Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/polarisation/src/G4PolarizedComptonModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/polarisation/src/G4PolarizedComptonModel.cc (Version 11.3.0) and /processes/electromagnetic/polarisation/src/G4PolarizedComptonModel.cc (Version 8.3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4PolarizedComptonModel.cc,v 1.3 2006/11/09 18:00:49 vnivanch Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-08-02 $
                                                   >>  29 //
 26 // -------------------------------------------     30 // -------------------------------------------------------------------
 27 //                                                 31 //
 28 // Geant4 Class file                           <<  32 // GEANT4 Class file
                                                   >>  33 //
 29 //                                                 34 //
 30 // File name:     G4PolarizedComptonModel          35 // File name:     G4PolarizedComptonModel
 31 //                                                 36 //
 32 // Author:        Andreas Schaelicke               37 // Author:        Andreas Schaelicke
                                                   >>  38 //
                                                   >>  39 // Creation date: 01.05.2005
                                                   >>  40 //
                                                   >>  41 // Modifications:
                                                   >>  42 // 18-07-06 use newly calculated cross sections (P. Starovoitov)
                                                   >>  43 // 21-08-05 update interface (A. Schaelicke)
                                                   >>  44 //
                                                   >>  45 // Class Description:
                                                   >>  46 //
                                                   >>  47 // -------------------------------------------------------------------
                                                   >>  48 //
                                                   >>  49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 33                                                    51 
 34 #include "G4PolarizedComptonModel.hh"              52 #include "G4PolarizedComptonModel.hh"
 35                                                <<  53 #include "G4Electron.hh"
 36 #include "G4Exp.hh"                            <<  54 #include "G4Gamma.hh"
 37 #include "G4Log.hh"                            <<  55 #include "Randomize.hh"
                                                   >>  56 #include "G4DataVector.hh"
 38 #include "G4ParticleChangeForGamma.hh"             57 #include "G4ParticleChangeForGamma.hh"
 39 #include "G4PhysicalConstants.hh"              <<  58 
                                                   >>  59 
                                                   >>  60 #include "G4StokesVector.hh"
 40 #include "G4PolarizationManager.hh"                61 #include "G4PolarizationManager.hh"
 41 #include "G4PolarizationHelper.hh"                 62 #include "G4PolarizationHelper.hh"
 42 #include "G4PolarizedComptonXS.hh"             <<  63 #include "G4PolarizedComptonCrossSection.hh"
 43 #include "G4StokesVector.hh"                   << 
 44 #include "G4SystemOfUnits.hh"                  << 
 45                                                    64 
 46 //....oooOO0OOooo........oooOO0OOooo........oo     65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  66 
 47 G4PolarizedComptonModel::G4PolarizedComptonMod     67 G4PolarizedComptonModel::G4PolarizedComptonModel(const G4ParticleDefinition*,
 48                                                <<  68                                              const G4String& nam)
 49   : G4KleinNishinaCompton(nullptr, nam)        <<  69   : G4KleinNishinaCompton(0,nam),
 50   , fVerboseLevel(0)                           <<  70     verboseLevel(0)
 51 {                                                  71 {
 52   fCrossSectionCalculator = new G4PolarizedCom <<  72   crossSectionCalculator=new G4PolarizedComptonCrossSection();
 53   fBeamPolarization       = G4StokesVector::ZE << 
 54   fTargetPolarization     = G4StokesVector::ZE << 
 55 }                                                  73 }
 56                                                    74 
 57 //....oooOO0OOooo........oooOO0OOooo........oo     75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  76 
 58 G4PolarizedComptonModel::~G4PolarizedComptonMo     77 G4PolarizedComptonModel::~G4PolarizedComptonModel()
 59 {                                                  78 {
 60   delete fCrossSectionCalculator;              <<  79   if (crossSectionCalculator) delete crossSectionCalculator;
 61 }                                                  80 }
 62                                                    81 
 63 //....oooOO0OOooo........oooOO0OOooo........oo <<  82 
 64 G4double G4PolarizedComptonModel::ComputeAsymm <<  83 
 65                                                <<  84 G4double G4PolarizedComptonModel::ComputeAsymmetryPerAtom
                                                   >>  85                        (G4double gammaEnergy, G4double /*Z*/)
                                                   >>  86  
 66 {                                                  87 {
 67   G4double asymmetry = 0.0;                    <<  88  G4double asymmetry = 0.0 ;
 68                                                    89 
 69   G4double k0 = gammaEnergy / electron_mass_c2 <<  90  G4double k0 = gammaEnergy / electron_mass_c2 ;
 70   G4double k1 = 1. + 2. * k0;                  <<  91  G4double k1 = 1 + 2*k0 ;
 71                                                    92 
 72   asymmetry = -k0;                             <<  93  asymmetry = -k0;
 73   asymmetry *=                                 <<  94  asymmetry *= (k0 + 1.)*sqr(k1)*std::log(k1) - 2.*k0*(5.*sqr(k0) + 4.*k0 + 1.);
 74     (k0 + 1.) * sqr(k1) * G4Log(k1) - 2. * k0  <<  95  asymmetry /= ((k0 - 2.)*k0  -2.)*sqr(k1)*std::log(k1) + 2.*k0*(k0*(k0 + 1.)*(k0 + 8.) + 2.);   
 75   asymmetry /= ((k0 - 2.) * k0 - 2.) * sqr(k1) << 
 76                2. * k0 * (k0 * (k0 + 1.) * (k0 << 
 77                                                    96 
 78   if(asymmetry > 1.)                           <<  97  // G4cout<<"energy = "<<GammaEnergy<<"  asymmetry = "<<asymmetry<<"\t\t GAM = "<<k0<<G4endl;
 79   {                                            <<  98  if (asymmetry>1.) G4cout<<"ERROR in G4PolarizedComptonModel::ComputeAsymmetryPerAtom"<<G4endl;
 80     G4ExceptionDescription ed;                 << 
 81     ed << "ERROR in G4PolarizedComptonModel::C << 
 82        << " asymmetry = " << asymmetry << "\n" << 
 83     G4Exception("G4PolarizedComptonModel::Comp << 
 84                 JustWarning, ed);              << 
 85   }                                            << 
 86                                                    99 
 87   return asymmetry;                            << 100  return asymmetry;
 88 }                                                 101 }
 89                                                   102 
 90 //....oooOO0OOooo........oooOO0OOooo........oo << 103 
 91 G4double G4PolarizedComptonModel::ComputeCross    104 G4double G4PolarizedComptonModel::ComputeCrossSectionPerAtom(
 92   const G4ParticleDefinition* pd, G4double kin << 105                                 const G4ParticleDefinition* pd,
 93   G4double cut, G4double emax)                 << 106                                       G4double kinEnergy, 
                                                   >> 107                                       G4double Z, 
                                                   >> 108                                       G4double A, 
                                                   >> 109                                       G4double cut,
                                                   >> 110                                       G4double emax)
 94 {                                                 111 {
 95   G4double xs = G4KleinNishinaCompton::Compute << 112   double xs = 
 96     pd, kinEnergy, Z, A, cut, emax);           << 113     G4KleinNishinaCompton::ComputeCrossSectionPerAtom(pd,kinEnergy,
 97   G4double polzz = fBeamPolarization.p3() * fT << 114                   Z,A,cut,emax);
 98   if(polzz > 0.0)                              << 115   G4double polzz = theBeamPolarization.p3()*theTargetPolarization.z();
 99   {                                            << 116   if (polzz!=0) {
100     G4double asym = ComputeAsymmetryPerAtom(ki << 117     G4double asym=ComputeAsymmetryPerAtom(kinEnergy, Z);  
101     xs *= (1. + polzz * asym);                 << 118     xs*=(1.+polzz*asym);
102   }                                               119   }
103   return xs;                                      120   return xs;
104 }                                                 121 }
105                                                   122 
                                                   >> 123 
106 //....oooOO0OOooo........oooOO0OOooo........oo    124 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107 void G4PolarizedComptonModel::SampleSecondarie << 
108   std::vector<G4DynamicParticle*>* fvect, cons << 
109   const G4DynamicParticle* aDynamicGamma, G4do << 
110 {                                              << 
111   // do nothing below the threshold            << 
112   if(aDynamicGamma->GetKineticEnergy() <= LowE << 
113   {                                            << 
114     return;                                    << 
115   }                                            << 
116                                                   125 
117   const G4Track* aTrack       = fParticleChang << 126 std::vector<G4DynamicParticle*>* G4PolarizedComptonModel::SampleSecondaries(
118   G4VPhysicalVolume* aPVolume = aTrack->GetVol << 127             const G4MaterialCutsCouple*,
119   G4LogicalVolume* aLVolume   = aPVolume->GetL << 128             const G4DynamicParticle* aDynamicGamma,
                                                   >> 129             G4double,
                                                   >> 130             G4double)
                                                   >> 131 {
                                                   >> 132   const G4Track * aTrack = fParticleChange->GetCurrentTrack();
                                                   >> 133   G4VPhysicalVolume*  aPVolume  = aTrack->GetVolume();
                                                   >> 134   G4LogicalVolume*    aLVolume  = aPVolume->GetLogicalVolume();
                                                   >> 135 
                                                   >> 136   if (verboseLevel>=1) 
                                                   >> 137     G4cout<<"G4PolarizedComptonModel::SampleSecondaries in "
                                                   >> 138           <<  aLVolume->GetName() <<G4endl;
120                                                   139 
121   if(fVerboseLevel >= 1)                       << 140   G4PolarizationManager * polarizationManager = G4PolarizationManager::GetInstance();
122   {                                            << 
123     G4cout << "G4PolarizedComptonModel::Sample << 
124            << aLVolume->GetName() << G4endl;   << 
125   }                                            << 
126   G4PolarizationManager* polarizationManager = << 
127     G4PolarizationManager::GetInstance();      << 
128                                                   141 
129   // obtain polarization of the beam              142   // obtain polarization of the beam
130   fBeamPolarization = G4StokesVector(aDynamicG << 143   theBeamPolarization =  aDynamicGamma->GetPolarization();
131   fBeamPolarization.SetPhoton();               << 144   theBeamPolarization.SetPhoton();
132                                                   145 
133   // obtain polarization of the media             146   // obtain polarization of the media
134   G4bool targetIsPolarized = polarizationManag << 147   const G4bool targetIsPolarized = polarizationManager->IsPolarized(aLVolume);
135   fTargetPolarization = polarizationManager->G << 148   theTargetPolarization = polarizationManager->GetVolumePolarization(aLVolume);
136                                                   149 
137   // if beam is linear polarized or target is  << 150   // if beam is linear polarized or target is transversely polarized 
138   // determine the angle to x-axis                151   // determine the angle to x-axis
139   // (assumes same PRF as in the polarization     152   // (assumes same PRF as in the polarization definition)
                                                   >> 153 
140   G4ThreeVector gamDirection0 = aDynamicGamma-    154   G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection();
141                                                   155 
142   // transfer fTargetPolarization              << 156   // transfere theTargetPolarization 
143   // into the gamma frame (problem electron is    157   // into the gamma frame (problem electron is at rest)
144   if(targetIsPolarized)                        << 158   if (targetIsPolarized)
145   {                                            << 159     theTargetPolarization.rotateUz(gamDirection0);
146     fTargetPolarization.rotateUz(gamDirection0 << 
147   }                                            << 
148   // The scattered gamma energy is sampled acc << 
149   // Klein - Nishina formula.                  << 
150   // The random number techniques of Butcher & << 
151   // (Nuc Phys 20(1960),15).                   << 
152   // Note : Effects due to binding of atomic e << 
153                                                   160 
                                                   >> 161   // The scattered gamma energy is sampled according to Klein - Nishina formula.
                                                   >> 162   // The random number techniques of Butcher & Messel are used 
                                                   >> 163   // (Nuc Phys 20(1960),15).
                                                   >> 164   // Note : Effects due to binding of atomic electrons are negliged.
                                                   >> 165  
154   G4double gamEnergy0 = aDynamicGamma->GetKine    166   G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
155   G4double E0_m       = gamEnergy0 / electron_ << 167   G4double E0_m = gamEnergy0 / electron_mass_c2 ;
156                                                << 
157   // sample the energy rate of the scattered g << 
158   G4double epsilon, sint2;                     << 
159   G4double onecost = 0.0;                      << 
160   G4double Phi     = 0.0;                      << 
161   G4double greject = 1.0;                      << 
162   G4double cosTeta = 1.0;                      << 
163   G4double sinTeta = 0.0;                      << 
164                                                << 
165   G4double eps0       = 1. / (1. + 2. * E0_m); << 
166   G4double epsilon0sq = eps0 * eps0;           << 
167   G4double alpha1     = -G4Log(eps0);          << 
168   G4double alpha2     = alpha1 + 0.5 * (1. - e << 
169                                                << 
170   G4double polarization = fBeamPolarization.p3 << 
171                                                << 
172   CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 
173   G4int nloop                           = 0;   << 
174   G4bool end                            = fals << 
175                                                   168 
176   G4double rndm[3];                            << 
177                                                   169 
178   do                                           << 170   //
179   {                                            << 171   // sample the energy rate of the scattered gamma 
180     do                                         << 172   //
181     {                                          << 173 
182       ++nloop;                                 << 174   G4double epsilon, epsilonsq, onecost, sint2, greject ;
183       // false interaction if too many iterati << 175 
184       if(nloop > fLoopLim)                     << 176   G4double epsilon0   = 1./(1. + 2.*E0_m);
185       {                                        << 177   G4double epsilon0sq = epsilon0*epsilon0;
186         PrintWarning(aDynamicGamma, nloop, gre << 178   G4double alpha1     = - std::log(epsilon0);
187                      "too many iterations");   << 179   G4double alpha2     = 0.5*(1.- epsilon0sq);
188         return;                                << 180 
189       }                                        << 181   G4double polarization = theBeamPolarization.p3()*theTargetPolarization.p3();
190                                                << 182   do {
191       // 3 random numbers to sample scattering << 183     if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) {
192       rndmEngineMod->flatArray(3, rndm);       << 184       epsilon   = std::exp(-alpha1*G4UniformRand());   // epsilon0**r
193                                                << 185       epsilonsq = epsilon*epsilon; 
194       if(alpha1 > alpha2 * rndm[0])            << 186 
195       {                                        << 187     } else {
196         epsilon = G4Exp(-alpha1 * rndm[1]);    << 188       epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
197       }                                        << 189       epsilon   = std::sqrt(epsilonsq);
198       else                                     << 190     };
199       {                                        << 191 
200         epsilon = std::sqrt(epsilon0sq + (1. - << 192     onecost = (1.- epsilon)/(epsilon*E0_m);
201       }                                        << 193     sint2   = onecost*(2.-onecost);
202                                                << 194 
203       onecost = (1. - epsilon) / (epsilon * E0 << 195 
204       sint2   = onecost * (2. - onecost);      << 196     G4double gdiced = 2.*(1./epsilon+epsilon);
205                                                << 197     G4double gdist  = 1./epsilon + epsilon - sint2 
206       G4double gdiced = 2. * (1. / epsilon + e << 198       - polarization*(1./epsilon-epsilon)*(1.-onecost);
207       G4double gdist  = 1. / epsilon + epsilon << 199 
208                        polarization * (1. / ep << 200     greject = gdist/gdiced;
209                                                << 201 
210       greject = gdist / gdiced;                << 202     if (greject>1) G4cout<<"ERROR in PolarizedComptonScattering::PostStepDoIt\n"
211                                                << 203        <<" costh rejection does not work properly: "<<greject<<G4endl;
212       if(greject > 1.0)                        << 204 
213       {                                        << 205   } while (greject < G4UniformRand());
214         PrintWarning(aDynamicGamma, nloop, gre << 206  
215                      "theta majoranta wrong"); << 207   //
216       }                                        << 208   // scattered gamma angles. ( Z - axis along the parent gamma)
217       // Loop checking, 03-Aug-2015, Vladimir  << 209   //
218     } while(greject < rndm[2]);                << 210 
219                                                << 211   G4double cosTeta = 1. - onecost; 
220     // assuming phi loop successful            << 212   G4double sinTeta = std::sqrt (sint2);
221     end = true;                                << 213   G4double Phi;
222                                                << 214   do {
223     // scattered gamma angles. ( Z - axis alon << 215     Phi     = twopi * G4UniformRand();
224     cosTeta = 1. - onecost;                    << 216      G4double gdiced = 1./epsilon + epsilon - sint2 
225     sinTeta = std::sqrt(sint2);                << 217        + std::abs(theBeamPolarization.p3())*
226     do                                         << 218        ( std::abs((1./epsilon-epsilon)*cosTeta*theTargetPolarization.p3())
227     {                                          << 219   +(1.-epsilon)*sinTeta*(std::sqrt(sqr(theTargetPolarization.p1()) 
228       ++nloop;                                 << 220             + sqr(theTargetPolarization.p2()))))
229                                                << 221        +sint2*(std::sqrt(sqr(theBeamPolarization.p1()) + sqr(theBeamPolarization.p2())));
230       // 2 random numbers to sample scattering << 222 
231       rndmEngineMod->flatArray(2, rndm);       << 223      G4double gdist = 1./epsilon + epsilon - sint2 
232                                                << 224        + theBeamPolarization.p3()*
233       // false interaction if too many iterati << 225        ((1./epsilon-epsilon)*cosTeta*theTargetPolarization.p3()
234       Phi = twopi * rndm[0];                   << 226   +(1.-epsilon)*sinTeta*(std::cos(Phi)*theTargetPolarization.p1()+
235       if(nloop > fLoopLim)                     << 227              std::sin(Phi)*theTargetPolarization.p2()))
236       {                                        << 228        -sint2*(std::cos(2.*Phi)*theBeamPolarization.p1()
237         PrintWarning(aDynamicGamma, nloop, gre << 229          +std::sin(2.*Phi)*theBeamPolarization.p2());
238                      "too many iterations");   << 230      greject = gdist/gdiced;
239         return;                                << 231 
240       }                                        << 232     if (greject>1.+1.e-10 || greject<0) G4cout<<"ERROR in PolarizedComptonScattering::PostStepDoIt\n"
241                                                << 233               <<" phi rejection does not work properly: "<<greject<<G4endl;
242       G4double gdiced = 1. / epsilon + epsilon << 234 
243                         std::abs(fBeamPolariza << 235     if (greject<1.e-3) {
244                           (std::abs((1. / epsi << 236       G4cout<<"ERROR in PolarizedComptonScattering::PostStepDoIt\n"
245                                     fTargetPol << 237       <<" phi rejection does not work properly: "<<greject<<"\n";
246                            (1. - epsilon) * si << 238       G4cout<<" greject="<<greject<<"  phi="<<Phi<<"   cost="<<cosTeta<<"\n";
247                              (std::sqrt(sqr(fT << 239       G4cout<<" gdiced="<<gdiced<<"   gdist="<<gdist<<"\n";
248                                         sqr(fT << 240       G4cout<<" eps="<<epsilon<<"    1/eps="<<1./epsilon<<"\n";
249                         sint2 * (std::sqrt(sqr << 241     }
250                                            sqr << 242      
251                                                << 243   } while (greject < G4UniformRand());
252       G4double gdist =                         << 244   G4double dirx = sinTeta*std::cos(Phi), diry = sinTeta*std::sin(Phi), dirz = cosTeta;
253         1. / epsilon + epsilon - sint2 +       << 
254         fBeamPolarization.p3() *               << 
255           ((1. / epsilon - epsilon) * cosTeta  << 
256            (1. - epsilon) * sinTeta *          << 
257              (std::cos(Phi) * fTargetPolarizat << 
258               std::sin(Phi) * fTargetPolarizat << 
259         sint2 * (std::cos(2. * Phi) * fBeamPol << 
260                  std::sin(2. * Phi) * fBeamPol << 
261       greject = gdist / gdiced;                << 
262                                                << 
263       if(greject > 1.0)                        << 
264       {                                        << 
265         PrintWarning(aDynamicGamma, nloop, gre << 
266                      "phi majoranta wrong");   << 
267       }                                        << 
268                                                << 
269       if(greject < 1.e-3)                      << 
270       {                                        << 
271         PrintWarning(aDynamicGamma, nloop, gre << 
272                      "phi loop ineffective");  << 
273         // restart theta loop                  << 
274         end = false;                           << 
275         break;                                 << 
276       }                                        << 
277                                                << 
278       // Loop checking, 03-Aug-2015, Vladimir  << 
279     } while(greject < rndm[1]);                << 
280   } while(!end);                               << 
281   G4double dirx = sinTeta * std::cos(Phi);     << 
282   G4double diry = sinTeta * std::sin(Phi);     << 
283   G4double dirz = cosTeta;                     << 
284                                                   245 
                                                   >> 246   //
285   // update G4VParticleChange for the scattere    247   // update G4VParticleChange for the scattered gamma
286   G4ThreeVector gamDirection1(dirx, diry, dirz << 248   //
                                                   >> 249    
                                                   >> 250   G4ThreeVector gamDirection1 ( dirx,diry,dirz );
287   gamDirection1.rotateUz(gamDirection0);          251   gamDirection1.rotateUz(gamDirection0);
288   G4double gamEnergy1 = epsilon * gamEnergy0;  << 252   G4double gamEnergy1 = epsilon*gamEnergy0;
                                                   >> 253   fParticleChange->SetProposedKineticEnergy(gamEnergy1);
289                                                   254 
290   G4double edep = 0.0;                         << 255 
291   if(gamEnergy1 > lowestSecondaryEnergy)       << 256   if(gamEnergy1 > lowestGammaEnergy) {
292   {                                            << 
293     fParticleChange->ProposeMomentumDirection(    257     fParticleChange->ProposeMomentumDirection(gamDirection1);
294     fParticleChange->SetProposedKineticEnergy( << 258   } else { 
295   }                                            << 
296   else                                         << 
297   {                                            << 
298     fParticleChange->ProposeTrackStatus(fStopA    259     fParticleChange->ProposeTrackStatus(fStopAndKill);
299     fParticleChange->SetProposedKineticEnergy( << 260     gamEnergy1 += fParticleChange->GetLocalEnergyDeposit();
300     edep = gamEnergy1;                         << 261     fParticleChange->ProposeLocalEnergyDeposit(gamEnergy1);
301   }                                               262   }
302                                                   263 
303   // calculate Stokes vector of final state ph << 
304   G4ThreeVector nInteractionFrame =            << 
305     G4PolarizationHelper::GetFrame(gamDirectio << 
306                                                << 
307   // transfer fBeamPolarization and fTargetPol << 
308   // into the interaction frame (note electron << 
309   if(fVerboseLevel >= 1)                       << 
310   {                                            << 
311     G4cout << "=============================== << 
312     G4cout << " nInteractionFrame = " << nInte << 
313     G4cout << " GammaDirection0 = " << gamDire << 
314     G4cout << " gammaPolarization = " << fBeam << 
315     G4cout << " electronPolarization = " << fT << 
316   }                                            << 
317                                                   264 
318   fBeamPolarization.InvRotateAz(nInteractionFr << 265   std::vector<G4DynamicParticle*>* fvect = new std::vector<G4DynamicParticle*>;
319   fTargetPolarization.InvRotateAz(nInteraction << 266  
                                                   >> 267   //
                                                   >> 268   // kinematic of the scattered electron
                                                   >> 269   //
320                                                   270 
321   if(fVerboseLevel >= 1)                       << 271   G4double eKinEnergy = gamEnergy0 - gamEnergy1;
322   {                                            << 272   G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
323     G4cout << "------------------------------- << 273   eDirection = eDirection.unit();
324     G4cout << " gammaPolarization = " << fBeam << 
325     G4cout << " electronPolarization = " << fT << 
326     G4cout << "------------------------------- << 
327   }                                            << 
328                                                   274 
329   // initialize the polarization transfer matr << 275   // 
330   fCrossSectionCalculator->Initialize(epsilon, << 276   // calculate Stokesvector of final state photon and electron
331                                       fTargetP << 277   //
                                                   >> 278   G4ThreeVector  nInteractionFrame;
                                                   >> 279   if((gamEnergy1 > lowestGammaEnergy) ||
                                                   >> 280      (eKinEnergy > DBL_MIN)) {
                                                   >> 281 
                                                   >> 282     // determine interaction plane
                                                   >> 283 //     nInteractionFrame = 
                                                   >> 284 //       G4PolarizationHelper::GetFrame(gamDirection1,eDirection);
                                                   >> 285     if (gamEnergy1 > lowestGammaEnergy) 
                                                   >> 286       nInteractionFrame = G4PolarizationHelper::GetFrame(gamDirection1,gamDirection0);
                                                   >> 287     else 
                                                   >> 288       nInteractionFrame = G4PolarizationHelper::GetFrame(gamDirection0, eDirection);
                                                   >> 289 
                                                   >> 290     // transfere theBeamPolarization and theTargetPolarization 
                                                   >> 291     // into the interaction frame (note electron is in gamma frame)
                                                   >> 292     if (verboseLevel>=1) {
                                                   >> 293       G4cout << "========================================\n";
                                                   >> 294       G4cout << " nInteractionFrame = " <<nInteractionFrame<<"\n";
                                                   >> 295       G4cout << " GammaDirection0 = " <<gamDirection0<<"\n";
                                                   >> 296       G4cout << " gammaPolarization = " <<theBeamPolarization<<"\n";
                                                   >> 297       G4cout << " electronPolarization = " <<theTargetPolarization<<"\n";
                                                   >> 298     }
332                                                   299 
333   if(gamEnergy1 > lowestSecondaryEnergy)       << 300     theBeamPolarization.InvRotateAz(nInteractionFrame,gamDirection0);
                                                   >> 301     theTargetPolarization.InvRotateAz(nInteractionFrame,gamDirection0);
                                                   >> 302 
                                                   >> 303     if (verboseLevel>=1) {
                                                   >> 304       G4cout << "----------------------------------------\n";
                                                   >> 305       G4cout << " gammaPolarization = " <<theBeamPolarization<<"\n";
                                                   >> 306       G4cout << " electronPolarization = " <<theTargetPolarization<<"\n";
                                                   >> 307       G4cout << "----------------------------------------\n";
                                                   >> 308     }
                                                   >> 309 
                                                   >> 310     // initialize the polarization transfer matrix
                                                   >> 311     crossSectionCalculator->Initialize(epsilon,E0_m,0.,
                                                   >> 312                theBeamPolarization,
                                                   >> 313                theTargetPolarization,2);
                                                   >> 314   }
                                                   >> 315 
                                                   >> 316   //  if(eKinEnergy > DBL_MIN)
334   {                                               317   {
335     // in interaction frame                       318     // in interaction frame
336     // calculate polarization transfer to the     319     // calculate polarization transfer to the photon (in interaction plane)
337     fFinalGammaPolarization = fCrossSectionCal << 320     finalGammaPolarization = crossSectionCalculator->GetPol2();
338     if(fVerboseLevel >= 1)                     << 321     if (verboseLevel>=1) G4cout << " gammaPolarization1 = " <<finalGammaPolarization<<"\n";
339     {                                          << 322     finalGammaPolarization.SetPhoton();
340       G4cout << " gammaPolarization1 = " << fF << 
341     }                                          << 
342     fFinalGammaPolarization.SetPhoton();       << 
343                                                   323 
344     // translate polarization into particle re    324     // translate polarization into particle reference frame
345     fFinalGammaPolarization.RotateAz(nInteract << 325     finalGammaPolarization.RotateAz(nInteractionFrame,gamDirection1);
346     if(fFinalGammaPolarization.mag() > 1. + 1. << 326     //store polarization vector
347     {                                          << 327     fParticleChange->ProposePolarization(finalGammaPolarization);
348       G4ExceptionDescription ed;               << 328     if (finalGammaPolarization.mag() > 1.+1.e-8){
349       ed << "ERROR in Polarizaed Compton Scatt << 329       G4cout<<"ERROR in Polarizaed Compton Scattering !"<<G4endl;
350       ed << "Polarization of final photon more << 330       G4cout<<"Polarization of final photon more than 100%"<<G4endl;
351       ed << fFinalGammaPolarization            << 331       G4cout<<finalGammaPolarization<<" mag = "<<finalGammaPolarization.mag()<<G4endl;
352          << " mag = " << fFinalGammaPolarizati << 
353       G4Exception("G4PolarizedComptonModel::Sa << 
354                   FatalException, ed);         << 
355     }                                             332     }
356     // store polarization vector               << 333     if (verboseLevel>=1) {
357     fParticleChange->ProposePolarization(fFina << 334       G4cout << " gammaPolarization1 = " <<finalGammaPolarization<<"\n";
358     if(fVerboseLevel >= 1)                     << 335       G4cout << " GammaDirection1 = " <<gamDirection1<<"\n";
359     {                                          << 
360       G4cout << " gammaPolarization1 = " << fF << 
361       G4cout << " GammaDirection1 = " << gamDi << 
362     }                                             336     }
363   }                                               337   }
364                                                   338 
365   // kinematic of the scattered electron       << 339   //    if (ElecKineEnergy > fminimalEnergy) {
366   G4double eKinEnergy = gamEnergy0 - gamEnergy << 
367                                                << 
368   if(eKinEnergy > lowestSecondaryEnergy)       << 
369   {                                               340   {
370     G4ThreeVector eDirection =                 << 341     finalElectronPolarization = crossSectionCalculator->GetPol3();
371       gamEnergy0 * gamDirection0 - gamEnergy1  << 342     if (verboseLevel>=1) 
372     eDirection = eDirection.unit();            << 343       G4cout << " electronPolarization1 = " <<finalElectronPolarization<<"\n";
373                                                << 344 
374     finalElectronPolarization = fCrossSectionC << 
375     if(fVerboseLevel >= 1)                     << 
376     {                                          << 
377       G4cout << " electronPolarization1 = " << << 
378              << G4endl;                        << 
379     }                                          << 
380     // transfer into particle reference frame     345     // transfer into particle reference frame
381     finalElectronPolarization.RotateAz(nIntera << 346     finalElectronPolarization.RotateAz(nInteractionFrame,eDirection);
382     if(fVerboseLevel >= 1)                     << 347     if (verboseLevel>=1) {
383     {                                          << 348       G4cout << " electronPolarization1 = " <<finalElectronPolarization<<"\n";
384       G4cout << " electronPolarization1 = " << << 349       G4cout << " ElecDirection = " <<eDirection<<"\n";
385              << G4endl << " ElecDirection = "  << 
386     }                                             350     }
                                                   >> 351   }
                                                   >> 352   if (verboseLevel>=1)
                                                   >> 353     G4cout << "========================================\n";
                                                   >> 354        
                                                   >> 355 
                                                   >> 356   if(eKinEnergy > DBL_MIN) {
387                                                   357 
388     // create G4DynamicParticle object for the    358     // create G4DynamicParticle object for the electron.
389     G4DynamicParticle* aElectron =             << 359     G4DynamicParticle* aElectron = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
390       new G4DynamicParticle(theElectron, eDire << 360     //store polarization vector
391     // store polarization vector               << 361     if (finalElectronPolarization.mag() > 1.+1.e-8){
392     if(finalElectronPolarization.mag() > 1. +  << 362       G4cout<<"ERROR in Polarizaed Compton Scattering !"<<G4endl;
393     {                                          << 363       G4cout<<"Polarization of final electron more than 100%"<<G4endl;
394       G4ExceptionDescription ed;               << 364       G4cout<<finalElectronPolarization<<" mag = "<<finalElectronPolarization.mag()<<G4endl;
395       ed << "ERROR in Polarized Compton Scatte << 
396       ed << "Polarization of final electron mo << 
397       ed << finalElectronPolarization          << 
398          << " mag = " << finalElectronPolariza << 
399       G4Exception("G4PolarizedComptonModel::Sa << 
400                   FatalException, ed);         << 
401     }                                             365     }
402     aElectron->SetPolarization(finalElectronPo    366     aElectron->SetPolarization(finalElectronPolarization.p1(),
403                                finalElectronPo << 367              finalElectronPolarization.p2(),
404                                finalElectronPo << 368              finalElectronPolarization.p3());
405     fvect->push_back(aElectron);                  369     fvect->push_back(aElectron);
406   }                                               370   }
407   else                                         << 371 
408   {                                            << 372   return fvect;
409     edep += eKinEnergy;                        << 
410   }                                            << 
411   // energy balance                            << 
412   if(edep > 0.0)                               << 
413   {                                            << 
414     fParticleChange->ProposeLocalEnergyDeposit << 
415   }                                            << 
416 }                                                 373 }
417                                                   374 
418 //....oooOO0OOooo........oooOO0OOooo........oo    375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
419 void G4PolarizedComptonModel::PrintWarning(con << 376 
420                                            G4i << 377 
421                                            G4d << 
422                                            con << 
423 {                                              << 
424   G4ExceptionDescription ed;                   << 
425   ed << "Problem of scattering sampling: " <<  << 
426      << "Niter= " << nloop << " grej= " << gre << 
427      << " cos(theta)= " << 1.0 - onecos << " p << 
428      << "Gamma E(MeV)= " << dp->GetKineticEner << 
429      << " dir= " << dp->GetMomentumDirection() << 
430      << " pol= " << dp->GetPolarization();     << 
431   G4Exception("G4PolarizedComptonModel::Sample << 
432               JustWarning, ed, "");            << 
433 }                                              << 
434                                                   378