Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 26 //--------------------------------------------------------------------------- 27 // 28 // GEANT4 Class file 29 // 30 // Description: Data on density effect 31 // 32 // Authors: A.Bagulya, A.Ivanchenko 28.10.2009 33 // 34 //---------------------------------------------------------------------------- 35 // 36 // Data are taken from: 37 // R.M. Sternheimer et al. Density Effect for the Ionization Loss of Charged 38 // Particles in Various Substances. Atom. Data Nucl. Data Tabl. 30 (1984) 261-271. 39 40 #ifndef DensityEffectData_h 41 #define DensityEffectData_h 1 42 43 #include "G4Material.hh" 44 #include "globals.hh" 45 46 #include <vector> 47 48 const G4int NDENSDATA = 278; 49 const G4int NDENSARRAY = 10; 50 const G4int NDENSELEM = 98; 51 52 class G4DensityEffectData 53 { 54 public: 55 G4DensityEffectData(); 56 57 ~G4DensityEffectData() = default; 58 59 // Assignment operator and copy constructor 60 G4DensityEffectData& operator=(const G4DensityEffectData& right) = delete; 61 G4DensityEffectData(const G4DensityEffectData&) = delete; 62 63 // return index by Z, -1 if material is not in the table 64 G4int GetElementIndex(G4int Z, G4State st = kStateUndefined) const; 65 66 // return index by material name, -1 if material is not in the table 67 G4int GetIndex(const G4String& matName) const; 68 69 // printout data for material 70 void PrintData(const G4String& matName) const; 71 72 // printout all data 73 void DumpData() const; 74 75 // Access to the data via index 76 inline G4double GetPlasmaEnergy(G4int idx) const; 77 inline G4double GetAdjustmentFactor(G4int idx) const; 78 inline G4double GetCdensity(G4int idx) const; 79 inline G4double GetX0density(G4int idx) const; 80 inline G4double GetX1density(G4int idx) const; 81 inline G4double GetAdensity(G4int idx) const; 82 inline G4double GetMdensity(G4int idx) const; 83 inline G4double GetDelta0density(G4int idx) const; 84 inline G4double GetErrorDensity(G4int idx) const; 85 inline G4double GetMeanIonisationPotential(G4int idx) const; 86 87 private: 88 void Initialize(); 89 90 void AddMaterial(G4double* val, const G4String& matName); 91 92 G4double data[NDENSDATA][NDENSARRAY]; 93 std::vector<G4String> names; 94 95 // indexes defined only for pure materials 96 G4int indexZ[NDENSELEM]; 97 G4State state[NDENSELEM]; 98 99 G4int index{0}; 100 }; 101 102 inline G4double G4DensityEffectData::GetPlasmaEnergy(G4int idx) const 103 { 104 return (idx >= 0 && idx < NDENSDATA) ? data[idx][0] : DBL_MAX; 105 } 106 107 inline G4double G4DensityEffectData::GetAdjustmentFactor(G4int idx) const 108 { 109 return (idx >= 0 && idx < NDENSDATA) ? data[idx][1] : DBL_MAX; 110 } 111 112 inline G4double G4DensityEffectData::GetCdensity(G4int idx) const 113 { 114 return (idx >= 0 && idx < NDENSDATA) ? data[idx][2] : DBL_MAX; 115 } 116 117 inline G4double G4DensityEffectData::GetX0density(G4int idx) const 118 { 119 return (idx >= 0 && idx < NDENSDATA) ? data[idx][3] : DBL_MAX; 120 } 121 122 inline G4double G4DensityEffectData::GetX1density(G4int idx) const 123 { 124 return (idx >= 0 && idx < NDENSDATA) ? data[idx][4] : DBL_MAX; 125 } 126 127 inline G4double G4DensityEffectData::GetAdensity(G4int idx) const 128 { 129 return (idx >= 0 && idx < NDENSDATA) ? data[idx][5] : DBL_MAX; 130 } 131 132 inline G4double G4DensityEffectData::GetMdensity(G4int idx) const 133 { 134 return (idx >= 0 && idx < NDENSDATA) ? data[idx][6] : DBL_MAX; 135 } 136 137 inline G4double G4DensityEffectData::GetDelta0density(G4int idx) const 138 { 139 return (idx >= 0 && idx < NDENSDATA) ? data[idx][7] : DBL_MAX; 140 } 141 142 inline G4double G4DensityEffectData::GetErrorDensity(G4int idx) const 143 { 144 return (idx >= 0 && idx < NDENSDATA) ? data[idx][8] : DBL_MAX; 145 } 146 147 inline G4double G4DensityEffectData::GetMeanIonisationPotential(G4int idx) const 148 { 149 return (idx >= 0 && idx < NDENSDATA) ? data[idx][9] : DBL_MAX; 150 } 151 152 #endif 153