G4ThreeVector pol2 = (pol1.cross(dir2)).unit    
 74                                                   
 75   // A positron in matter slows down and combi    
 76   // make a neutral atom called positronium, a    
 77   // atom. I expect that when the energy of th    
 78   // less than the binding energy of positroni    
 79   // energetically favourable for an electron     
 80   // nearby atom or molecule to transfer and b    
 81   // ionic bond, leaving behind a mildly ionis    
 82   // would expect the positronium to come away    
 83   // few eV on average. In its para (spin 0) s    
 84   // photons, which in the rest frame of the p    
 85   // (back-to-back) due to momentum conservati    
 86   // positronium, photons will be not quite ba    
 87                                                   
 88   // The positroniuim acquires an energy of or    
 89   // doesn't have time to thermalise. Neverthe    
 90   // energy distribution by a Maxwell-Boltzman    
 91   // of a more familiar concept of temperature    
 92   // of energy of translational motion, <KE>=3    
 93   // has a distribution exp(-mv^2/2kT), which     
 94   // and variance kT/m=2<KE>/3m, where m is th    
 95                                                   
 96   const G4double meanEnergyPerIonPair = materi    
 97   const G4double& meanKE = meanEnergyPerIonPai    
 98                                                   
 99   if (meanKE > 0.) {  // Positronium has motio    
100     // Mass of positronium                        
101     const G4double mass = 2.*CLHEP::electron_m    
102     // Mean <KE>=3kT/2, as described above        
103     // const G4double T = 2.*meanKE/(3.*k_Bolt    
104     // Component velocities: Gaussian, varianc    
105     const G4double sigmav = std::sqrt(2.*meanK    
106     // This is in units where c=1                 
107     const G4double vx = G4RandGauss::shoot(0.,    
108     const G4double vy = G4RandGauss::shoot(0.,    
109     const G4double vz = G4RandGauss::shoot(0.,    
110     const G4ThreeVector v(vx,vy,vz);  // In un    
111     const G4ThreeVector& beta = v;    // so be    
112     aGamma1->Set4Momentum(aGamma1->Get4Momentu    
113     aGamma2->Set4Momentum(aGamma2->Get4Momentu    
114                                                   
115     // Rotate polarisation vectors                
116     const G4ThreeVector& newDir1 = aGamma1->Ge    
117     const G4ThreeVector& newDir2 = aGamma2->Ge    
118     const G4ThreeVector& axis1 = dir1.cross(ne    
119     const G4ThreeVector& axis2 = dir2.cross(ne    
120     const G4double& angle1 = std::acos(dir1*ne    
121     const G4double& angle2 = std::acos(dir2*ne    
122     pol1.rotate(axis1, angle1);                   
123     pol2.rotate(axis2, angle2);                   
124   }                                               
125                                                   
126   // use constructors optimal for massless par    
127   aGamma1->SetPolarization(pol1);                 
128   aGamma2->SetPolarization(pol2);                 
129                                                   
130   secParticles.push_back(aGamma1);                
131   secParticles.push_back(aGamma2);                
132 }                                                 
133                                                   
134 //....oooOO0OOooo........oooOO0OOooo........oo    
135                                                   
136 void G4AllisonPositronAtRestModel::PrintGenera    
137 {                                                 
138   G4cout << "\n" << G4endl;                       
139   G4cout << "Allison AtRest positron 2-gamma a    
140   G4cout << "Takes into account positronium mo    
141 }                                                 
142                                                   
143 //....oooOO0OOooo........oooOO0OOooo........oo    
144