Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4PolarizedCompton.cc 76244 2013-11-08 11:12:59Z gcosmo $ >> 28 // >> 29 // 26 // File name: G4PolarizedCompton 30 // File name: G4PolarizedCompton 27 // 31 // 28 // Author: Andreas Schaelicke 32 // Author: Andreas Schaelicke 29 // based on code by Michel Mair 33 // based on code by Michel Maire / Vladimir IVANTCHENKO 30 // << 31 // Class description 34 // Class description 32 // modified version respecting media and bea << 35 // 33 // using the stokes formalism << 36 // modified version respecting media and beam polarization >> 37 // using the stokes formalism >> 38 // >> 39 // Creation date: 01.05.2005 >> 40 // >> 41 // Modifications: >> 42 // >> 43 // 01-01-05, include polarization description (A.Stahl) >> 44 // 01-01-05, create asymmetry table and determine interactionlength (A.Stahl) >> 45 // 01-05-05, update handling of media polarization (A.Schalicke) >> 46 // 01-05-05, update polarized differential cross section (A.Schalicke) >> 47 // 20-05-05, added polarization transfer (A.Schalicke) >> 48 // 10-06-05, transformation between different reference frames (A.Schalicke) >> 49 // 17-10-05, correct reference frame dependence in GetMeanFreePath (A.Schalicke) >> 50 // 26-07-06, cross section recalculated (P.Starovoitov) >> 51 // 09-08-06, make it work under current geant4 release (A.Schalicke) >> 52 // 11-06-07, add PostStepGetPhysicalInteractionLength (A.Schalicke) >> 53 // ----------------------------------------------------------------------------- 34 54 35 #include "G4PolarizedCompton.hh" << 36 55 >> 56 #include "G4PolarizedCompton.hh" >> 57 #include "G4SystemOfUnits.hh" 37 #include "G4Electron.hh" 58 #include "G4Electron.hh" 38 #include "G4EmParameters.hh" << 59 39 #include "G4KleinNishinaCompton.hh" << 60 #include "G4StokesVector.hh" 40 #include "G4PhysicsTableHelper.hh" << 41 #include "G4PolarizationManager.hh" 61 #include "G4PolarizationManager.hh" 42 #include "G4PolarizedComptonModel.hh" 62 #include "G4PolarizedComptonModel.hh" 43 #include "G4ProductionCutsTable.hh" 63 #include "G4ProductionCutsTable.hh" 44 #include "G4StokesVector.hh" << 64 #include "G4PhysicsTableHelper.hh" 45 #include "G4SystemOfUnits.hh" << 65 #include "G4KleinNishinaCompton.hh" >> 66 #include "G4PolarizedComptonModel.hh" 46 67 47 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 48 G4PhysicsTable* G4PolarizedCompton::theAsymmet << 49 69 50 G4PolarizedCompton::G4PolarizedCompton(const G 70 G4PolarizedCompton::G4PolarizedCompton(const G4String& processName, 51 G4Proce << 71 G4ProcessType type): 52 : G4VEmProcess(processName, type) << 72 G4VEmProcess (processName, type), 53 , fType(10) << 73 buildAsymmetryTable(true), 54 , fBuildAsymmetryTable(true) << 74 useAsymmetryTable(true), 55 , fUseAsymmetryTable(true) << 75 isInitialised(false), 56 , fIsInitialised(false) << 76 selectedModel(0), 57 { << 77 mType(10), 58 SetStartFromNullFlag(true); << 78 theAsymmetryTable(NULL) 59 SetBuildTableFlag(true); << 79 { 60 SetSecondaryParticle(G4Electron::Electron()) << 80 SetLambdaBinning(90); >> 81 SetMinKinEnergy(0.1*keV); >> 82 SetMaxKinEnergy(100.0*GeV); 61 SetProcessSubType(fComptonScattering); 83 SetProcessSubType(fComptonScattering); 62 SetMinKinEnergyPrim(1. * MeV); << 84 emModel = 0; 63 SetSplineFlag(true); << 64 fEmModel = nullptr; << 65 } << 66 << 67 //....oooOO0OOooo........oooOO0OOooo........oo << 68 G4PolarizedCompton::~G4PolarizedCompton() { Cl << 69 << 70 //....oooOO0OOooo........oooOO0OOooo........oo << 71 void G4PolarizedCompton::ProcessDescription(st << 72 { << 73 out << "Polarized model for Compton scatteri << 74 << 75 G4VEmProcess::ProcessDescription(out); << 76 } 85 } 77 86 78 //....oooOO0OOooo........oooOO0OOooo........oo 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 79 void G4PolarizedCompton::CleanTable() << 88 >> 89 G4PolarizedCompton::~G4PolarizedCompton() 80 { 90 { 81 if(theAsymmetryTable) << 91 if (theAsymmetryTable) { 82 { << 83 theAsymmetryTable->clearAndDestroy(); << 84 delete theAsymmetryTable; 92 delete theAsymmetryTable; 85 theAsymmetryTable = nullptr; << 86 } 93 } 87 } 94 } 88 95 89 //....oooOO0OOooo........oooOO0OOooo........oo 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 90 G4bool G4PolarizedCompton::IsApplicable(const << 91 { << 92 return (&p == G4Gamma::Gamma()); << 93 } << 94 97 95 //....oooOO0OOooo........oooOO0OOooo........oo << 96 void G4PolarizedCompton::InitialiseProcess(con 98 void G4PolarizedCompton::InitialiseProcess(const G4ParticleDefinition*) 97 { 99 { 98 if(!fIsInitialised) << 100 if(!isInitialised) { 99 { << 101 isInitialised = true; 100 fIsInitialised = true; << 102 SetBuildTableFlag(true); 101 if(0 == fType) << 103 SetSecondaryParticle(G4Electron::Electron()); 102 { << 104 G4double emin = MinKinEnergy(); 103 if(nullptr == EmModel(0)) << 105 G4double emax = MaxKinEnergy(); 104 { << 106 emModel = new G4PolarizedComptonModel(); 105 SetEmModel(new G4KleinNishinaCompton() << 107 if(0 == mType) selectedModel = new G4KleinNishinaCompton(); 106 } << 108 else if(10 == mType) selectedModel = emModel; 107 } << 109 selectedModel->SetLowEnergyLimit(emin); 108 else << 110 selectedModel->SetHighEnergyLimit(emax); 109 { << 111 AddEmModel(1, selectedModel); 110 fEmModel = new G4PolarizedComptonModel() << 112 } 111 SetEmModel(fEmModel); << 112 } << 113 G4EmParameters* param = G4EmParameters::In << 114 EmModel(0)->SetLowEnergyLimit(param->MinKi << 115 EmModel(0)->SetHighEnergyLimit(param->MaxK << 116 AddEmModel(1, EmModel(0)); << 117 } << 118 } 113 } 119 114 120 //....oooOO0OOooo........oooOO0OOooo........oo 115 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 116 >> 117 void G4PolarizedCompton::PrintInfo() >> 118 { >> 119 G4cout << " Total cross sections has a good parametrisation" >> 120 << " from 10 KeV to (100/Z) GeV" >> 121 << "\n Sampling according " << selectedModel->GetName() << " model" >> 122 << G4endl; >> 123 } >> 124 >> 125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 126 121 void G4PolarizedCompton::SetModel(const G4Stri 127 void G4PolarizedCompton::SetModel(const G4String& ss) 122 { 128 { 123 if(ss == "Klein-Nishina") << 129 if(ss == "Klein-Nishina") mType = 0; 124 { << 130 if(ss == "Polarized-Compton") mType = 10; 125 fType = 0; << 126 } << 127 if(ss == "Polarized-Compton") << 128 { << 129 fType = 10; << 130 } << 131 } 131 } 132 132 >> 133 >> 134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 133 //....oooOO0OOooo........oooOO0OOooo........oo 135 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 134 G4double G4PolarizedCompton::GetMeanFreePath(c << 136 135 G << 137 136 G << 138 >> 139 G4double G4PolarizedCompton::GetMeanFreePath( >> 140 const G4Track& aTrack, >> 141 G4double previousStepSize, >> 142 G4ForceCondition* condition) 137 { 143 { 138 // *** get unploarised mean free path from l 144 // *** get unploarised mean free path from lambda table *** 139 G4double mfp = << 145 G4double mfp = G4VEmProcess::GetMeanFreePath(aTrack, previousStepSize, condition); 140 G4VEmProcess::GetMeanFreePath(aTrack, prev << 141 146 142 if(theAsymmetryTable && fUseAsymmetryTable & << 147 143 { << 148 if (theAsymmetryTable && useAsymmetryTable) { 144 mfp *= ComputeSaturationFactor(aTrack); << 149 // *** get asymmetry, if target is polarized *** 145 } << 150 const G4DynamicParticle* aDynamicGamma = aTrack.GetDynamicParticle(); 146 if(verboseLevel >= 2) << 151 const G4double GammaEnergy = aDynamicGamma->GetKineticEnergy(); 147 { << 152 const G4StokesVector GammaPolarization = aTrack.GetPolarization(); 148 G4cout << "G4PolarizedCompton::MeanFreePat << 153 const G4ParticleMomentum GammaDirection0 = aDynamicGamma->GetMomentumDirection(); 149 << G4endl; << 154 150 } << 155 G4Material* aMaterial = aTrack.GetMaterial(); 151 return mfp; << 156 G4VPhysicalVolume* aPVolume = aTrack.GetVolume(); >> 157 G4LogicalVolume* aLVolume = aPVolume->GetLogicalVolume(); >> 158 >> 159 // G4Material* bMaterial = aLVolume->GetMaterial(); >> 160 G4PolarizationManager * polarizationManger = G4PolarizationManager::GetInstance(); >> 161 >> 162 const G4bool VolumeIsPolarized = polarizationManger->IsPolarized(aLVolume); >> 163 G4StokesVector ElectronPolarization = polarizationManger->GetVolumePolarization(aLVolume); >> 164 >> 165 if (!VolumeIsPolarized || mfp == DBL_MAX) return mfp; >> 166 >> 167 if (verboseLevel>=2) { >> 168 >> 169 G4cout << " Mom " << GammaDirection0 << G4endl; >> 170 G4cout << " Polarization " << GammaPolarization << G4endl; >> 171 G4cout << " MaterialPol. " << ElectronPolarization << G4endl; >> 172 G4cout << " Phys. Volume " << aPVolume->GetName() << G4endl; >> 173 G4cout << " Log. Volume " << aLVolume->GetName() << G4endl; >> 174 G4cout << " Material " << aMaterial << G4endl; >> 175 } >> 176 >> 177 G4int midx= CurrentMaterialCutsCoupleIndex(); >> 178 G4PhysicsVector * aVector=(*theAsymmetryTable)(midx); >> 179 >> 180 G4double asymmetry=0; >> 181 if (aVector) { >> 182 G4bool isOutRange; >> 183 asymmetry = aVector->GetValue(GammaEnergy, isOutRange); >> 184 } else { >> 185 G4cout << " MaterialIndex " << midx << " is out of range \n"; >> 186 asymmetry=0; >> 187 } >> 188 >> 189 // we have to determine angle between particle motion >> 190 // and target polarisation here >> 191 // circ pol * Vec(ElectronPol)*Vec(PhotonMomentum) >> 192 // both vectors in global reference frame >> 193 >> 194 G4double pol=ElectronPolarization*GammaDirection0; >> 195 >> 196 G4double polProduct = GammaPolarization.p3() * pol; >> 197 mfp *= 1. / ( 1. + polProduct * asymmetry ); >> 198 >> 199 if (verboseLevel>=2) { >> 200 G4cout << " MeanFreePath: " << mfp / mm << " mm " << G4endl; >> 201 G4cout << " Asymmetry: " << asymmetry << G4endl; >> 202 G4cout << " PolProduct: " << polProduct << G4endl; >> 203 } >> 204 } >> 205 >> 206 return mfp; 152 } 207 } 153 208 154 //....oooOO0OOooo........oooOO0OOooo........oo << 155 G4double G4PolarizedCompton::PostStepGetPhysic 209 G4double G4PolarizedCompton::PostStepGetPhysicalInteractionLength( 156 const G4Track& aTrack, G4double previousStep << 210 const G4Track& aTrack, >> 211 G4double previousStepSize, >> 212 G4ForceCondition* condition) 157 { 213 { 158 // save previous values << 214 // *** get unploarised mean free path from lambda table *** 159 G4double nLength = theNumberOfInteractionLen << 215 G4double mfp = G4VEmProcess::PostStepGetPhysicalInteractionLength(aTrack, previousStepSize, condition); 160 G4double iLength = currentInteractionLength; << 216 161 << 217 162 // *** compute unpolarized step limit *** << 218 if (theAsymmetryTable && useAsymmetryTable) { 163 // this changes theNumberOfInteractionLength << 219 // *** get asymmetry, if target is polarized *** 164 G4double x = G4VEmProcess::PostStepGetPhysic << 220 const G4DynamicParticle* aDynamicGamma = aTrack.GetDynamicParticle(); 165 aTrack, previousStepSize, condition); << 221 const G4double GammaEnergy = aDynamicGamma->GetKineticEnergy(); 166 G4double x0 = x; << 222 const G4StokesVector GammaPolarization = aTrack.GetPolarization(); 167 G4double satFact = 1.0; << 223 const G4ParticleMomentum GammaDirection0 = aDynamicGamma->GetMomentumDirection(); 168 << 224 169 // *** add corrections on polarisation *** << 225 G4Material* aMaterial = aTrack.GetMaterial(); 170 if(theAsymmetryTable && fUseAsymmetryTable & << 226 G4VPhysicalVolume* aPVolume = aTrack.GetVolume(); 171 { << 227 G4LogicalVolume* aLVolume = aPVolume->GetLogicalVolume(); 172 satFact = ComputeSaturationFact << 228 173 G4double curLength = currentInteractionLen << 229 // G4Material* bMaterial = aLVolume->GetMaterial(); 174 G4double prvLength = iLength * satFact; << 230 G4PolarizationManager * polarizationManger = G4PolarizationManager::GetInstance(); 175 if(nLength > 0.0) << 231 176 { << 232 const G4bool VolumeIsPolarized = polarizationManger->IsPolarized(aLVolume); 177 theNumberOfInteractionLengthLeft = << 233 G4StokesVector ElectronPolarization = polarizationManger->GetVolumePolarization(aLVolume); 178 std::max(nLength - previousStepSize / << 234 179 } << 235 if (!VolumeIsPolarized || mfp == DBL_MAX) return mfp; 180 x = theNumberOfInteractionLengthLeft * cur << 236 181 } << 237 if (verboseLevel>=2) { 182 if(verboseLevel >= 2) << 238 183 { << 239 G4cout << " Mom " << GammaDirection0 << G4endl; 184 G4cout << "G4PolarizedCompton::PostStepGPI << 240 G4cout << " Polarization " << GammaPolarization << G4endl; 185 << x / mm << " mm;" << G4endl << 241 G4cout << " MaterialPol. " << ElectronPolarization << G4endl; 186 << " unpolarized valu << 242 G4cout << " Phys. Volume " << aPVolume->GetName() << G4endl; 187 << x0 / mm << " mm." << G4endl; << 243 G4cout << " Log. Volume " << aLVolume->GetName() << G4endl; 188 } << 244 G4cout << " Material " << aMaterial << G4endl; 189 return x; << 245 } >> 246 >> 247 G4int midx= CurrentMaterialCutsCoupleIndex(); >> 248 G4PhysicsVector * aVector=(*theAsymmetryTable)(midx); >> 249 >> 250 G4double asymmetry=0; >> 251 if (aVector) { >> 252 G4bool isOutRange; >> 253 asymmetry = aVector->GetValue(GammaEnergy, isOutRange); >> 254 } else { >> 255 G4cout << " MaterialIndex " << midx << " is out of range \n"; >> 256 asymmetry=0; >> 257 } >> 258 >> 259 // we have to determine angle between particle motion >> 260 // and target polarisation here >> 261 // circ pol * Vec(ElectronPol)*Vec(PhotonMomentum) >> 262 // both vectors in global reference frame >> 263 >> 264 G4double pol=ElectronPolarization*GammaDirection0; >> 265 >> 266 G4double polProduct = GammaPolarization.p3() * pol; >> 267 mfp *= 1. / ( 1. + polProduct * asymmetry ); >> 268 >> 269 if (verboseLevel>=2) { >> 270 G4cout << " MeanFreePath: " << mfp / mm << " mm " << G4endl; >> 271 G4cout << " Asymmetry: " << asymmetry << G4endl; >> 272 G4cout << " PolProduct: " << polProduct << G4endl; >> 273 } >> 274 } >> 275 >> 276 return mfp; 190 } 277 } 191 278 192 //....oooOO0OOooo........oooOO0OOooo........oo 279 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 G4double G4PolarizedCompton::ComputeSaturation << 194 { << 195 G4double factor = 1.0; << 196 280 197 // *** get asymmetry, if target is polarized << 281 void G4PolarizedCompton::PreparePhysicsTable(const G4ParticleDefinition& part) 198 const G4DynamicParticle* aDynamicGamma = aTr << 282 { 199 const G4double GammaEnergy = aDy << 283 G4VEmProcess::PreparePhysicsTable(part); 200 const G4StokesVector GammaPolarization = << 284 if(buildAsymmetryTable) 201 G4StokesVector(aTrack.GetPolarization()); << 285 theAsymmetryTable = G4PhysicsTableHelper::PreparePhysicsTable(theAsymmetryTable); 202 const G4ParticleMomentum GammaDirection0 = << 203 aDynamicGamma->GetMomentumDirection(); << 204 << 205 const G4Material* aMaterial = aTrack.GetMate << 206 G4VPhysicalVolume* aPVolume = aTrack.GetVolu << 207 G4LogicalVolume* aLVolume = aPVolume->GetL << 208 << 209 G4PolarizationManager* polarizationManager = << 210 G4PolarizationManager::GetInstance(); << 211 << 212 const G4bool VolumeIsPolarized = polarizatio << 213 G4StokesVector ElectronPolarization = << 214 polarizationManager->GetVolumePolarization << 215 << 216 if(VolumeIsPolarized) << 217 { << 218 if(verboseLevel >= 2) << 219 { << 220 G4cout << "G4PolarizedCompton::ComputeSa << 221 G4cout << " Mom " << GammaDirection0 << << 222 G4cout << " Polarization " << GammaPolar << 223 G4cout << " MaterialPol. " << ElectronPo << 224 G4cout << " Phys. Volume " << aPVolume-> << 225 G4cout << " Log. Volume " << aLVolume-> << 226 G4cout << " Material " << aMaterial << 227 } << 228 << 229 std::size_t midx = CurrentMa << 230 const G4PhysicsVector* aVector = nullptr; << 231 if(midx < theAsymmetryTable->size()) << 232 { << 233 aVector = (*theAsymmetryTable)(midx); << 234 } << 235 if(aVector) << 236 { << 237 G4double asymmetry = aVector->Value(Gamm << 238 << 239 // we have to determine angle between p << 240 // and target polarisation here << 241 // circ pol * Vec(ElectronPol)*Vec( << 242 // both vectors in global reference fra << 243 << 244 G4double pol = ElectronPolarizati << 245 G4double polProduct = GammaPolarization. << 246 factor /= (1. + polProduct * asymmetry); << 247 if(verboseLevel >= 2) << 248 { << 249 G4cout << " Asymmetry: " << asymme << 250 G4cout << " PolProduct: " << polPro << 251 G4cout << " Factor: " << factor << 252 } << 253 } << 254 else << 255 { << 256 G4ExceptionDescription ed; << 257 ed << "Problem with asymmetry table: mat << 258 << " is out of range or the table is << 259 G4Exception("G4PolarizedComptonModel::Co << 260 JustWarning, ed, ""); << 261 } << 262 } << 263 return factor; << 264 } 286 } 265 287 266 //....oooOO0OOooo........oooOO0OOooo........oo 288 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 289 >> 290 267 void G4PolarizedCompton::BuildPhysicsTable(con 291 void G4PolarizedCompton::BuildPhysicsTable(const G4ParticleDefinition& part) 268 { 292 { 269 // *** build (unpolarized) cross section tab 293 // *** build (unpolarized) cross section tables (Lambda) 270 G4VEmProcess::BuildPhysicsTable(part); 294 G4VEmProcess::BuildPhysicsTable(part); 271 if(fBuildAsymmetryTable && fEmModel) << 295 if(buildAsymmetryTable) 272 { << 296 BuildAsymmetryTable(part); 273 G4bool isMaster = true; << 274 const G4PolarizedCompton* masterProcess = << 275 static_cast<const G4PolarizedCompton*>(G << 276 if(masterProcess && masterProcess != this) << 277 { << 278 isMaster = false; << 279 } << 280 if(isMaster) << 281 { << 282 BuildAsymmetryTable(part); << 283 } << 284 } << 285 } 297 } 286 298 287 //....oooOO0OOooo........oooOO0OOooo........oo 299 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 300 >> 301 288 void G4PolarizedCompton::BuildAsymmetryTable(c 302 void G4PolarizedCompton::BuildAsymmetryTable(const G4ParticleDefinition& part) 289 { 303 { 290 // cleanup old, initialise new table << 291 CleanTable(); << 292 theAsymmetryTable = << 293 G4PhysicsTableHelper::PreparePhysicsTable( << 294 << 295 // Access to materials 304 // Access to materials 296 const G4ProductionCutsTable* theCoupleTable << 305 const G4ProductionCutsTable* theCoupleTable= 297 G4ProductionCutsTable::GetProductionCutsTa << 306 G4ProductionCutsTable::GetProductionCutsTable(); 298 G4int numOfCouples = (G4int)theCoupleTable-> << 307 size_t numOfCouples = theCoupleTable->GetTableSize(); 299 if(!theAsymmetryTable) << 308 for(size_t i=0; i<numOfCouples; ++i) { 300 { << 309 if (!theAsymmetryTable) break; 301 return; << 310 if (theAsymmetryTable->GetFlag(i)) { 302 } << 311 303 G4int nbins = LambdaBinning( << 304 G4double emin = MinKinEnergy() << 305 G4double emax = MaxKinEnergy() << 306 G4PhysicsLogVector* aVector = nullptr; << 307 G4PhysicsLogVector* bVector = nullptr; << 308 << 309 for(G4int i = 0; i < numOfCouples; ++i) << 310 { << 311 if(theAsymmetryTable->GetFlag(i)) << 312 { << 313 // create physics vector and fill it 312 // create physics vector and fill it 314 const G4MaterialCutsCouple* couple = << 313 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 315 theCoupleTable->GetMaterialCutsCouple( << 316 // use same parameters as for lambda 314 // use same parameters as for lambda 317 if(!aVector) << 315 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); 318 { << 316 // modelManager->FillLambdaVector(aVector, couple, startFromNull); 319 aVector = new G4PhysicsLogVector(emin, << 320 bVector = aVector; << 321 } << 322 else << 323 { << 324 bVector = new G4PhysicsLogVector(*aVec << 325 } << 326 317 327 for(G4int j = 0; j <= nbins; ++j) << 318 for (G4int j = 0 ; j < LambdaBinning() ; ++j ) { 328 { << 319 G4double lowEdgeEnergy = aVector->GetLowEdgeEnergy(j); 329 G4double energy = bVector->Energy(j); << 320 G4double tasm=0.; 330 G4double tasm = 0.; << 321 G4double asym = ComputeAsymmetry(lowEdgeEnergy, couple, part, 0., tasm); 331 G4double asym = ComputeAsymmetry(ene << 322 aVector->PutValue(j,asym); 332 bVector->PutValue(j, asym); << 333 } 323 } 334 bVector->FillSecondDerivatives(); << 324 335 G4PhysicsTableHelper::SetPhysicsVector(t << 325 G4PhysicsTableHelper::SetPhysicsVector(theAsymmetryTable, i, aVector); 336 } 326 } 337 } 327 } >> 328 338 } 329 } 339 330 340 //....oooOO0OOooo........oooOO0OOooo........oo 331 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 341 G4double G4PolarizedCompton::ComputeAsymmetry( << 332 342 G4double energy, const G4MaterialCutsCouple* << 333 343 const G4ParticleDefinition& aParticle, G4dou << 334 G4double G4PolarizedCompton::ComputeAsymmetry(G4double energy, >> 335 const G4MaterialCutsCouple* couple, >> 336 const G4ParticleDefinition& aParticle, >> 337 G4double cut, >> 338 G4double & tAsymmetry) 344 { 339 { 345 G4double lAsymmetry = 0.0; 340 G4double lAsymmetry = 0.0; 346 tAsymmetry = 0; << 341 tAsymmetry=0; 347 342 >> 343 // 348 // calculate polarized cross section 344 // calculate polarized cross section 349 G4ThreeVector thePolarization = G4ThreeVecto << 345 // 350 fEmModel->SetTargetPolarization(thePolarizat << 346 G4ThreeVector thePolarization=G4ThreeVector(0.,0.,1.); 351 fEmModel->SetBeamPolarization(thePolarizatio << 347 emModel->SetTargetPolarization(thePolarization); 352 G4double sigma2 = << 348 emModel->SetBeamPolarization(thePolarization); 353 fEmModel->CrossSection(couple, &aParticle, << 349 G4double sigma2=emModel->CrossSection(couple,&aParticle,energy,cut,energy); 354 350 >> 351 // 355 // calculate unpolarized cross section 352 // calculate unpolarized cross section 356 thePolarization = G4ThreeVector(); << 353 // 357 fEmModel->SetTargetPolarization(thePolarizat << 354 thePolarization=G4ThreeVector(); 358 fEmModel->SetBeamPolarization(thePolarizatio << 355 emModel->SetTargetPolarization(thePolarization); 359 G4double sigma0 = << 356 emModel->SetBeamPolarization(thePolarization); 360 fEmModel->CrossSection(couple, &aParticle, << 357 G4double sigma0=emModel->CrossSection(couple,&aParticle,energy,cut,energy); 361 << 358 362 // determine asymmetries << 359 // determine assymmetries 363 if(sigma0 > 0.) << 360 if (sigma0>0.) { 364 { << 361 lAsymmetry=sigma2/sigma0-1.; 365 lAsymmetry = sigma2 / sigma0 - 1.; << 366 } 362 } 367 return lAsymmetry; 363 return lAsymmetry; 368 } 364 } >> 365 >> 366 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 369 367