Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4ICRU73QOModel.hh,v 1.3 2010-06-04 09:09:31 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4ICRU73QOModel 34 // File name: G4ICRU73QOModel 33 // 35 // 34 // Author: Alexander Bagulya 36 // Author: Alexander Bagulya 35 // 37 // 36 // Creation date: 21.05.2010 38 // Creation date: 21.05.2010 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 41 // 40 // 42 // 41 // Class Description: 43 // Class Description: 42 // 44 // 43 // Quantum Harmonic Oscillator Model for energ 45 // Quantum Harmonic Oscillator Model for energy loss using atomic shell 44 // structure of atoms taking into account Q^2 46 // structure of atoms taking into account Q^2 (main for projectile charge Q), 45 // Q^3 and Q^4 terms for computation of energy 47 // Q^3 and Q^4 terms for computation of energy loss due to binary collisions. 46 // Can be applied on heavy negatively charged 48 // Can be applied on heavy negatively charged particles for the energy interval 47 // 10 keV - 10 MeV scaled to the proton mass. 49 // 10 keV - 10 MeV scaled to the proton mass. 48 // 50 // 49 // Used data and formula of 51 // Used data and formula of 50 // 1. G4QAOLowEnergyLoss class, S.Chauvie, P.N 52 // 1. G4QAOLowEnergyLoss class, S.Chauvie, P.Nieminen, M.G.Pia. IEEE Trans. 51 // Nucl. Sci. 54 (2007) 578. 53 // Nucl. Sci. 54 (2007) 578. 52 // 2. ShellStrength and ShellEnergy from ICRU' 54 // 2. ShellStrength and ShellEnergy from ICRU'73 Report 2005, 53 // 3. Data for Ta (Z=73) from P.Sigmund, A.Shi 55 // 3. Data for Ta (Z=73) from P.Sigmund, A.Shinner. Eur. Phys. J. D15 (2001) 54 // 165-172 56 // 165-172 55 // 57 // 56 // ------------------------------------------- 58 // ------------------------------------------------------------------- 57 // 59 // 58 60 59 #ifndef G4ICRU73QOModel_h 61 #ifndef G4ICRU73QOModel_h 60 #define G4ICRU73QOModel_h 1 62 #define G4ICRU73QOModel_h 1 61 63 62 #include <CLHEP/Units/PhysicalConstants.h> << 63 << 64 #include "G4VEmModel.hh" 64 #include "G4VEmModel.hh" 65 #include "G4AtomicShells.hh" 65 #include "G4AtomicShells.hh" 66 #include "G4DensityEffectData.hh" 66 #include "G4DensityEffectData.hh" 67 67 68 class G4ParticleChangeForLoss; 68 class G4ParticleChangeForLoss; 69 69 70 class G4ICRU73QOModel : public G4VEmModel 70 class G4ICRU73QOModel : public G4VEmModel 71 { 71 { 72 72 73 public: 73 public: 74 74 75 explicit G4ICRU73QOModel(const G4ParticleDef << 75 G4ICRU73QOModel(const G4ParticleDefinition* p = 0, 76 const G4String& nam << 76 const G4String& nam = "ICRU73QO"); 77 77 78 ~G4ICRU73QOModel() = default; << 78 virtual ~G4ICRU73QOModel(); 79 79 80 void Initialise(const G4ParticleDefinition*, << 80 virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&); 81 81 82 G4double ComputeCrossSectionPerElectron( << 82 virtual G4double MinEnergyCut(const G4ParticleDefinition*, 83 const G4Parti << 83 const G4MaterialCutsCouple*); 84 G4double kine << 84 85 G4double cutE << 85 virtual G4double ComputeCrossSectionPerElectron( 86 G4double maxE << 86 const G4ParticleDefinition*, 87 << 87 G4double kineticEnergy, 88 G4double ComputeCrossSectionPerAtom( << 88 G4double cutEnergy, 89 const G4Parti << 89 G4double maxEnergy); 90 G4double kine << 90 91 G4double Z, G << 91 virtual G4double ComputeCrossSectionPerAtom( 92 G4double cutE << 92 const G4ParticleDefinition*, 93 G4double maxE << 93 G4double kineticEnergy, 94 << 94 G4double Z, G4double A, 95 G4double CrossSectionPerVolume(const G4Mater << 95 G4double cutEnergy, 96 const G4Parti << 96 G4double maxEnergy); 97 G4double kine << 97 98 G4double cutE << 98 virtual G4double CrossSectionPerVolume(const G4Material*, 99 G4double maxE << 99 const G4ParticleDefinition*, 100 << 100 G4double kineticEnergy, 101 G4double ComputeDEDXPerVolume(const G4Materi << 101 G4double cutEnergy, 102 const G4ParticleDefinition*, << 102 G4double maxEnergy); 103 G4double kineticEnergy, << 103 104 G4double) override; << 104 virtual G4double ComputeDEDXPerVolume(const G4Material*, 105 << 105 const G4ParticleDefinition*, 106 void SampleSecondaries(std::vector<G4Dynamic << 106 G4double kineticEnergy, 107 const G4MaterialCutsCouple*, << 107 G4double); 108 const G4DynamicParticle*, << 108 109 G4double tmin, << 109 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 110 G4double maxEnergy) override; << 110 const G4MaterialCutsCouple*, >> 111 const G4DynamicParticle*, >> 112 G4double tmin, >> 113 G4double maxEnergy); 111 114 112 // add correction to energy loss and compute 115 // add correction to energy loss and compute non-ionizing energy loss 113 void CorrectionsAlongStep(const G4MaterialCu << 116 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 114 const G4DynamicParticle*, << 117 const G4DynamicParticle*, 115 const G4double& length, << 118 G4double& eloss, 116 G4double& eloss) override; << 119 G4double& niel, >> 120 G4double length); 117 121 118 // hide assignment operator << 119 G4ICRU73QOModel & operator=(const G4ICRU73Q << 120 G4ICRU73QOModel(const G4ICRU73QOModel&) = d << 121 << 122 protected: 122 protected: 123 123 124 G4double MaxSecondaryEnergy(const G4Particle << 124 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 125 G4double kinEnergy) final; << 125 G4double kinEnergy); 126 126 127 private: 127 private: 128 128 129 inline void SetParticle(const G4ParticleDefi 129 inline void SetParticle(const G4ParticleDefinition* p); 130 inline void SetLowestKinEnergy(G4double val) << 130 inline void SetLowestKinEnergy(const G4double val); 131 131 132 G4double DEDX(const G4Material* material, G4 132 G4double DEDX(const G4Material* material, G4double kineticEnergy); 133 133 134 G4double DEDXPerElement(G4int Z, G4double ki 134 G4double DEDXPerElement(G4int Z, G4double kineticEnergy); 135 135 136 // get number of shell, energy and oscillato << 136 // hide assignment operator >> 137 G4ICRU73QOModel & operator=(const G4ICRU73QOModel &right); >> 138 G4ICRU73QOModel(const G4ICRU73QOModel&); >> 139 >> 140 const G4ParticleDefinition* particle; >> 141 G4ParticleDefinition* theElectron; >> 142 G4ParticleChangeForLoss* fParticleChange; >> 143 G4DensityEffectData* denEffData; >> 144 >> 145 G4double mass; >> 146 G4double q; >> 147 G4double chargeSquare; >> 148 G4double massRate; >> 149 G4double ratio; >> 150 G4double lowestKinEnergy; >> 151 >> 152 G4bool isInitialised; >> 153 >> 154 // get number of shell, energy and oscillator strenghts for material 137 G4int GetNumberOfShells(G4int Z) const; 155 G4int GetNumberOfShells(G4int Z) const; 138 156 139 G4double GetShellEnergy(G4int Z, G4int nbOfT 157 G4double GetShellEnergy(G4int Z, G4int nbOfTheShell) const; 140 G4double GetOscillatorEnergy(G4int Z, G4int 158 G4double GetOscillatorEnergy(G4int Z, G4int nbOfTheShell) const; 141 G4double GetShellStrength(G4int Z, G4int nbO 159 G4double GetShellStrength(G4int Z, G4int nbOfTheShell) const; 142 160 143 // calculate stopping number for L's term 161 // calculate stopping number for L's term 144 G4double GetL0(G4double normEnergy) const; 162 G4double GetL0(G4double normEnergy) const; 145 // terms in Z^2 163 // terms in Z^2 146 G4double GetL1(G4double normEnergy) const; 164 G4double GetL1(G4double normEnergy) const; 147 // terms in Z^3 165 // terms in Z^3 148 G4double GetL2(G4double normEnergy) const; 166 G4double GetL2(G4double normEnergy) const; 149 // terms in Z^4 167 // terms in Z^4 150 168 151 const G4ParticleDefinition* particle; << 152 G4ParticleDefinition* theElectron; << 153 G4ParticleChangeForLoss* fParticleChange; << 154 G4DensityEffectData* denEffData; << 155 << 156 G4double mass; << 157 G4double charge; << 158 G4double chargeSquare; << 159 G4double massRate; << 160 G4double ratio; << 161 G4double lowestKinEnergy; << 162 << 163 G4bool isInitialised; << 164 169 165 // Z of element at now avaliable for the mod 170 // Z of element at now avaliable for the model 166 static const G4int NQOELEM = 26; 171 static const G4int NQOELEM = 26; 167 static const G4int NQODATA = 130; 172 static const G4int NQODATA = 130; 168 static const G4int ZElementAvailable[NQOELEM 173 static const G4int ZElementAvailable[NQOELEM]; 169 174 170 // number, energy and oscillator strengths << 175 // number, energy and oscillator strenghts 171 // for an harmonic oscillator model of mater 176 // for an harmonic oscillator model of material 172 static const G4int startElemIndex[NQOELEM]; 177 static const G4int startElemIndex[NQOELEM]; 173 static const G4int nbofShellsForElement[NQOE 178 static const G4int nbofShellsForElement[NQOELEM]; 174 static const G4double ShellEnergy[NQODATA]; 179 static const G4double ShellEnergy[NQODATA]; 175 static const G4double SubShellOccupation[NQO 180 static const G4double SubShellOccupation[NQODATA]; // Z * ShellStrength 176 181 177 G4int indexZ[100]; 182 G4int indexZ[100]; 178 183 179 // variable for calculation of stopping num 184 // variable for calculation of stopping number of L's term 180 static const G4double L0[67][2]; 185 static const G4double L0[67][2]; 181 static const G4double L1[22][2]; 186 static const G4double L1[22][2]; 182 static const G4double L2[14][2]; 187 static const G4double L2[14][2]; 183 188 184 G4int sizeL0; 189 G4int sizeL0; 185 G4int sizeL1; 190 G4int sizeL1; 186 G4int sizeL2; 191 G4int sizeL2; 187 192 188 static const G4double factorBethe[99]; 193 static const G4double factorBethe[99]; 189 194 190 }; 195 }; 191 196 192 //....oooOO0OOooo........oooOO0OOooo........oo 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 198 194 inline void G4ICRU73QOModel::SetParticle(const 199 inline void G4ICRU73QOModel::SetParticle(const G4ParticleDefinition* p) 195 { 200 { 196 particle = p; 201 particle = p; 197 mass = particle->GetPDGMass(); 202 mass = particle->GetPDGMass(); 198 charge = particle->GetPDGCharge()/CLHEP::epl << 203 q = particle->GetPDGCharge()/eplus; 199 chargeSquare = charge*charge; << 204 chargeSquare = q*q; 200 massRate = mass/CLHEP::proton_mass_c2; << 205 massRate = mass/proton_mass_c2; 201 ratio = CLHEP::electron_mass_c2/mass; << 206 ratio = electron_mass_c2/mass; >> 207 } >> 208 >> 209 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 210 >> 211 inline G4int G4ICRU73QOModel::GetNumberOfShells(G4int Z) const >> 212 { >> 213 G4int nShell = 0; >> 214 >> 215 if(indexZ[Z] >= 0) { nShell = nbofShellsForElement[indexZ[Z]]; >> 216 } else { nShell = G4AtomicShells::GetNumberOfShells(Z); } >> 217 >> 218 return nShell; >> 219 } >> 220 >> 221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 222 >> 223 inline G4double G4ICRU73QOModel::GetShellEnergy(G4int Z, >> 224 G4int nbOfTheShell) const >> 225 { >> 226 G4double shellEnergy = 0.; >> 227 >> 228 G4int idx = indexZ[Z]; >> 229 >> 230 if(indexZ[Z] >= 0) { shellEnergy = ShellEnergy[startElemIndex[idx] + nbOfTheShell]*eV; >> 231 } else { shellEnergy = GetOscillatorEnergy(Z, nbOfTheShell); } >> 232 >> 233 return shellEnergy; >> 234 } >> 235 >> 236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 237 >> 238 inline G4double G4ICRU73QOModel::GetShellStrength(G4int Z, >> 239 G4int nbOfTheShell) const >> 240 { >> 241 G4double shellStrength = 0.; >> 242 >> 243 G4int idx = indexZ[Z]; >> 244 >> 245 if(indexZ[Z] >= 0) { shellStrength = SubShellOccupation[startElemIndex[idx] + nbOfTheShell] / Z; >> 246 } else { shellStrength = 1.0 / Z * G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell); } >> 247 >> 248 return shellStrength; 202 } 249 } 203 250 204 //....oooOO0OOooo........oooOO0OOooo........oo 251 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 205 252 206 inline void G4ICRU73QOModel::SetLowestKinEnerg << 253 inline void G4ICRU73QOModel::SetLowestKinEnergy(const G4double val) 207 { 254 { 208 lowestKinEnergy = val; 255 lowestKinEnergy = val; 209 } 256 } 210 257 211 #endif 258 #endif 212 259