Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Geant4 Class file << 26 // >> 27 // GEANT4 Class file >> 28 // 27 // 29 // 28 // File name: G4PolarizationHelper 30 // File name: G4PolarizationHelper 29 // 31 // 30 // Author: Andreas Schaelicke 32 // Author: Andreas Schaelicke 31 // 33 // >> 34 // Creation date: 12.08.2006 >> 35 // >> 36 // Modifications: >> 37 // 32 // Class Description: 38 // Class Description: 33 // Provides some basic polarization transfor << 39 // 34 << 40 // Provides some basic polarization transformation routines. >> 41 // 35 #include "G4PolarizationHelper.hh" 42 #include "G4PolarizationHelper.hh" 36 << 37 #include "G4PhysicalConstants.hh" 43 #include "G4PhysicalConstants.hh" 38 #include "G4StokesVector.hh" 44 #include "G4StokesVector.hh" 39 #include "Randomize.hh" << 40 45 41 G4ThreeVector G4PolarizationHelper::GetFrame(c << 46 42 c << 47 G4ThreeVector G4PolarizationHelper::GetFrame(const G4ThreeVector & mom1, const G4ThreeVector & mom2) 43 { 48 { 44 G4ThreeVector normal = (mom1.cross(mom2)).un 49 G4ThreeVector normal = (mom1.cross(mom2)).unit(); 45 return normal; 50 return normal; >> 51 // return 1./normal.mag()*normal; 46 } 52 } 47 53 48 G4ThreeVector G4PolarizationHelper::GetParticl << 54 G4ThreeVector G4PolarizationHelper::GetParticleFrameY(const G4ThreeVector &uZ) 49 { 55 { 50 if(uZ.x() == 0. && uZ.y() == 0.) << 56 // compare also G4ThreeVector::rotateUz() 51 { << 57 52 return G4ThreeVector(0., 1., 0.); << 58 if (uZ.x()==0. && uZ.y()==0.) { >> 59 return G4ThreeVector(0.,1.,0.); 53 } 60 } 54 61 55 G4double invPerp = 1. / std::sqrt(sqr(uZ.x() << 62 G4double invPerp = 1./std::sqrt(sqr(uZ.x())+sqr(uZ.y())); 56 return G4ThreeVector(-uZ.y() * invPerp, uZ.x << 63 return G4ThreeVector(-uZ.y()*invPerp,uZ.x()*invPerp,0); 57 } 64 } 58 65 59 G4ThreeVector G4PolarizationHelper::GetParticl << 66 G4ThreeVector G4PolarizationHelper::GetParticleFrameX(const G4ThreeVector &uZ) 60 { 67 { 61 if(uZ.x() == 0. && uZ.y() == 0.) << 68 // compare also G4ThreeVector::rotateUz() 62 { << 69 63 if(uZ.z() >= 0.) << 70 if (uZ.x()==0. && uZ.y()==0.) { 64 return G4ThreeVector(1., 0., 0.); << 71 if (uZ.z()>=0.) return G4ThreeVector(1.,0.,0.); 65 return G4ThreeVector(-1., 0., 0.); << 72 return G4ThreeVector(-1.,0.,0.); 66 } 73 } 67 74 68 G4double perp = std::sqrt(sqr(uZ.x()) + s << 75 G4double perp = std::sqrt(sqr(uZ.x())+sqr(uZ.y())); 69 G4double invPerp = uZ.z() / perp; << 76 G4double invPerp = uZ.z()/perp; 70 return G4ThreeVector(uZ.x() * invPerp, uZ.y( << 77 return G4ThreeVector(uZ.x()*invPerp,uZ.y()*invPerp,-perp); 71 } 78 } 72 79 73 G4ThreeVector G4PolarizationHelper::GetRandomF << 80 G4ThreeVector G4PolarizationHelper::GetRandomFrame(const G4ThreeVector & mom1) 74 { 81 { 75 G4double phi = 2. * pi * G4UniformRand(); << 82 G4double phi =2.*pi*G4UniformRand(); 76 G4ThreeVector normal = << 83 G4ThreeVector normal = std::cos(phi)*GetParticleFrameX(mom1) 77 std::cos(phi) * GetParticleFrameX(mom1) + << 84 + std::sin(phi)*G4PolarizationHelper::GetParticleFrameY(mom1); 78 std::sin(phi) * G4PolarizationHelper::GetP << 79 return normal; 85 return normal; 80 } 86 } 81 87 82 G4ThreeVector G4PolarizationHelper::GetSpinInP << 88 83 << 89 G4ThreeVector G4PolarizationHelper::GetSpinInPRF(const G4ThreeVector &uZ, const G4ThreeVector & spin) 84 { 90 { 85 if(uZ.x() == 0. && uZ.y() == 0.) << 91 // compare also G4ThreeVector::rotateUz() 86 { << 87 if(uZ.z() >= 0.) << 88 return spin; << 89 return G4ThreeVector(-spin.x(), spin.y(), << 90 } << 91 92 92 G4double perp = std::sqrt(sqr(uZ.x()) + s << 93 if (uZ.x()==0. && uZ.y()==0.) { 93 G4double invPerp = 1. / perp; << 94 if (uZ.z()>=0.) return spin; >> 95 return G4ThreeVector(-spin.x(),spin.y(),-spin.z()); >> 96 } 94 97 95 G4ThreeVector uX(uZ.x() * uZ.z() * invPerp, << 98 G4double perp = std::sqrt(sqr(uZ.x())+sqr(uZ.y())); 96 G4ThreeVector uY(-uZ.y() * invPerp, uZ.x() * << 99 G4double invPerp = 1./perp; 97 100 98 return G4ThreeVector(spin * uX, spin * uY, s << 101 G4ThreeVector uX(uZ.x()*uZ.z()*invPerp,uZ.y()*uZ.z()*invPerp,-perp); >> 102 G4ThreeVector uY(-uZ.y()*invPerp,uZ.x()*invPerp,0); >> 103 >> 104 return G4ThreeVector(spin*uX,spin*uY,spin*uZ); 99 } 105 } 100 106 101 void G4PolarizationHelper::TestPolarizationTra 107 void G4PolarizationHelper::TestPolarizationTransformations() 102 { 108 { 103 G4double theta = 0.; << 109 G4double theta=0.; 104 G4cout << "================================= << 110 G4cout<<"========================================\n\n"; 105 for(G4int i = 0; i <= 10; ++i) << 111 for (G4int i=0; i<=10; ++i) { 106 { << 112 theta=pi*i/10.; 107 theta = pi * i / 10.; << 113 G4ThreeVector zAxis = G4ThreeVector(std::sin(theta),0.,std::cos(theta)); 108 G4ThreeVector zAxis = G4ThreeVector(std::s << 114 if (i==5) zAxis = G4ThreeVector(1.,0.,0.); 109 if(i == 5) << 115 if (i==10) zAxis = G4ThreeVector(0.,0.,-1.); 110 zAxis = G4ThreeVector(1., 0., 0.); << 111 if(i == 10) << 112 zAxis = G4ThreeVector(0., 0., -1.); << 113 G4ThreeVector yAxis = GetParticleFrameY(zA 116 G4ThreeVector yAxis = GetParticleFrameY(zAxis); 114 117 115 G4cout << zAxis << " " << zAxis.mag() << " << 118 G4cout<<zAxis<<" "<<zAxis.mag()<<"\n"; 116 G4cout << yAxis << " " << yAxis.mag() << " << 119 G4cout<<yAxis<<" "<<yAxis.mag()<<"\n"; 117 G4ThreeVector xAxis = yAxis.cross(zAxis); 120 G4ThreeVector xAxis = yAxis.cross(zAxis); 118 G4cout << xAxis << " " << xAxis.mag() << " << 121 G4cout<<xAxis<<" "<<xAxis.mag()<<"\n\n"; 119 } 122 } 120 123 121 G4cout << "================================= << 124 G4cout<<"========================================\n\n"; 122 125 123 for(G4int i = 0; i <= 10; ++i) << 126 for (G4int i=0; i<=10; ++i) { 124 { << 127 theta=pi*i/10.; 125 theta = pi * i / 10.; << 128 G4ThreeVector zAxis = G4ThreeVector(0.,std::sin(theta),std::cos(theta)); 126 G4ThreeVector zAxis = G4ThreeVector(0., st << 129 if (i==5) zAxis = G4ThreeVector(0.,1.,0.); 127 if(i == 5) << 130 if (i==10) zAxis = G4ThreeVector(0.,0.,-1.); 128 zAxis = G4ThreeVector(0., 1., 0.); << 129 if(i == 10) << 130 zAxis = G4ThreeVector(0., 0., -1.); << 131 G4ThreeVector yAxis = GetParticleFrameY(zA 131 G4ThreeVector yAxis = GetParticleFrameY(zAxis); 132 132 133 G4cout << zAxis << " " << zAxis.mag() << " << 133 G4cout<<zAxis<<" "<<zAxis.mag()<<"\n"; 134 G4cout << yAxis << " " << yAxis.mag() << " << 134 G4cout<<yAxis<<" "<<yAxis.mag()<<"\n"; 135 G4ThreeVector xAxis = yAxis.cross(zAxis); 135 G4ThreeVector xAxis = yAxis.cross(zAxis); 136 G4cout << xAxis << " " << xAxis.mag() << " << 136 G4cout<<xAxis<<" "<<xAxis.mag()<<"\n\n"; 137 137 138 G4cout << "spat : " << xAxis * yAxis.cross << 138 G4cout<<"spat : "<<xAxis*yAxis.cross(zAxis)<<"\n\n"; 139 } 139 } 140 G4cout << "================================= << 140 G4cout<<"========================================\n\n"; 141 } 141 } 142 142 143 void G4PolarizationHelper::TestInteractionFram 143 void G4PolarizationHelper::TestInteractionFrame() 144 { 144 { 145 // check transformation procedure for polari << 145 // check transformation procedure for polarisation transfer 146 // calculation in scattering processes 146 // calculation in scattering processes 147 // a) transfer target polarisation in beam 147 // a) transfer target polarisation in beam particle reference frame (PRF) 148 // b) calc correct asymmetry w.r.t. scatter 148 // b) calc correct asymmetry w.r.t. scattering plane 149 // c) determine incoming polarisation in in << 149 // c) determine incomming polarisation in interaction frame (IF) 150 // d) transfer outgoing polarisation from I 150 // d) transfer outgoing polarisation from IF to PRF 151 G4cout << "================================= << 151 G4cout<<"========================================\n\n"; 152 152 153 G4double theta = 0.; << 153 G4double theta=0.; 154 154 155 G4ThreeVector dir0 = G4ThreeVector(0., 0., 1 << 155 G4ThreeVector dir0=G4ThreeVector(0.,0.,1.); 156 G4ThreeVector dir2 = G4ThreeVector(std::sin( << 156 G4ThreeVector dir2=G4ThreeVector(std::sin(theta),0.,std::cos(theta)); 157 157 158 G4StokesVector pol0 = G4StokesVector::P3; << 158 G4StokesVector pol0=G4ThreeVector(0.,0.,1.); 159 G4StokesVector pol1 = G4StokesVector::P3; << 159 G4StokesVector pol1=G4ThreeVector(0.,0.,1.); 160 160 161 pol1.rotateUz(dir0); 161 pol1.rotateUz(dir0); 162 162 163 G4cout << "================================= << 163 G4cout<<"========================================\n\n"; >> 164 >> 165 164 } 166 } 165 167