Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4ICRU73QOModel.hh 66241 2012-12-13 18:34:42Z gunter $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class header file 30 // GEANT4 Class header file 30 // 31 // 31 // 32 // 32 // File name: G4ICRU73QOModel 33 // File name: G4ICRU73QOModel 33 // 34 // 34 // Author: Alexander Bagulya 35 // Author: Alexander Bagulya 35 // 36 // 36 // Creation date: 21.05.2010 37 // Creation date: 21.05.2010 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // 41 // 41 // Class Description: 42 // Class Description: 42 // 43 // 43 // Quantum Harmonic Oscillator Model for energ 44 // Quantum Harmonic Oscillator Model for energy loss using atomic shell 44 // structure of atoms taking into account Q^2 45 // structure of atoms taking into account Q^2 (main for projectile charge Q), 45 // Q^3 and Q^4 terms for computation of energy 46 // Q^3 and Q^4 terms for computation of energy loss due to binary collisions. 46 // Can be applied on heavy negatively charged 47 // Can be applied on heavy negatively charged particles for the energy interval 47 // 10 keV - 10 MeV scaled to the proton mass. 48 // 10 keV - 10 MeV scaled to the proton mass. 48 // 49 // 49 // Used data and formula of 50 // Used data and formula of 50 // 1. G4QAOLowEnergyLoss class, S.Chauvie, P.N 51 // 1. G4QAOLowEnergyLoss class, S.Chauvie, P.Nieminen, M.G.Pia. IEEE Trans. 51 // Nucl. Sci. 54 (2007) 578. 52 // Nucl. Sci. 54 (2007) 578. 52 // 2. ShellStrength and ShellEnergy from ICRU' 53 // 2. ShellStrength and ShellEnergy from ICRU'73 Report 2005, 53 // 3. Data for Ta (Z=73) from P.Sigmund, A.Shi 54 // 3. Data for Ta (Z=73) from P.Sigmund, A.Shinner. Eur. Phys. J. D15 (2001) 54 // 165-172 55 // 165-172 55 // 56 // 56 // ------------------------------------------- 57 // ------------------------------------------------------------------- 57 // 58 // 58 59 59 #ifndef G4ICRU73QOModel_h 60 #ifndef G4ICRU73QOModel_h 60 #define G4ICRU73QOModel_h 1 61 #define G4ICRU73QOModel_h 1 61 62 62 #include <CLHEP/Units/PhysicalConstants.h> 63 #include <CLHEP/Units/PhysicalConstants.h> 63 64 64 #include "G4VEmModel.hh" 65 #include "G4VEmModel.hh" 65 #include "G4AtomicShells.hh" 66 #include "G4AtomicShells.hh" 66 #include "G4DensityEffectData.hh" 67 #include "G4DensityEffectData.hh" 67 68 68 class G4ParticleChangeForLoss; 69 class G4ParticleChangeForLoss; 69 70 70 class G4ICRU73QOModel : public G4VEmModel 71 class G4ICRU73QOModel : public G4VEmModel 71 { 72 { 72 73 73 public: 74 public: 74 75 75 explicit G4ICRU73QOModel(const G4ParticleDef << 76 G4ICRU73QOModel(const G4ParticleDefinition* p = 0, 76 const G4String& nam << 77 const G4String& nam = "ICRU73QO"); 77 78 78 ~G4ICRU73QOModel() = default; << 79 virtual ~G4ICRU73QOModel(); 79 80 80 void Initialise(const G4ParticleDefinition*, << 81 virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&); 81 82 82 G4double ComputeCrossSectionPerElectron( << 83 virtual G4double ComputeCrossSectionPerElectron( 83 const G4Parti << 84 const G4ParticleDefinition*, 84 G4double kine << 85 G4double kineticEnergy, 85 G4double cutE << 86 G4double cutEnergy, 86 G4double maxE << 87 G4double maxEnergy); 87 << 88 88 G4double ComputeCrossSectionPerAtom( << 89 virtual G4double ComputeCrossSectionPerAtom( 89 const G4Parti << 90 const G4ParticleDefinition*, 90 G4double kine << 91 G4double kineticEnergy, 91 G4double Z, G << 92 G4double Z, G4double A, 92 G4double cutE << 93 G4double cutEnergy, 93 G4double maxE << 94 G4double maxEnergy); 94 << 95 95 G4double CrossSectionPerVolume(const G4Mater << 96 virtual G4double CrossSectionPerVolume(const G4Material*, 96 const G4Parti << 97 const G4ParticleDefinition*, 97 G4double kine << 98 G4double kineticEnergy, 98 G4double cutE << 99 G4double cutEnergy, 99 G4double maxE << 100 G4double maxEnergy); 100 << 101 101 G4double ComputeDEDXPerVolume(const G4Materi << 102 virtual G4double ComputeDEDXPerVolume(const G4Material*, 102 const G4ParticleDefinition*, << 103 const G4ParticleDefinition*, 103 G4double kineticEnergy, << 104 G4double kineticEnergy, 104 G4double) override; << 105 G4double); 105 << 106 106 void SampleSecondaries(std::vector<G4Dynamic << 107 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 107 const G4MaterialCutsCouple*, << 108 const G4MaterialCutsCouple*, 108 const G4DynamicParticle*, << 109 const G4DynamicParticle*, 109 G4double tmin, << 110 G4double tmin, 110 G4double maxEnergy) override; << 111 G4double maxEnergy); 111 112 112 // add correction to energy loss and compute 113 // add correction to energy loss and compute non-ionizing energy loss 113 void CorrectionsAlongStep(const G4MaterialCu << 114 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 114 const G4DynamicParticle*, << 115 const G4DynamicParticle*, 115 const G4double& length, << 116 G4double& eloss, 116 G4double& eloss) override; << 117 G4double& niel, >> 118 G4double length); 117 119 118 // hide assignment operator << 119 G4ICRU73QOModel & operator=(const G4ICRU73Q << 120 G4ICRU73QOModel(const G4ICRU73QOModel&) = d << 121 << 122 protected: 120 protected: 123 121 124 G4double MaxSecondaryEnergy(const G4Particle << 122 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 125 G4double kinEnergy) final; << 123 G4double kinEnergy); 126 124 127 private: 125 private: 128 126 129 inline void SetParticle(const G4ParticleDefi 127 inline void SetParticle(const G4ParticleDefinition* p); 130 inline void SetLowestKinEnergy(G4double val) << 128 inline void SetLowestKinEnergy(const G4double val); 131 129 132 G4double DEDX(const G4Material* material, G4 130 G4double DEDX(const G4Material* material, G4double kineticEnergy); 133 131 134 G4double DEDXPerElement(G4int Z, G4double ki 132 G4double DEDXPerElement(G4int Z, G4double kineticEnergy); 135 133 136 // get number of shell, energy and oscillato << 134 // hide assignment operator 137 G4int GetNumberOfShells(G4int Z) const; << 135 G4ICRU73QOModel & operator=(const G4ICRU73QOModel &right); 138 << 136 G4ICRU73QOModel(const G4ICRU73QOModel&); 139 G4double GetShellEnergy(G4int Z, G4int nbOfT << 140 G4double GetOscillatorEnergy(G4int Z, G4int << 141 G4double GetShellStrength(G4int Z, G4int nbO << 142 137 143 // calculate stopping number for L's term << 144 G4double GetL0(G4double normEnergy) const; << 145 // terms in Z^2 << 146 G4double GetL1(G4double normEnergy) const; << 147 // terms in Z^3 << 148 G4double GetL2(G4double normEnergy) const; << 149 // terms in Z^4 << 150 << 151 const G4ParticleDefinition* particle; 138 const G4ParticleDefinition* particle; 152 G4ParticleDefinition* theElectron; 139 G4ParticleDefinition* theElectron; 153 G4ParticleChangeForLoss* fParticleChange; 140 G4ParticleChangeForLoss* fParticleChange; 154 G4DensityEffectData* denEffData; 141 G4DensityEffectData* denEffData; 155 142 156 G4double mass; 143 G4double mass; 157 G4double charge; 144 G4double charge; 158 G4double chargeSquare; 145 G4double chargeSquare; 159 G4double massRate; 146 G4double massRate; 160 G4double ratio; 147 G4double ratio; 161 G4double lowestKinEnergy; 148 G4double lowestKinEnergy; 162 149 163 G4bool isInitialised; 150 G4bool isInitialised; 164 151 >> 152 // get number of shell, energy and oscillator strenghts for material >> 153 G4int GetNumberOfShells(G4int Z) const; >> 154 >> 155 G4double GetShellEnergy(G4int Z, G4int nbOfTheShell) const; >> 156 G4double GetOscillatorEnergy(G4int Z, G4int nbOfTheShell) const; >> 157 G4double GetShellStrength(G4int Z, G4int nbOfTheShell) const; >> 158 >> 159 // calculate stopping number for L's term >> 160 G4double GetL0(G4double normEnergy) const; >> 161 // terms in Z^2 >> 162 G4double GetL1(G4double normEnergy) const; >> 163 // terms in Z^3 >> 164 G4double GetL2(G4double normEnergy) const; >> 165 // terms in Z^4 >> 166 >> 167 165 // Z of element at now avaliable for the mod 168 // Z of element at now avaliable for the model 166 static const G4int NQOELEM = 26; 169 static const G4int NQOELEM = 26; 167 static const G4int NQODATA = 130; 170 static const G4int NQODATA = 130; 168 static const G4int ZElementAvailable[NQOELEM 171 static const G4int ZElementAvailable[NQOELEM]; 169 172 170 // number, energy and oscillator strengths << 173 // number, energy and oscillator strenghts 171 // for an harmonic oscillator model of mater 174 // for an harmonic oscillator model of material 172 static const G4int startElemIndex[NQOELEM]; 175 static const G4int startElemIndex[NQOELEM]; 173 static const G4int nbofShellsForElement[NQOE 176 static const G4int nbofShellsForElement[NQOELEM]; 174 static const G4double ShellEnergy[NQODATA]; 177 static const G4double ShellEnergy[NQODATA]; 175 static const G4double SubShellOccupation[NQO 178 static const G4double SubShellOccupation[NQODATA]; // Z * ShellStrength 176 179 177 G4int indexZ[100]; 180 G4int indexZ[100]; 178 181 179 // variable for calculation of stopping num 182 // variable for calculation of stopping number of L's term 180 static const G4double L0[67][2]; 183 static const G4double L0[67][2]; 181 static const G4double L1[22][2]; 184 static const G4double L1[22][2]; 182 static const G4double L2[14][2]; 185 static const G4double L2[14][2]; 183 186 184 G4int sizeL0; 187 G4int sizeL0; 185 G4int sizeL1; 188 G4int sizeL1; 186 G4int sizeL2; 189 G4int sizeL2; 187 190 188 static const G4double factorBethe[99]; 191 static const G4double factorBethe[99]; 189 192 190 }; 193 }; 191 194 192 //....oooOO0OOooo........oooOO0OOooo........oo 195 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 196 194 inline void G4ICRU73QOModel::SetParticle(const 197 inline void G4ICRU73QOModel::SetParticle(const G4ParticleDefinition* p) 195 { 198 { 196 particle = p; 199 particle = p; 197 mass = particle->GetPDGMass(); 200 mass = particle->GetPDGMass(); 198 charge = particle->GetPDGCharge()/CLHEP::epl 201 charge = particle->GetPDGCharge()/CLHEP::eplus; 199 chargeSquare = charge*charge; 202 chargeSquare = charge*charge; 200 massRate = mass/CLHEP::proton_mass_c2; 203 massRate = mass/CLHEP::proton_mass_c2; 201 ratio = CLHEP::electron_mass_c2/mass; 204 ratio = CLHEP::electron_mass_c2/mass; 202 } 205 } 203 206 204 //....oooOO0OOooo........oooOO0OOooo........oo 207 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 205 208 206 inline void G4ICRU73QOModel::SetLowestKinEnerg << 209 inline G4int G4ICRU73QOModel::GetNumberOfShells(G4int Z) const >> 210 { >> 211 G4int nShell = 0; >> 212 >> 213 if(indexZ[Z] >= 0) { nShell = nbofShellsForElement[indexZ[Z]]; >> 214 } else { nShell = G4AtomicShells::GetNumberOfShells(Z); } >> 215 >> 216 return nShell; >> 217 } >> 218 >> 219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 220 >> 221 inline G4double >> 222 G4ICRU73QOModel::GetShellEnergy(G4int Z, G4int nbOfTheShell) const >> 223 { >> 224 G4double shellEnergy = 0.; >> 225 >> 226 G4int idx = indexZ[Z]; >> 227 >> 228 if(idx >= 0) { shellEnergy = ShellEnergy[startElemIndex[idx] + nbOfTheShell]*CLHEP::eV; >> 229 } else { shellEnergy = GetOscillatorEnergy(Z, nbOfTheShell); } >> 230 >> 231 return shellEnergy; >> 232 } >> 233 >> 234 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 235 >> 236 inline G4double >> 237 G4ICRU73QOModel::GetShellStrength(G4int Z, G4int nbOfTheShell) const >> 238 { >> 239 G4double shellStrength = 0.; >> 240 >> 241 G4int idx = indexZ[Z]; >> 242 >> 243 if(idx >= 0) { shellStrength = SubShellOccupation[startElemIndex[idx] + nbOfTheShell] / Z; >> 244 } else { shellStrength = G4double(G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell))/Z; } >> 245 >> 246 return shellStrength; >> 247 } >> 248 >> 249 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 250 >> 251 inline void G4ICRU73QOModel::SetLowestKinEnergy(const G4double val) 207 { 252 { 208 lowestKinEnergy = val; 253 lowestKinEnergy = val; 209 } 254 } 210 255 211 #endif 256 #endif 212 257