Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/polarisation/src/G4PolarizedAnnihilationModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/polarisation/src/G4PolarizedAnnihilationModel.cc (Version 11.3.0) and /processes/electromagnetic/polarisation/src/G4PolarizedAnnihilationModel.cc (Version 9.3.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4PolarizedAnnihilationModel.cc,v 1.9 2009/11/12 12:57:15 schaelic Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-03-patch-01 $
                                                   >>  28 //
 26 // -------------------------------------------     29 // -------------------------------------------------------------------
 27 //                                                 30 //
 28 // Geant4 Class file                           <<  31 // GEANT4 Class file
                                                   >>  32 //
 29 //                                                 33 //
 30 // File name:     G4PolarizedAnnihilationModel     34 // File name:     G4PolarizedAnnihilationModel
 31 //                                                 35 //
 32 // Author:        Andreas Schaelicke               36 // Author:        Andreas Schaelicke
 33 //                                                 37 //
                                                   >>  38 // Creation date: 01.05.2005
                                                   >>  39 //
                                                   >>  40 // Modifications:
                                                   >>  41 // 18-07-06 use newly calculated cross sections (P. Starovoitov)
                                                   >>  42 // 21-08-06 update interface (A. Schaelicke)
                                                   >>  43 // 17-11-06 add protection agaist e+ zero energy PostStep (V.Ivanchenko)
                                                   >>  44 // 10-07-07 copied Initialise() method from G4eeToTwoGammaModel to provide a  
                                                   >>  45 //          local ParticleChangeForGamma object and reduce overhead 
                                                   >>  46 //          in SampleSecondaries()  (A. Schaelicke)
                                                   >>  47 //
                                                   >>  48 //
 34 // Class Description:                              49 // Class Description:
 35 //   Implementation of polarized gamma Annihil <<  50 //
                                                   >>  51 // Implementation of polarized gamma Annihilation scattering on free electron
                                                   >>  52 // 
 36                                                    53 
                                                   >>  54 // -------------------------------------------------------------------
 37 #include "G4PolarizedAnnihilationModel.hh"         55 #include "G4PolarizedAnnihilationModel.hh"
 38                                                << 
 39 #include "G4Gamma.hh"                          << 
 40 #include "G4ParticleChangeForGamma.hh"         << 
 41 #include "G4PhysicalConstants.hh"              << 
 42 #include "G4PolarizationHelper.hh"             << 
 43 #include "G4PolarizationManager.hh"                56 #include "G4PolarizationManager.hh"
 44 #include "G4PolarizedAnnihilationXS.hh"        <<  57 #include "G4PolarizationHelper.hh"
 45 #include "G4StokesVector.hh"                       58 #include "G4StokesVector.hh"
                                                   >>  59 #include "G4PolarizedAnnihilationCrossSection.hh"
                                                   >>  60 #include "G4ParticleChangeForGamma.hh"
 46 #include "G4TrackStatus.hh"                        61 #include "G4TrackStatus.hh"
                                                   >>  62 #include "G4Gamma.hh"
 47                                                    63 
 48 G4PolarizedAnnihilationModel::G4PolarizedAnnih <<  64 G4PolarizedAnnihilationModel::G4PolarizedAnnihilationModel(const G4ParticleDefinition* p, 
 49   const G4ParticleDefinition* p, const G4Strin <<  65                  const G4String& nam)
 50   : G4eeToTwoGammaModel(p, nam)                <<  66   : G4eeToTwoGammaModel(p,nam),crossSectionCalculator(0),gParticleChange(0),
 51   , fCrossSectionCalculator(nullptr)           <<  67     gIsInitialised(false)
 52   , fParticleChange(nullptr)                   << 
 53   , fVerboseLevel(0)                           << 
 54 {                                                  68 {
 55   fCrossSectionCalculator  = new G4PolarizedAn <<  69   crossSectionCalculator=new G4PolarizedAnnihilationCrossSection();
 56   fBeamPolarization        = G4StokesVector::Z << 
 57   fTargetPolarization      = G4StokesVector::Z << 
 58   fFinalGamma1Polarization = G4StokesVector::Z << 
 59   fFinalGamma2Polarization = G4StokesVector::Z << 
 60 }                                                  70 }
 61                                                    71 
 62 //....oooOO0OOooo........oooOO0OOooo........oo << 
 63 G4PolarizedAnnihilationModel::~G4PolarizedAnni     72 G4PolarizedAnnihilationModel::~G4PolarizedAnnihilationModel()
 64 {                                                  73 {
 65   delete fCrossSectionCalculator;              <<  74   if (crossSectionCalculator) delete crossSectionCalculator;
 66 }                                                  75 }
 67                                                    76 
                                                   >>  77 
 68 //....oooOO0OOooo........oooOO0OOooo........oo     78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 69 void G4PolarizedAnnihilationModel::Initialise( <<  79 
 70                                                <<  80 void G4PolarizedAnnihilationModel::Initialise(const G4ParticleDefinition*,
                                                   >>  81                                      const G4DataVector&)
 71 {                                                  82 {
 72   G4eeToTwoGammaModel::Initialise(part, dv);   <<  83   //  G4eeToTwoGammaModel::Initialise(part,dv);
 73   if(fParticleChange)                          <<  84   if(gIsInitialised) return;
 74   {                                            <<  85   gParticleChange = GetParticleChangeForGamma();
 75     return;                                    <<  86   gIsInitialised = true;
 76   }                                            << 
 77   fParticleChange = GetParticleChangeForGamma( << 
 78 }                                                  87 }
 79                                                    88 
 80 //....oooOO0OOooo........oooOO0OOooo........oo << 
 81 G4double G4PolarizedAnnihilationModel::Compute     89 G4double G4PolarizedAnnihilationModel::ComputeCrossSectionPerElectron(
 82   G4double kinEnergy)                          <<  90                                 const G4ParticleDefinition* pd,
                                                   >>  91                                       G4double kinEnergy, 
                                                   >>  92                                       G4double cut,
                                                   >>  93                                       G4double emax)
 83 {                                                  94 {
 84   // cross section from base model             <<  95   G4double xs = G4eeToTwoGammaModel::ComputeCrossSectionPerElectron(pd,kinEnergy,
 85   G4double xs = G4eeToTwoGammaModel::ComputeCr <<  96                 cut,emax);
 86                                                    97 
 87   G4double polzz = fBeamPolarization.z() * fTa <<  98   G4double polzz = theBeamPolarization.z()*theTargetPolarization.z();
 88   G4double poltt = fBeamPolarization.x() * fTa <<  99   G4double poltt = theBeamPolarization.x()*theTargetPolarization.x() 
 89                    fBeamPolarization.y() * fTa << 100                  + theBeamPolarization.y()*theTargetPolarization.y();
 90   if(polzz != 0 || poltt != 0)                 << 101   if (polzz!=0 || poltt!=0) {
 91   {                                            << 102     G4double xval,lasym,tasym;
 92     G4double xval, lasym, tasym;               << 103     ComputeAsymmetriesPerElectron(kinEnergy,xval,lasym,tasym);
 93     ComputeAsymmetriesPerElectron(kinEnergy, x << 104     xs*=(1.+polzz*lasym+poltt*tasym);
 94     xs *= (1. + polzz * lasym + poltt * tasym) << 
 95   }                                               105   }
 96                                                   106 
 97   return xs;                                      107   return xs;
 98 }                                                 108 }
 99                                                   109 
100 //....oooOO0OOooo........oooOO0OOooo........oo << 110 void G4PolarizedAnnihilationModel::ComputeAsymmetriesPerElectron(G4double ene,
101 void G4PolarizedAnnihilationModel::ComputeAsym << 111                  G4double & valueX,
102   G4double ene, G4double& valueX, G4double& va << 112                  G4double & valueA,
                                                   >> 113                  G4double & valueT)
103 {                                                 114 {
104   // *** calculate asymmetries                    115   // *** calculate asymmetries
105   G4double gam = 1. + ene / electron_mass_c2;  << 116   G4double gam = 1. + ene/electron_mass_c2;
106   G4double xs0 = fCrossSectionCalculator->Tota << 117   G4double xs0=crossSectionCalculator->TotalXSection(0.,1.,gam,
107     0., 1., gam, G4StokesVector::ZERO, G4Stoke << 118                  G4StokesVector::ZERO,
108   G4double xsA = fCrossSectionCalculator->Tota << 119                  G4StokesVector::ZERO);
109     0., 1., gam, G4StokesVector::P3, G4StokesV << 120   G4double xsA=crossSectionCalculator->TotalXSection(0.,1.,gam,
110   G4double xsT1 = fCrossSectionCalculator->Tot << 121                  G4StokesVector::P3,
111     0., 1., gam, G4StokesVector::P1, G4StokesV << 122                  G4StokesVector::P3);
112   G4double xsT2 = fCrossSectionCalculator->Tot << 123   G4double xsT1=crossSectionCalculator->TotalXSection(0.,1.,gam,
113     0., 1., gam, G4StokesVector::P2, G4StokesV << 124                  G4StokesVector::P1,
114   G4double xsT = 0.5 * (xsT1 + xsT2);          << 125                  G4StokesVector::P1);
115                                                << 126   G4double xsT2=crossSectionCalculator->TotalXSection(0.,1.,gam,
116   valueX = xs0;                                << 127                  G4StokesVector::P2,
117   valueA = xsA / xs0 - 1.;                     << 128                  G4StokesVector::P2);
118   valueT = xsT / xs0 - 1.;                     << 129   G4double xsT=0.5*(xsT1+xsT2);
119                                                << 130   
120   if((valueA < -1) || (1 < valueA))            << 131   valueX=xs0;
121   {                                            << 132   valueA=xsA/xs0-1.;
122     G4ExceptionDescription ed;                 << 133   valueT=xsT/xs0-1.;
123     ed << " ERROR PolarizedAnnihilationPS::Com << 134   //  G4cout<<valueX<<"\t"<<valueA<<"\t"<<valueT<<"   energy = "<<gam<<G4endl;
124     ed << " something wrong in total cross sec << 135   if ( (valueA < -1) || (1 < valueA)) {
125     ed << " LONG: " << valueX << "\t" << value << 136     G4cout<< " ERROR PolarizedAnnihilationPS::ComputeAsymmetries \n";
126        << "   energy = " << gam << G4endl;     << 137     G4cout<< " something wrong in total cross section calculation (valueA)\n";
127     G4Exception("G4PolarizedAnnihilationModel: << 138     G4cout<<"*********** LONG "<<valueX<<"\t"<<valueA<<"\t"<<valueT<<"   energy = "<<gam<<G4endl;
128                 "pol004", JustWarning, ed);    << 
129   }                                               139   }
130   if((valueT < -1) || (1 < valueT))            << 140   if ( (valueT < -1) || (1 < valueT)) {
131   {                                            << 141     G4cout<< " ERROR PolarizedAnnihilationPS::ComputeAsymmetries \n";
132     G4ExceptionDescription ed;                 << 142     G4cout<< " something wrong in total cross section calculation (valueT)\n";
133     ed << " ERROR PolarizedAnnihilationPS::Com << 143     G4cout<<"****** TRAN "<<valueX<<"\t"<<valueA<<"\t"<<valueT<<"   energy = "<<gam<<G4endl;
134     ed << " something wrong in total cross sec << 
135     ed << " TRAN: " << valueX << "\t" << value << 
136        << "   energy = " << gam << G4endl;     << 
137     G4Exception("G4PolarizedAnnihilationModel: << 
138                 "pol005", JustWarning, ed);    << 
139   }                                               144   }
140 }                                                 145 }
141                                                   146 
142 void G4PolarizedAnnihilationModel::SampleSecon << 
143   std::vector<G4DynamicParticle*>* fvect, cons << 
144   const G4DynamicParticle* dp, G4double, G4dou << 
145 {                                              << 
146   const G4Track* aTrack = fParticleChange->Get << 
147                                                   147 
148   // kill primary                              << 148 void G4PolarizedAnnihilationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
149   fParticleChange->SetProposedKineticEnergy(0. << 149                  const G4MaterialCutsCouple* /*couple*/,
150   fParticleChange->ProposeTrackStatus(fStopAnd << 150                  const G4DynamicParticle* dp,
                                                   >> 151                  G4double /*tmin*/,
                                                   >> 152                  G4double /*maxEnergy*/) 
                                                   >> 153 {
                                                   >> 154 //   G4ParticleChangeForGamma*  gParticleChange 
                                                   >> 155 //     = dynamic_cast<G4ParticleChangeForGamma*>(pParticleChange);
                                                   >> 156   const G4Track * aTrack = gParticleChange->GetCurrentTrack();
                                                   >> 157 
                                                   >> 158   // kill primary 
                                                   >> 159   gParticleChange->SetProposedKineticEnergy(0.);
                                                   >> 160   gParticleChange->ProposeTrackStatus(fStopAndKill);
151                                                   161 
152   // V.Ivanchenko add protection against zero     162   // V.Ivanchenko add protection against zero kin energy
153   G4double PositKinEnergy = dp->GetKineticEner    163   G4double PositKinEnergy = dp->GetKineticEnergy();
154                                                   164 
155   if(PositKinEnergy == 0.0)                    << 165   if(PositKinEnergy < DBL_MIN) {
156   {                                            << 166 
157     G4double cosTeta = 2. * G4UniformRand() -  << 167     G4double cosTeta = 2.*G4UniformRand()-1.;
158     G4double sinTeta = std::sqrt((1.0 - cosTet << 168     G4double sinTeta = std::sqrt((1.0 - cosTeta)*(1.0 + cosTeta));
159     G4double phi     = twopi * G4UniformRand()    169     G4double phi     = twopi * G4UniformRand();
160     G4ThreeVector dir(sinTeta * std::cos(phi), << 170     G4ThreeVector dir(sinTeta*std::cos(phi), sinTeta*std::sin(phi), cosTeta);
161                       cosTeta);                << 171     fvect->push_back( new G4DynamicParticle(G4Gamma::Gamma(), dir, electron_mass_c2));
162     fvect->push_back(                          << 172     fvect->push_back( new G4DynamicParticle(G4Gamma::Gamma(),-dir, electron_mass_c2));
163       new G4DynamicParticle(G4Gamma::Gamma(),  << 
164     fvect->push_back(                          << 
165       new G4DynamicParticle(G4Gamma::Gamma(),  << 
166     return;                                       173     return;
167   }                                               174   }
168                                                   175 
169   // *** obtain and save target and beam polar    176   // *** obtain and save target and beam polarization ***
170   G4PolarizationManager* polarizationManager = << 177   G4PolarizationManager * polarizationManager = G4PolarizationManager::GetInstance();
171     G4PolarizationManager::GetInstance();      << 
172                                                   178 
173   // obtain polarization of the beam              179   // obtain polarization of the beam
174   fBeamPolarization = G4StokesVector(aTrack->G << 180   theBeamPolarization = aTrack->GetPolarization();
175                                                   181 
176   // obtain polarization of the media             182   // obtain polarization of the media
177   G4VPhysicalVolume* aPVolume    = aTrack->Get << 183   G4VPhysicalVolume*  aPVolume  = aTrack->GetVolume();
178   G4LogicalVolume* aLVolume      = aPVolume->G << 184   G4LogicalVolume*    aLVolume  = aPVolume->GetLogicalVolume();
179   const G4bool targetIsPolarized = polarizatio    185   const G4bool targetIsPolarized = polarizationManager->IsPolarized(aLVolume);
180   fTargetPolarization = polarizationManager->G << 186   theTargetPolarization = polarizationManager->GetVolumePolarization(aLVolume);
181                                                << 
182   if(fVerboseLevel >= 1)                       << 
183   {                                            << 
184     G4cout << "G4PolarizedComptonModel::Sample << 
185            << aLVolume->GetName() << G4endl;   << 
186   }                                            << 
187                                                   187 
188   // transfer target electron polarization in     188   // transfer target electron polarization in frame of positron
189   if(targetIsPolarized)                        << 189   if (targetIsPolarized)
190     fTargetPolarization.rotateUz(dp->GetMoment << 190       theTargetPolarization.rotateUz(dp->GetMomentumDirection());
191                                                << 191   
192   G4ParticleMomentum PositDirection = dp->GetM    192   G4ParticleMomentum PositDirection = dp->GetMomentumDirection();
193                                                   193 
194   // polar asymmetry:                             194   // polar asymmetry:
195   G4double polarization = fBeamPolarization.p3 << 195   G4double polarization = theBeamPolarization.p3()*theTargetPolarization.p3();
196                                                   196 
197   G4double gamam1 = PositKinEnergy / electron_ << 197   G4double gamam1 = PositKinEnergy/electron_mass_c2;
198   G4double gama = gamam1 + 1., gamap1 = gamam1 << 198   G4double gama   = gamam1+1. , gamap1 = gamam1+2.;
199   G4double sqgrate = std::sqrt(gamam1 / gamap1 << 199   G4double sqgrate = std::sqrt(gamam1/gamap1)/2. , sqg2m1 = std::sqrt(gamam1*gamap1);
200            sqg2m1  = std::sqrt(gamam1 * gamap1 << 
201                                                   200 
202   // limits of the energy sampling                201   // limits of the energy sampling
203   G4double epsilmin = 0.5 - sqgrate, epsilmax  << 202   G4double epsilmin = 0.5 - sqgrate , epsilmax = 0.5 + sqgrate;
204   G4double epsilqot = epsilmax / epsilmin;     << 203   G4double epsilqot = epsilmax/epsilmin;
205                                                << 204   
206   // sample the energy rate of the created gam << 205   //
207   // note: for polarized partices, the actual  << 206   // sample the energy rate of the created gammas 
                                                   >> 207   // note: for polarized partices, the actual dicing strategy 
208   //       will depend on the energy, and the     208   //       will depend on the energy, and the degree of polarization !!
                                                   >> 209   //
209   G4double epsil;                                 210   G4double epsil;
210   G4double gmax = 1. + std::fabs(polarization) << 211   G4double gmax=1. + std::fabs(polarization); // crude estimate
211                                                   212 
212   fCrossSectionCalculator->Initialize(epsilmin << 213   G4bool check_range=true;
213                                       fTargetP << 214 
214   if(fCrossSectionCalculator->DiceEpsilon() <  << 215   crossSectionCalculator->Initialize(epsilmin, gama, 0.,  theBeamPolarization, theTargetPolarization);
215   {                                            << 216   if (crossSectionCalculator->DiceEpsilon()<0) {
216     G4ExceptionDescription ed;                 << 217     G4cout<<"ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
217     ed << "ERROR in PolarizedAnnihilationPS::P << 218     <<"epsilmin DiceRoutine not appropriate ! "<<crossSectionCalculator->DiceEpsilon()<<G4endl;
218        << "epsilmin DiceRoutine not appropriat << 219     check_range=false;
219        << fCrossSectionCalculator->DiceEpsilon << 
220     G4Exception("G4PolarizedAnnihilationModel: << 
221                 JustWarning, ed);              << 
222   }                                               220   }
223                                                   221 
224   fCrossSectionCalculator->Initialize(epsilmax << 222   crossSectionCalculator->Initialize(epsilmax, gama, 0.,  theBeamPolarization, theTargetPolarization);
225                                       fTargetP << 223   if (crossSectionCalculator->DiceEpsilon()<0) {
226   if(fCrossSectionCalculator->DiceEpsilon() <  << 224     G4cout<<"ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
227   {                                            << 225     <<"epsilmax DiceRoutine not appropriate ! "<<crossSectionCalculator->DiceEpsilon()<<G4endl;
228     G4ExceptionDescription ed;                 << 226     check_range=false;
229     ed << "ERROR in PolarizedAnnihilationPS::P << 
230        << "epsilmax DiceRoutine not appropriat << 
231        << fCrossSectionCalculator->DiceEpsilon << 
232     G4Exception("G4PolarizedAnnihilationModel: << 
233                 JustWarning, ed);              << 
234   }                                               227   }
235                                                   228 
236   G4int ncount        = 0;                     << 229   G4int ncount=0;
237   G4double trejectmax = 0.;                    << 230   G4double trejectmax=0.;
238   G4double treject;                               231   G4double treject;
239                                                   232 
240   do                                           << 233 
241   {                                            << 234   do {
242     epsil = epsilmin * std::pow(epsilqot, G4Un << 235     // 
243                                                << 236     epsil = epsilmin*std::pow(epsilqot,G4UniformRand());
244     fCrossSectionCalculator->Initialize(epsil, << 237 
245                                         fTarge << 238     crossSectionCalculator->Initialize(epsil, gama, 0., theBeamPolarization, theTargetPolarization,1);
246                                                << 239 
247     treject = fCrossSectionCalculator->DiceEps << 240     treject = crossSectionCalculator->DiceEpsilon(); 
248     treject *= epsil;                          << 241     treject*=epsil;
249                                                << 242 
250     if(treject > gmax || treject < 0.)         << 243     if (treject>gmax  || treject<0.) 
251     {                                          << 244       G4cout<<"ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
252       G4ExceptionDescription ed;               << 245       <<" eps ("<<epsil<<") rejection does not work properly: "<<treject<<G4endl;
253       ed << "ERROR in PolarizedAnnihilationPS: << 
254          << " eps (" << epsil                  << 
255          << ") rejection does not work properl << 
256       G4Exception("G4PolarizedAnnihilationMode << 
257                   JustWarning, ed);            << 
258     }                                          << 
259     ++ncount;                                     246     ++ncount;
260     if(treject > trejectmax)                   << 247     if (treject>trejectmax) trejectmax=treject;
261       trejectmax = treject;                    << 248     if (ncount>1000) {
262     if(ncount > 1000)                          << 249       G4cout<<"WARNING  in PolarizedAnnihilationPS::PostStepDoIt\n"
263     {                                          << 250       <<"eps dicing very inefficient ="<<trejectmax/gmax
264       G4ExceptionDescription ed;               << 251       <<", "<<treject/gmax<<".  For secondary energy = "<<epsil<<"   "<<ncount<<G4endl;
265       ed << "WARNING  in PolarizedAnnihilation << 
266          << "eps dicing very inefficient =" << << 
267          << treject / gmax << ".  For secondar << 
268          << ncount << G4endl;                  << 
269       G4Exception("G4PolarizedAnnihilationMode << 
270                   JustWarning, ed);            << 
271       break;                                      252       break;
272     }                                             253     }
273                                                   254 
274     // Loop checking, 03-Aug-2015, Vladimir Iv << 255   } while( treject < gmax*G4UniformRand() );
275   } while(treject < gmax * G4UniformRand());   << 
276                                                   256 
                                                   >> 257   //
277   // scattered Gamma angles. ( Z - axis along     258   // scattered Gamma angles. ( Z - axis along the parent positron)
278   G4double cost = (epsil * gamap1 - 1.) / (eps << 259   //
279   G4double sint = std::sqrt((1. + cost) * (1.  << 260    
                                                   >> 261   G4double cost = (epsil*gamap1-1.)/(epsil*sqg2m1);
                                                   >> 262   G4double sint = std::sqrt((1.+cost)*(1.-cost));
280   G4double phi  = 0.;                             263   G4double phi  = 0.;
281   G4double beamTrans =                         << 264   G4double   beamTrans = std::sqrt(sqr(theBeamPolarization.p1()) + sqr(theBeamPolarization.p2()));
282     std::sqrt(sqr(fBeamPolarization.p1()) + sq << 265   G4double targetTrans = std::sqrt(sqr(theTargetPolarization.p1()) + sqr(theTargetPolarization.p2()));
283   G4double targetTrans =                       << 
284     std::sqrt(sqr(fTargetPolarization.p1()) +  << 
285                                                << 
286   do                                           << 
287   {                                            << 
288     phi = twopi * G4UniformRand();             << 
289     fCrossSectionCalculator->Initialize(epsil, << 
290                                         fTarge << 
291                                                << 
292     G4double gdiced = fCrossSectionCalculator- << 
293     gdiced += fCrossSectionCalculator->getVar( << 
294               fTargetPolarization.p3();        << 
295     gdiced += 1. *                             << 
296               (std::fabs(fCrossSectionCalculat << 
297                std::fabs(fCrossSectionCalculat << 
298               beamTrans * targetTrans;         << 
299     gdiced += 1. * std::fabs(fCrossSectionCalc << 
300               (std::fabs(fBeamPolarization.p3( << 
301                std::fabs(fTargetPolarization.p << 
302                                                << 
303     G4double gdist = fCrossSectionCalculator-> << 
304     gdist += fCrossSectionCalculator->getVar(3 << 
305              fTargetPolarization.p3();         << 
306     gdist += fCrossSectionCalculator->getVar(1 << 
307              (std::cos(phi) * fBeamPolarizatio << 
308               std::sin(phi) * fBeamPolarizatio << 
309              (std::cos(phi) * fTargetPolarizat << 
310               std::sin(phi) * fTargetPolarizat << 
311     gdist += fCrossSectionCalculator->getVar(2 << 
312              (std::cos(phi) * fBeamPolarizatio << 
313               std::sin(phi) * fBeamPolarizatio << 
314              (std::cos(phi) * fTargetPolarizat << 
315               std::sin(phi) * fTargetPolarizat << 
316     gdist +=                                   << 
317       fCrossSectionCalculator->getVar(4) *     << 
318       (std::cos(phi) * fBeamPolarization.p3()  << 
319        std::cos(phi) * fBeamPolarization.p1()  << 
320        std::sin(phi) * fBeamPolarization.p3()  << 
321        std::sin(phi) * fBeamPolarization.p2()  << 
322                                                << 
323     treject = gdist / gdiced;                  << 
324     if(treject > 1. + 1.e-10 || treject < 0)   << 
325     {                                          << 
326       G4ExceptionDescription ed;               << 
327       ed << "!!!ERROR in PolarizedAnnihilation << 
328          << " phi rejection does not work prop << 
329       G4cout << " gdiced = " << gdiced << G4en << 
330       G4cout << " gdist = " << gdist << G4endl << 
331       G4cout << " epsil = " << epsil << G4endl << 
332       G4Exception("G4PolarizedAnnihilationMode << 
333                   JustWarning, ed);            << 
334     }                                          << 
335                                                   266 
336     if(treject < 1.e-3)                        << 267   //  G4cout<<"phi dicing START"<<G4endl;
337     {                                          << 268   do{
338       G4ExceptionDescription ed;               << 269     phi  = twopi * G4UniformRand();
339       ed << "!!!ERROR in PolarizedAnnihilation << 270     crossSectionCalculator->Initialize(epsil, gama, 0., theBeamPolarization, theTargetPolarization,2);
340          << " phi rejection does not work prop << 271 
341       G4cout << " gdiced=" << gdiced << "   gd << 272     G4double gdiced =crossSectionCalculator->getVar(0);
342       G4cout << " epsil = " << epsil << G4endl << 273     gdiced += crossSectionCalculator->getVar(3)*theBeamPolarization.p3()*theTargetPolarization.p3();
343       G4Exception("G4PolarizedAnnihilationMode << 274     gdiced += 1.*(std::fabs(crossSectionCalculator->getVar(1)) 
344                   JustWarning, ed);            << 275       + std::fabs(crossSectionCalculator->getVar(2)))*beamTrans*targetTrans;
345     }                                          << 276     gdiced += 1.*std::fabs(crossSectionCalculator->getVar(4))
                                                   >> 277       *(std::fabs(theBeamPolarization.p3())*targetTrans + std::fabs(theTargetPolarization.p3())*beamTrans);
                                                   >> 278 
                                                   >> 279     G4double gdist = crossSectionCalculator->getVar(0);
                                                   >> 280     gdist += crossSectionCalculator->getVar(3)*theBeamPolarization.p3()*theTargetPolarization.p3();
                                                   >> 281     gdist += crossSectionCalculator->getVar(1)*(std::cos(phi)*theBeamPolarization.p1() 
                                                   >> 282             + std::sin(phi)*theBeamPolarization.p2())
                                                   >> 283                                               *(std::cos(phi)*theTargetPolarization.p1() 
                                                   >> 284             + std::sin(phi)*theTargetPolarization.p2());
                                                   >> 285     gdist += crossSectionCalculator->getVar(2)*(std::cos(phi)*theBeamPolarization.p2() 
                                                   >> 286             - std::sin(phi)*theBeamPolarization.p1())
                                                   >> 287                                               *(std::cos(phi)*theTargetPolarization.p2() 
                                                   >> 288             - std::sin(phi)*theTargetPolarization.p1());
                                                   >> 289     gdist += crossSectionCalculator->getVar(4)
                                                   >> 290       *(std::cos(phi)*theBeamPolarization.p3()*theTargetPolarization.p1()
                                                   >> 291   + std::cos(phi)*theBeamPolarization.p1()*theTargetPolarization.p3() 
                                                   >> 292   + std::sin(phi)*theBeamPolarization.p3()*theTargetPolarization.p2() 
                                                   >> 293   + std::sin(phi)*theBeamPolarization.p2()*theTargetPolarization.p3());
                                                   >> 294 
                                                   >> 295     treject = gdist/gdiced;
                                                   >> 296     //G4cout<<" treject = "<<treject<<" at phi = "<<phi<<G4endl;
                                                   >> 297      if (treject>1.+1.e-10 || treject<0){
                                                   >> 298        G4cout<<"!!!ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
                                                   >> 299        <<" phi rejection does not work properly: "<<treject<<G4endl;
                                                   >> 300        G4cout<<" gdiced = "<<gdiced<<G4endl;
                                                   >> 301        G4cout<<" gdist = "<<gdist<<G4endl;
                                                   >> 302        G4cout<<" epsil = "<<epsil<<G4endl;
                                                   >> 303      }
                                                   >> 304      
                                                   >> 305      if (treject<1.e-3) {
                                                   >> 306        G4cout<<"!!!ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
                                                   >> 307       <<" phi rejection does not work properly: "<<treject<<"\n";
                                                   >> 308        G4cout<<" gdiced="<<gdiced<<"   gdist="<<gdist<<"\n";
                                                   >> 309        G4cout<<" epsil = "<<epsil<<G4endl;
                                                   >> 310      }
346                                                   311 
347     // Loop checking, 03-Aug-2015, Vladimir Iv << 312   } while( treject < G4UniformRand() );
348   } while(treject < G4UniformRand());          << 313   //  G4cout<<"phi dicing END"<<G4endl;
349                                                   314 
350   G4double dirx = sint * std::cos(phi);        << 315   G4double dirx = sint*std::cos(phi) , diry = sint*std::sin(phi) , dirz = cost;
351   G4double diry = sint * std::sin(phi);        << 
352   G4double dirz = cost;                        << 
353                                                   316 
                                                   >> 317   //
354   // kinematic of the created pair                318   // kinematic of the created pair
355   G4double TotalAvailableEnergy = PositKinEner << 319   //
356   G4double Phot1Energy          = epsil * Tota << 320   G4double TotalAvailableEnergy = PositKinEnergy + 2*electron_mass_c2;
357   G4double Phot2Energy          = (1. - epsil) << 321   G4double Phot1Energy = epsil*TotalAvailableEnergy;
                                                   >> 322   G4double Phot2Energy =(1.-epsil)*TotalAvailableEnergy;
358                                                   323 
359   // *** prepare calculation of polarization t    324   // *** prepare calculation of polarization transfer ***
360   G4ThreeVector Phot1Direction(dirx, diry, dir << 325   G4ThreeVector Phot1Direction (dirx, diry, dirz);
361                                                   326 
362   // get interaction frame                        327   // get interaction frame
363   G4ThreeVector nInteractionFrame =            << 328   G4ThreeVector  nInteractionFrame = 
364     G4PolarizationHelper::GetFrame(PositDirect << 329     G4PolarizationHelper::GetFrame(PositDirection,Phot1Direction);
365                                                << 330      
366   // define proper in-plane and out-of-plane c    331   // define proper in-plane and out-of-plane component of initial spins
367   fBeamPolarization.InvRotateAz(nInteractionFr << 332   theBeamPolarization.InvRotateAz(nInteractionFrame,PositDirection);
368   fTargetPolarization.InvRotateAz(nInteraction << 333   theTargetPolarization.InvRotateAz(nInteractionFrame,PositDirection);
369                                                   334 
370   // calculate spin transfere matrix              335   // calculate spin transfere matrix
371                                                   336 
372   fCrossSectionCalculator->Initialize(epsil, g << 337   crossSectionCalculator->Initialize(epsil,gama,phi,theBeamPolarization,theTargetPolarization,2);
373                                       fTargetP << 338 
                                                   >> 339   // **********************************************************************
374                                                   340 
375   Phot1Direction.rotateUz(PositDirection);     << 341   Phot1Direction.rotateUz(PositDirection);   
376   // create G4DynamicParticle object for the p << 342   // create G4DynamicParticle object for the particle1  
377   G4DynamicParticle* aParticle1 =              << 343   G4DynamicParticle* aParticle1= new G4DynamicParticle (G4Gamma::Gamma(),
378     new G4DynamicParticle(G4Gamma::Gamma(), Ph << 344               Phot1Direction, Phot1Energy);
379   fFinalGamma1Polarization = fCrossSectionCalc << 345   finalGamma1Polarization=crossSectionCalculator->GetPol2();
380   G4double n1              = fFinalGamma1Polar << 346   G4double n1=finalGamma1Polarization.mag2();
381   if(n1 > 1.)                                  << 347   if (n1>1) {
382   {                                            << 348     G4cout<<"ERROR: PolarizedAnnihilation Polarization Vector at epsil = "
383     G4ExceptionDescription ed;                 << 349     <<epsil<<" is too large!!! \n"
384     ed << "ERROR: PolarizedAnnihilation Polari << 350     <<"annihi pol1= "<<finalGamma1Polarization<<", ("<<n1<<")\n";
385        << epsil << " is too large!!! \n"       << 351     finalGamma1Polarization*=1./std::sqrt(n1);
386        << "annihi pol1= " << fFinalGamma1Polar << 
387     fFinalGamma1Polarization *= 1. / std::sqrt << 
388     G4Exception("G4PolarizedAnnihilationModel: << 
389                 JustWarning, ed);              << 
390   }                                               352   }
391                                                   353 
392   // define polarization of first final state     354   // define polarization of first final state photon
393   fFinalGamma1Polarization.SetPhoton();        << 355   finalGamma1Polarization.SetPhoton();
394   fFinalGamma1Polarization.RotateAz(nInteracti << 356   finalGamma1Polarization.RotateAz(nInteractionFrame,Phot1Direction);
395   aParticle1->SetPolarization(fFinalGamma1Pola << 357   aParticle1->SetPolarization(finalGamma1Polarization.p1(),
396                               fFinalGamma1Pola << 358             finalGamma1Polarization.p2(),
397                               fFinalGamma1Pola << 359             finalGamma1Polarization.p3());
398                                                   360 
399   fvect->push_back(aParticle1);                   361   fvect->push_back(aParticle1);
400                                                   362 
                                                   >> 363 
401   // *****************************************    364   // **********************************************************************
402                                                   365 
403   G4double Eratio = Phot1Energy / Phot2Energy; << 366   G4double Eratio= Phot1Energy/Phot2Energy;
404   G4double PositP =                            << 367   G4double PositP= std::sqrt(PositKinEnergy*(PositKinEnergy+2.*electron_mass_c2));
405     std::sqrt(PositKinEnergy * (PositKinEnergy << 368   G4ThreeVector Phot2Direction (-dirx*Eratio, -diry*Eratio,
406   G4ThreeVector Phot2Direction(-dirx * Eratio, << 369         (PositP-dirz*Phot1Energy)/Phot2Energy); 
407                                (PositP - dirz  << 370   Phot2Direction.rotateUz(PositDirection); 
408   Phot2Direction.rotateUz(PositDirection);     << 371   // create G4DynamicParticle object for the particle2 
409   // create G4DynamicParticle object for the p << 372   G4DynamicParticle* aParticle2= new G4DynamicParticle (G4Gamma::Gamma(),
410   G4DynamicParticle* aParticle2 =              << 373               Phot2Direction, Phot2Energy);
411     new G4DynamicParticle(G4Gamma::Gamma(), Ph << 
412                                                   374 
413   // define polarization of second final state    375   // define polarization of second final state photon
414   fFinalGamma2Polarization = fCrossSectionCalc << 376   finalGamma2Polarization=crossSectionCalculator->GetPol3();
415   G4double n2              = fFinalGamma2Polar << 377   G4double n2=finalGamma2Polarization.mag2();
416   if(n2 > 1.)                                  << 378   if (n2>1) {
417   {                                            << 379     G4cout<<"ERROR: PolarizedAnnihilation Polarization Vector at epsil = "<<epsil<<" is too large!!! \n";
418     G4ExceptionDescription ed;                 << 380     G4cout<<"annihi pol2= "<<finalGamma2Polarization<<", ("<<n2<<")\n";
419     ed << "ERROR: PolarizedAnnihilation Polari << 381     
420        << epsil << " is too large!!! \n";      << 382     finalGamma2Polarization*=1./std::sqrt(n2);
421     ed << "annihi pol2= " << fFinalGamma2Polar << 
422                                                << 
423     G4Exception("G4PolarizedAnnihilationModel: << 
424                 JustWarning, ed);              << 
425     fFinalGamma2Polarization *= 1. / std::sqrt << 
426   }                                               383   }
427   fFinalGamma2Polarization.SetPhoton();        << 384   finalGamma2Polarization.SetPhoton();
428   fFinalGamma2Polarization.RotateAz(nInteracti << 385   finalGamma2Polarization.RotateAz(nInteractionFrame,Phot2Direction);
429   aParticle2->SetPolarization(fFinalGamma2Pola << 386   aParticle2->SetPolarization(finalGamma2Polarization.p1(),
430                               fFinalGamma2Pola << 387             finalGamma2Polarization.p2(),
431                               fFinalGamma2Pola << 388             finalGamma2Polarization.p3());
432                                                   389 
433   fvect->push_back(aParticle2);                   390   fvect->push_back(aParticle2);
434 }                                                 391 }
435                                                   392