Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4PolarizedComptonModel.cc 82755 2014-07-08 14:07:29Z gcosmo $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // Geant4 Class file << 31 // GEANT4 Class file >> 32 // 29 // 33 // 30 // File name: G4PolarizedComptonModel 34 // File name: G4PolarizedComptonModel 31 // 35 // 32 // Author: Andreas Schaelicke 36 // Author: Andreas Schaelicke >> 37 // >> 38 // Creation date: 01.05.2005 >> 39 // >> 40 // Modifications: >> 41 // 18-07-06 use newly calculated cross sections (P. Starovoitov) >> 42 // 21-08-05 update interface (A. Schaelicke) >> 43 // >> 44 // Class Description: >> 45 // >> 46 // ------------------------------------------------------------------- >> 47 // >> 48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 33 50 34 #include "G4PolarizedComptonModel.hh" 51 #include "G4PolarizedComptonModel.hh" 35 << 36 #include "G4Exp.hh" << 37 #include "G4Log.hh" << 38 #include "G4ParticleChangeForGamma.hh" << 39 #include "G4PhysicalConstants.hh" 52 #include "G4PhysicalConstants.hh" >> 53 #include "G4Electron.hh" >> 54 #include "G4Gamma.hh" >> 55 #include "Randomize.hh" >> 56 #include "G4DataVector.hh" >> 57 #include "G4ParticleChangeForGamma.hh" >> 58 >> 59 >> 60 #include "G4StokesVector.hh" 40 #include "G4PolarizationManager.hh" 61 #include "G4PolarizationManager.hh" 41 #include "G4PolarizationHelper.hh" 62 #include "G4PolarizationHelper.hh" 42 #include "G4PolarizedComptonXS.hh" << 63 #include "G4PolarizedComptonCrossSection.hh" 43 #include "G4StokesVector.hh" << 44 #include "G4SystemOfUnits.hh" << 45 64 46 //....oooOO0OOooo........oooOO0OOooo........oo 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 66 47 G4PolarizedComptonModel::G4PolarizedComptonMod 67 G4PolarizedComptonModel::G4PolarizedComptonModel(const G4ParticleDefinition*, 48 << 68 const G4String& nam) 49 : G4KleinNishinaCompton(nullptr, nam) << 69 : G4KleinNishinaCompton(0,nam), 50 , fVerboseLevel(0) << 70 verboseLevel(0) 51 { 71 { 52 fCrossSectionCalculator = new G4PolarizedCom << 72 crossSectionCalculator = new G4PolarizedComptonCrossSection(); 53 fBeamPolarization = G4StokesVector::ZE << 54 fTargetPolarization = G4StokesVector::ZE << 55 } 73 } 56 74 57 //....oooOO0OOooo........oooOO0OOooo........oo 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 76 58 G4PolarizedComptonModel::~G4PolarizedComptonMo 77 G4PolarizedComptonModel::~G4PolarizedComptonModel() 59 { 78 { 60 delete fCrossSectionCalculator; << 79 delete crossSectionCalculator; 61 } 80 } 62 81 63 //....oooOO0OOooo........oooOO0OOooo........oo << 82 G4double G4PolarizedComptonModel::ComputeAsymmetryPerAtom 64 G4double G4PolarizedComptonModel::ComputeAsymm << 83 (G4double gammaEnergy, G4double /*Z*/) 65 << 84 66 { 85 { 67 G4double asymmetry = 0.0; << 86 G4double asymmetry = 0.0 ; 68 87 69 G4double k0 = gammaEnergy / electron_mass_c2 << 88 G4double k0 = gammaEnergy / electron_mass_c2 ; 70 G4double k1 = 1. + 2. * k0; << 89 G4double k1 = 1 + 2*k0 ; 71 90 72 asymmetry = -k0; 91 asymmetry = -k0; 73 asymmetry *= << 92 asymmetry *= (k0 + 1.)*sqr(k1)*std::log(k1) - 2.*k0*(5.*sqr(k0) + 4.*k0 + 1.); 74 (k0 + 1.) * sqr(k1) * G4Log(k1) - 2. * k0 << 93 asymmetry /= ((k0 - 2.)*k0 -2.)*sqr(k1)*std::log(k1) + 2.*k0*(k0*(k0 + 1.)*(k0 + 8.) + 2.); 75 asymmetry /= ((k0 - 2.) * k0 - 2.) * sqr(k1) << 94 76 2. * k0 * (k0 * (k0 + 1.) * (k0 << 95 // G4cout<<"energy = "<<GammaEnergy<<" asymmetry = "<<asymmetry<<"\t\t GAM = "<<k0<<G4endl; 77 << 96 if (asymmetry>1.) G4cout<<"ERROR in G4PolarizedComptonModel::ComputeAsymmetryPerAtom"<<G4endl; 78 if(asymmetry > 1.) << 79 { << 80 G4ExceptionDescription ed; << 81 ed << "ERROR in G4PolarizedComptonModel::C << 82 << " asymmetry = " << asymmetry << "\n" << 83 G4Exception("G4PolarizedComptonModel::Comp << 84 JustWarning, ed); << 85 } << 86 97 87 return asymmetry; 98 return asymmetry; 88 } 99 } 89 100 90 //....oooOO0OOooo........oooOO0OOooo........oo << 101 91 G4double G4PolarizedComptonModel::ComputeCross 102 G4double G4PolarizedComptonModel::ComputeCrossSectionPerAtom( 92 const G4ParticleDefinition* pd, G4double kin << 103 const G4ParticleDefinition* pd, 93 G4double cut, G4double emax) << 104 G4double kinEnergy, >> 105 G4double Z, >> 106 G4double A, >> 107 G4double cut, >> 108 G4double emax) 94 { 109 { 95 G4double xs = G4KleinNishinaCompton::Compute << 110 double xs = 96 pd, kinEnergy, Z, A, cut, emax); << 111 G4KleinNishinaCompton::ComputeCrossSectionPerAtom(pd,kinEnergy, 97 G4double polzz = fBeamPolarization.p3() * fT << 112 Z,A,cut,emax); 98 if(polzz > 0.0) << 113 G4double polzz = theBeamPolarization.p3()*theTargetPolarization.z(); 99 { << 114 if (polzz > 0.0) { 100 G4double asym = ComputeAsymmetryPerAtom(ki << 115 G4double asym = ComputeAsymmetryPerAtom(kinEnergy, Z); 101 xs *= (1. + polzz * asym); << 116 xs*=(1.+polzz*asym); 102 } 117 } 103 return xs; 118 return xs; 104 } 119 } 105 120 106 //....oooOO0OOooo........oooOO0OOooo........oo 121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 122 107 void G4PolarizedComptonModel::SampleSecondarie 123 void G4PolarizedComptonModel::SampleSecondaries( 108 std::vector<G4DynamicParticle*>* fvect, cons << 124 std::vector<G4DynamicParticle*>* fvect, 109 const G4DynamicParticle* aDynamicGamma, G4do << 125 const G4MaterialCutsCouple*, >> 126 const G4DynamicParticle* aDynamicGamma, >> 127 G4double, G4double) 110 { 128 { 111 // do nothing below the threshold 129 // do nothing below the threshold 112 if(aDynamicGamma->GetKineticEnergy() <= LowE << 130 if(aDynamicGamma->GetKineticEnergy() <= LowEnergyLimit()) { return; } 113 { << 114 return; << 115 } << 116 131 117 const G4Track* aTrack = fParticleChang << 132 const G4Track * aTrack = fParticleChange->GetCurrentTrack(); 118 G4VPhysicalVolume* aPVolume = aTrack->GetVol << 133 G4VPhysicalVolume* aPVolume = aTrack->GetVolume(); 119 G4LogicalVolume* aLVolume = aPVolume->GetL << 134 G4LogicalVolume* aLVolume = aPVolume->GetLogicalVolume(); 120 << 135 121 if(fVerboseLevel >= 1) << 136 if (verboseLevel >= 1) { 122 { << 137 G4cout<<"G4PolarizedComptonModel::SampleSecondaries in " 123 G4cout << "G4PolarizedComptonModel::Sample << 138 << aLVolume->GetName() <<G4endl; 124 << aLVolume->GetName() << G4endl; << 125 } 139 } 126 G4PolarizationManager* polarizationManager = << 140 G4PolarizationManager * polarizationManager = 127 G4PolarizationManager::GetInstance(); 141 G4PolarizationManager::GetInstance(); 128 142 129 // obtain polarization of the beam 143 // obtain polarization of the beam 130 fBeamPolarization = G4StokesVector(aDynamicG << 144 theBeamPolarization = aDynamicGamma->GetPolarization(); 131 fBeamPolarization.SetPhoton(); << 145 theBeamPolarization.SetPhoton(); 132 146 133 // obtain polarization of the media 147 // obtain polarization of the media 134 G4bool targetIsPolarized = polarizationManag 148 G4bool targetIsPolarized = polarizationManager->IsPolarized(aLVolume); 135 fTargetPolarization = polarizationManager->G << 149 theTargetPolarization = >> 150 polarizationManager->GetVolumePolarization(aLVolume); 136 151 137 // if beam is linear polarized or target is << 152 // if beam is linear polarized or target is transversely polarized 138 // determine the angle to x-axis 153 // determine the angle to x-axis 139 // (assumes same PRF as in the polarization 154 // (assumes same PRF as in the polarization definition) >> 155 140 G4ThreeVector gamDirection0 = aDynamicGamma- 156 G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection(); 141 157 142 // transfer fTargetPolarization << 158 // transfere theTargetPolarization 143 // into the gamma frame (problem electron is 159 // into the gamma frame (problem electron is at rest) 144 if(targetIsPolarized) << 160 if (targetIsPolarized) { 145 { << 161 theTargetPolarization.rotateUz(gamDirection0); 146 fTargetPolarization.rotateUz(gamDirection0 << 147 } 162 } 148 // The scattered gamma energy is sampled acc << 163 // The scattered gamma energy is sampled according to 149 // Klein - Nishina formula. 164 // Klein - Nishina formula. 150 // The random number techniques of Butcher & << 165 // The random number techniques of Butcher & Messel are used 151 // (Nuc Phys 20(1960),15). 166 // (Nuc Phys 20(1960),15). 152 // Note : Effects due to binding of atomic e << 167 // Note : Effects due to binding of atomic electrons are negliged. 153 << 168 154 G4double gamEnergy0 = aDynamicGamma->GetKine 169 G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy(); 155 G4double E0_m = gamEnergy0 / electron_ << 170 G4double E0_m = gamEnergy0 / electron_mass_c2 ; 156 171 157 // sample the energy rate of the scattered g << 172 // 158 G4double epsilon, sint2; << 173 // sample the energy rate of the scattered gamma 159 G4double onecost = 0.0; << 174 // 160 G4double Phi = 0.0; << 175 161 G4double greject = 1.0; << 176 G4double epsilon, epsilonsq, onecost, sint2, greject ; 162 G4double cosTeta = 1.0; << 177 163 G4double sinTeta = 0.0; << 178 G4double eps0 = 1./(1. + 2.*E0_m); 164 << 179 G4double epsilon0sq = eps0*eps0; 165 G4double eps0 = 1. / (1. + 2. * E0_m); << 180 G4double alpha1 = - std::log(eps0); 166 G4double epsilon0sq = eps0 * eps0; << 181 G4double alpha2 = 0.5*(1.- epsilon0sq); 167 G4double alpha1 = -G4Log(eps0); << 182 168 G4double alpha2 = alpha1 + 0.5 * (1. - e << 183 G4double polarization = 169 << 184 theBeamPolarization.p3()*theTargetPolarization.p3(); 170 G4double polarization = fBeamPolarization.p3 << 185 171 << 186 G4int nloop = 0; 172 CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 187 do { 173 G4int nloop = 0; << 188 ++nloop; 174 G4bool end = fals << 189 // false interaction if too many iterations 175 << 190 if(nloop > 1000) { return; } 176 G4double rndm[3]; << 191 177 << 192 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) { 178 do << 193 epsilon = std::exp(-alpha1*G4UniformRand()); // epsilon0**r 179 { << 194 epsilonsq = epsilon*epsilon; 180 do << 195 181 { << 196 } else { 182 ++nloop; << 197 epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand(); 183 // false interaction if too many iterati << 198 epsilon = std::sqrt(epsilonsq); 184 if(nloop > fLoopLim) << 199 } 185 { << 200 186 PrintWarning(aDynamicGamma, nloop, gre << 201 onecost = (1.- epsilon)/(epsilon*E0_m); 187 "too many iterations"); << 202 sint2 = onecost*(2.-onecost); 188 return; << 203 189 } << 204 G4double gdiced = 2.*(1./epsilon+epsilon); 190 << 205 G4double gdist = 1./epsilon + epsilon - sint2 191 // 3 random numbers to sample scattering << 206 - polarization*(1./epsilon-epsilon)*(1.-onecost); 192 rndmEngineMod->flatArray(3, rndm); << 207 193 << 208 greject = gdist/gdiced; 194 if(alpha1 > alpha2 * rndm[0]) << 209 195 { << 210 if (greject>1) { 196 epsilon = G4Exp(-alpha1 * rndm[1]); << 211 G4cout<<"ERROR in PolarizedComptonScattering::PostStepDoIt\n" 197 } << 212 <<" costh rejection does not work properly: "<<greject 198 else << 213 <<G4endl; 199 { << 214 } 200 epsilon = std::sqrt(epsilon0sq + (1. - << 215 } while (greject < G4UniformRand()); 201 } << 216 202 << 217 // 203 onecost = (1. - epsilon) / (epsilon * E0 << 218 // scattered gamma angles. ( Z - axis along the parent gamma) 204 sint2 = onecost * (2. - onecost); << 219 // 205 << 220 206 G4double gdiced = 2. * (1. / epsilon + e << 221 G4double cosTeta = 1. - onecost; 207 G4double gdist = 1. / epsilon + epsilon << 222 G4double sinTeta = std::sqrt (sint2); 208 polarization * (1. / ep << 223 G4double Phi; 209 << 224 do { 210 greject = gdist / gdiced; << 225 ++nloop; 211 << 226 // false interaction if too many iterations 212 if(greject > 1.0) << 227 if(nloop > 1000) { return; } 213 { << 228 214 PrintWarning(aDynamicGamma, nloop, gre << 229 Phi = twopi * G4UniformRand(); 215 "theta majoranta wrong"); << 230 G4double gdiced = 1./epsilon + epsilon - sint2 216 } << 231 + std::abs(theBeamPolarization.p3())* 217 // Loop checking, 03-Aug-2015, Vladimir << 232 ( std::abs((1./epsilon-epsilon)*cosTeta*theTargetPolarization.p3()) 218 } while(greject < rndm[2]); << 233 +(1.-epsilon)*sinTeta*(std::sqrt(sqr(theTargetPolarization.p1()) 219 << 234 + sqr(theTargetPolarization.p2())))) 220 // assuming phi loop successful << 235 +sint2*(std::sqrt(sqr(theBeamPolarization.p1()) + 221 end = true; << 236 sqr(theBeamPolarization.p2()))); 222 << 237 223 // scattered gamma angles. ( Z - axis alon << 238 G4double gdist = 1./epsilon + epsilon - sint2 224 cosTeta = 1. - onecost; << 239 + theBeamPolarization.p3()* 225 sinTeta = std::sqrt(sint2); << 240 ((1./epsilon-epsilon)*cosTeta*theTargetPolarization.p3() 226 do << 241 +(1.-epsilon)*sinTeta*(std::cos(Phi)*theTargetPolarization.p1()+ 227 { << 242 std::sin(Phi)*theTargetPolarization.p2())) 228 ++nloop; << 243 -sint2*(std::cos(2.*Phi)*theBeamPolarization.p1() 229 << 244 +std::sin(2.*Phi)*theBeamPolarization.p2()); 230 // 2 random numbers to sample scattering << 245 greject = gdist/gdiced; 231 rndmEngineMod->flatArray(2, rndm); << 246 232 << 247 if (greject>1.+1.e-10 || greject<0) { 233 // false interaction if too many iterati << 248 G4cout<<"ERROR in PolarizedComptonScattering::PostStepDoIt\n" 234 Phi = twopi * rndm[0]; << 249 <<" phi rejection does not work properly: "<<greject<<G4endl; 235 if(nloop > fLoopLim) << 250 } 236 { << 251 if (greject<1.e-3) { 237 PrintWarning(aDynamicGamma, nloop, gre << 252 G4cout<<"ERROR in PolarizedComptonScattering::PostStepDoIt\n" 238 "too many iterations"); << 253 <<" phi rejection does not work properly: "<<greject<<"\n"; 239 return; << 254 G4cout<<" greject="<<greject<<" phi="<<Phi<<" cost="<<cosTeta<<"\n"; 240 } << 255 G4cout<<" gdiced="<<gdiced<<" gdist="<<gdist<<"\n"; 241 << 256 G4cout<<" eps="<<epsilon<<" 1/eps="<<1./epsilon<<"\n"; 242 G4double gdiced = 1. / epsilon + epsilon << 257 } 243 std::abs(fBeamPolariza << 258 244 (std::abs((1. / epsi << 259 } while (greject < G4UniformRand()); 245 fTargetPol << 260 G4double dirx = sinTeta*std::cos(Phi), diry = sinTeta*std::sin(Phi), 246 (1. - epsilon) * si << 261 dirz = cosTeta; 247 (std::sqrt(sqr(fT << 248 sqr(fT << 249 sint2 * (std::sqrt(sqr << 250 sqr << 251 << 252 G4double gdist = << 253 1. / epsilon + epsilon - sint2 + << 254 fBeamPolarization.p3() * << 255 ((1. / epsilon - epsilon) * cosTeta << 256 (1. - epsilon) * sinTeta * << 257 (std::cos(Phi) * fTargetPolarizat << 258 std::sin(Phi) * fTargetPolarizat << 259 sint2 * (std::cos(2. * Phi) * fBeamPol << 260 std::sin(2. * Phi) * fBeamPol << 261 greject = gdist / gdiced; << 262 << 263 if(greject > 1.0) << 264 { << 265 PrintWarning(aDynamicGamma, nloop, gre << 266 "phi majoranta wrong"); << 267 } << 268 << 269 if(greject < 1.e-3) << 270 { << 271 PrintWarning(aDynamicGamma, nloop, gre << 272 "phi loop ineffective"); << 273 // restart theta loop << 274 end = false; << 275 break; << 276 } << 277 << 278 // Loop checking, 03-Aug-2015, Vladimir << 279 } while(greject < rndm[1]); << 280 } while(!end); << 281 G4double dirx = sinTeta * std::cos(Phi); << 282 G4double diry = sinTeta * std::sin(Phi); << 283 G4double dirz = cosTeta; << 284 262 >> 263 // 285 // update G4VParticleChange for the scattere 264 // update G4VParticleChange for the scattered gamma 286 G4ThreeVector gamDirection1(dirx, diry, dirz << 265 // >> 266 >> 267 G4ThreeVector gamDirection1 ( dirx,diry,dirz ); 287 gamDirection1.rotateUz(gamDirection0); 268 gamDirection1.rotateUz(gamDirection0); 288 G4double gamEnergy1 = epsilon * gamEnergy0; << 269 G4double gamEnergy1 = epsilon*gamEnergy0; 289 270 290 G4double edep = 0.0; 271 G4double edep = 0.0; 291 if(gamEnergy1 > lowestSecondaryEnergy) << 272 if(gamEnergy1 > lowestSecondaryEnergy) { 292 { << 293 fParticleChange->ProposeMomentumDirection( 273 fParticleChange->ProposeMomentumDirection(gamDirection1); 294 fParticleChange->SetProposedKineticEnergy( 274 fParticleChange->SetProposedKineticEnergy(gamEnergy1); 295 } << 275 } else { 296 else << 297 { << 298 fParticleChange->ProposeTrackStatus(fStopA 276 fParticleChange->ProposeTrackStatus(fStopAndKill); 299 fParticleChange->SetProposedKineticEnergy( 277 fParticleChange->SetProposedKineticEnergy(0.0); 300 edep = gamEnergy1; 278 edep = gamEnergy1; 301 } 279 } >> 280 >> 281 // >> 282 // calculate Stokesvector of final state photon and electron >> 283 // >> 284 G4ThreeVector nInteractionFrame = >> 285 G4PolarizationHelper::GetFrame(gamDirection1,gamDirection0); 302 286 303 // calculate Stokes vector of final state ph << 287 // transfere theBeamPolarization and theTargetPolarization 304 G4ThreeVector nInteractionFrame = << 305 G4PolarizationHelper::GetFrame(gamDirectio << 306 << 307 // transfer fBeamPolarization and fTargetPol << 308 // into the interaction frame (note electron 288 // into the interaction frame (note electron is in gamma frame) 309 if(fVerboseLevel >= 1) << 289 if (verboseLevel>=1) { 310 { << 290 G4cout << "========================================\n"; 311 G4cout << "=============================== << 291 G4cout << " nInteractionFrame = " <<nInteractionFrame<<"\n"; 312 G4cout << " nInteractionFrame = " << nInte << 292 G4cout << " GammaDirection0 = " <<gamDirection0<<"\n"; 313 G4cout << " GammaDirection0 = " << gamDire << 293 G4cout << " gammaPolarization = " <<theBeamPolarization<<"\n"; 314 G4cout << " gammaPolarization = " << fBeam << 294 G4cout << " electronPolarization = " <<theTargetPolarization<<"\n"; 315 G4cout << " electronPolarization = " << fT << 295 } 316 } << 296 317 << 297 theBeamPolarization.InvRotateAz(nInteractionFrame,gamDirection0); 318 fBeamPolarization.InvRotateAz(nInteractionFr << 298 theTargetPolarization.InvRotateAz(nInteractionFrame,gamDirection0); 319 fTargetPolarization.InvRotateAz(nInteraction << 299 320 << 300 if (verboseLevel>=1) { 321 if(fVerboseLevel >= 1) << 301 G4cout << "----------------------------------------\n"; 322 { << 302 G4cout << " gammaPolarization = " <<theBeamPolarization<<"\n"; 323 G4cout << "------------------------------- << 303 G4cout << " electronPolarization = " <<theTargetPolarization<<"\n"; 324 G4cout << " gammaPolarization = " << fBeam << 304 G4cout << "----------------------------------------\n"; 325 G4cout << " electronPolarization = " << fT << 326 G4cout << "------------------------------- << 327 } 305 } 328 306 329 // initialize the polarization transfer matr 307 // initialize the polarization transfer matrix 330 fCrossSectionCalculator->Initialize(epsilon, << 308 crossSectionCalculator->Initialize(epsilon,E0_m,0., 331 fTargetP << 309 theBeamPolarization, 332 << 310 theTargetPolarization,2); 333 if(gamEnergy1 > lowestSecondaryEnergy) << 311 334 { << 312 if(gamEnergy1 > lowestSecondaryEnergy) { >> 313 335 // in interaction frame 314 // in interaction frame 336 // calculate polarization transfer to the 315 // calculate polarization transfer to the photon (in interaction plane) 337 fFinalGammaPolarization = fCrossSectionCal << 316 finalGammaPolarization = crossSectionCalculator->GetPol2(); 338 if(fVerboseLevel >= 1) << 317 if (verboseLevel>=1) { 339 { << 318 G4cout << " gammaPolarization1 = " <<finalGammaPolarization<<"\n"; 340 G4cout << " gammaPolarization1 = " << fF << 341 } 319 } 342 fFinalGammaPolarization.SetPhoton(); << 320 finalGammaPolarization.SetPhoton(); 343 321 344 // translate polarization into particle re 322 // translate polarization into particle reference frame 345 fFinalGammaPolarization.RotateAz(nInteract << 323 finalGammaPolarization.RotateAz(nInteractionFrame,gamDirection1); 346 if(fFinalGammaPolarization.mag() > 1. + 1. << 324 //store polarization vector 347 { << 325 fParticleChange->ProposePolarization(finalGammaPolarization); 348 G4ExceptionDescription ed; << 326 if (finalGammaPolarization.mag() > 1.+1.e-8){ 349 ed << "ERROR in Polarizaed Compton Scatt << 327 G4cout<<"ERROR in Polarizaed Compton Scattering !"<<G4endl; 350 ed << "Polarization of final photon more << 328 G4cout<<"Polarization of final photon more than 100%"<<G4endl; 351 ed << fFinalGammaPolarization << 329 G4cout<<finalGammaPolarization<<" mag = " 352 << " mag = " << fFinalGammaPolarizati << 330 <<finalGammaPolarization.mag()<<G4endl; 353 G4Exception("G4PolarizedComptonModel::Sa << 354 FatalException, ed); << 355 } 331 } 356 // store polarization vector << 332 if (verboseLevel>=1) { 357 fParticleChange->ProposePolarization(fFina << 333 G4cout << " gammaPolarization1 = " <<finalGammaPolarization<<"\n"; 358 if(fVerboseLevel >= 1) << 334 G4cout << " GammaDirection1 = " <<gamDirection1<<"\n"; 359 { << 360 G4cout << " gammaPolarization1 = " << fF << 361 G4cout << " GammaDirection1 = " << gamDi << 362 } 335 } 363 } 336 } 364 337 >> 338 // 365 // kinematic of the scattered electron 339 // kinematic of the scattered electron >> 340 // 366 G4double eKinEnergy = gamEnergy0 - gamEnergy 341 G4double eKinEnergy = gamEnergy0 - gamEnergy1; 367 342 368 if(eKinEnergy > lowestSecondaryEnergy) << 343 if (eKinEnergy > lowestSecondaryEnergy) { 369 { << 344 370 G4ThreeVector eDirection = << 345 G4ThreeVector eDirection = 371 gamEnergy0 * gamDirection0 - gamEnergy1 << 346 gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1; 372 eDirection = eDirection.unit(); 347 eDirection = eDirection.unit(); 373 348 374 finalElectronPolarization = fCrossSectionC << 349 finalElectronPolarization = crossSectionCalculator->GetPol3(); 375 if(fVerboseLevel >= 1) << 350 if (verboseLevel>=1) { 376 { << 351 G4cout << " electronPolarization1 = " 377 G4cout << " electronPolarization1 = " << << 352 <<finalElectronPolarization<<"\n"; 378 << G4endl; << 379 } 353 } 380 // transfer into particle reference frame 354 // transfer into particle reference frame 381 finalElectronPolarization.RotateAz(nIntera << 355 finalElectronPolarization.RotateAz(nInteractionFrame,eDirection); 382 if(fVerboseLevel >= 1) << 356 if (verboseLevel>=1) { 383 { << 357 G4cout << " electronPolarization1 = " 384 G4cout << " electronPolarization1 = " << << 358 <<finalElectronPolarization<<"\n"; 385 << G4endl << " ElecDirection = " << 359 G4cout << " ElecDirection = " <<eDirection<<"\n"; 386 } 360 } 387 361 388 // create G4DynamicParticle object for the 362 // create G4DynamicParticle object for the electron. 389 G4DynamicParticle* aElectron = << 363 G4DynamicParticle* aElectron = 390 new G4DynamicParticle(theElectron, eDire << 364 new G4DynamicParticle(theElectron,eDirection,eKinEnergy); 391 // store polarization vector << 365 //store polarization vector 392 if(finalElectronPolarization.mag() > 1. + << 366 if (finalElectronPolarization.mag() > 1.+1.e-8){ 393 { << 367 G4cout<<"ERROR in Polarizaed Compton Scattering !"<<G4endl; 394 G4ExceptionDescription ed; << 368 G4cout<<"Polarization of final electron more than 100%"<<G4endl; 395 ed << "ERROR in Polarized Compton Scatte << 369 G4cout<<finalElectronPolarization<<" mag = " 396 ed << "Polarization of final electron mo << 370 <<finalElectronPolarization.mag()<<G4endl; 397 ed << finalElectronPolarization << 398 << " mag = " << finalElectronPolariza << 399 G4Exception("G4PolarizedComptonModel::Sa << 400 FatalException, ed); << 401 } 371 } 402 aElectron->SetPolarization(finalElectronPo 372 aElectron->SetPolarization(finalElectronPolarization.p1(), 403 finalElectronPo << 373 finalElectronPolarization.p2(), 404 finalElectronPo << 374 finalElectronPolarization.p3()); 405 fvect->push_back(aElectron); 375 fvect->push_back(aElectron); 406 } << 376 } else { 407 else << 377 edep += eKinEnergy; 408 { << 409 edep += eKinEnergy; << 410 } 378 } 411 // energy balance 379 // energy balance 412 if(edep > 0.0) << 380 if(edep > 0.0) { 413 { << 414 fParticleChange->ProposeLocalEnergyDeposit 381 fParticleChange->ProposeLocalEnergyDeposit(edep); 415 } 382 } 416 } 383 } 417 384 418 //....oooOO0OOooo........oooOO0OOooo........oo 385 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 419 void G4PolarizedComptonModel::PrintWarning(con << 386 420 G4i << 387 421 G4d << 422 con << 423 { << 424 G4ExceptionDescription ed; << 425 ed << "Problem of scattering sampling: " << << 426 << "Niter= " << nloop << " grej= " << gre << 427 << " cos(theta)= " << 1.0 - onecos << " p << 428 << "Gamma E(MeV)= " << dp->GetKineticEner << 429 << " dir= " << dp->GetMomentumDirection() << 430 << " pol= " << dp->GetPolarization(); << 431 G4Exception("G4PolarizedComptonModel::Sample << 432 JustWarning, ed, ""); << 433 } << 434 388