Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Author: Luciano Pandola and Gianfranco Pate << 26 // $Id: G4PenelopeRayleighModelMI.hh 75573 2013-11-04 11:48:15Z gcosmo $ >> 27 // >> 28 // Author: Luciano Pandola and Gianfranco Paternò 27 // 29 // 28 // ------------------------------------------- 30 // ------------------------------------------------------------------- 29 // History: 31 // History: 30 // 03 Dec 2009 L. Pandola 1st implementati 32 // 03 Dec 2009 L. Pandola 1st implementation 31 // 25 May 2011 L. Pandola Renamed (make v2 33 // 25 May 2011 L. Pandola Renamed (make v2008 as default Penelope) 32 // 27 Sep 2013 L. Pandola Migration to MT 34 // 27 Sep 2013 L. Pandola Migration to MT paradigm 33 // 20 Aug 2017 G. Paterno Molecular Interf << 35 // 20 Aug 2017 G. Paternò Molecular Interference implementation 34 // 24 Mar 2019 G. Paterno Improved Molecul << 36 // 24 Mar 2019 G. Paternò Improved Molecular Interference implementation 35 // 20 Jun 2020 G. Paterno Read qext separa << 37 // 20 Jun 2020 G. Paternò Read qext separately and leave original atomic form factors 36 // 27 Aug 2020 G. Paterno Further improvem << 38 // 27 Aug 2020 G. Paternò Further improvement of MI implementation 37 // 39 // 38 // ------------------------------------------- 40 // ------------------------------------------------------------------- 39 // Class description: 41 // Class description: 40 // Low Energy Electromagnetic Physics, Rayleig 42 // Low Energy Electromagnetic Physics, Rayleigh Scattering 41 // with the model from Penelope, version 2008 43 // with the model from Penelope, version 2008 42 // ------------------------------------------- 44 // ------------------------------------------------------------------- 43 // 45 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 47 46 #include "G4PenelopeRayleighModelMI.hh" 48 #include "G4PenelopeRayleighModelMI.hh" 47 49 48 #include "G4PenelopeSamplingData.hh" 50 #include "G4PenelopeSamplingData.hh" 49 #include "G4ParticleDefinition.hh" 51 #include "G4ParticleDefinition.hh" 50 #include "G4MaterialCutsCouple.hh" 52 #include "G4MaterialCutsCouple.hh" 51 #include "G4ProductionCutsTable.hh" 53 #include "G4ProductionCutsTable.hh" 52 #include "G4DynamicParticle.hh" 54 #include "G4DynamicParticle.hh" 53 #include "G4ElementTable.hh" 55 #include "G4ElementTable.hh" 54 #include "G4Element.hh" 56 #include "G4Element.hh" 55 #include "G4PhysicsFreeVector.hh" 57 #include "G4PhysicsFreeVector.hh" 56 #include "G4AutoLock.hh" 58 #include "G4AutoLock.hh" 57 #include "G4Exp.hh" 59 #include "G4Exp.hh" 58 #include "G4ExtendedMaterial.hh" 60 #include "G4ExtendedMaterial.hh" 59 #include "G4CrystalExtension.hh" 61 #include "G4CrystalExtension.hh" 60 #include "G4EmParameters.hh" 62 #include "G4EmParameters.hh" 61 63 62 #include "G4PhysicalConstants.hh" 64 #include "G4PhysicalConstants.hh" 63 #include "G4SystemOfUnits.hh" 65 #include "G4SystemOfUnits.hh" 64 //....oooOO0OOooo........oooOO0OOooo........oo 66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 67 66 const G4int G4PenelopeRayleighModelMI::fMaxZ; 68 const G4int G4PenelopeRayleighModelMI::fMaxZ; 67 G4PhysicsFreeVector* G4PenelopeRayleighModelMI 69 G4PhysicsFreeVector* G4PenelopeRayleighModelMI::fLogAtomicCrossSection[] = {nullptr}; 68 G4PhysicsFreeVector* G4PenelopeRayleighModelMI 70 G4PhysicsFreeVector* G4PenelopeRayleighModelMI::fAtomicFormFactor[] = {nullptr}; 69 71 70 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 71 73 72 G4PenelopeRayleighModelMI::G4PenelopeRayleighM 74 G4PenelopeRayleighModelMI::G4PenelopeRayleighModelMI(const G4ParticleDefinition* part, 73 const G4String& nam) : 75 const G4String& nam) : 74 G4VEmModel(nam), 76 G4VEmModel(nam), 75 fParticleChange(nullptr),fParticle(nullptr), 77 fParticleChange(nullptr),fParticle(nullptr),fLogFormFactorTable(nullptr),fPMaxTable(nullptr), 76 fSamplingTable(nullptr),fMolInterferenceData 78 fSamplingTable(nullptr),fMolInterferenceData(nullptr),fAngularFunction(nullptr), fKnownMaterials(nullptr), 77 fIsInitialised(false),fLocalTable(false),fIs 79 fIsInitialised(false),fLocalTable(false),fIsMIActive(true) 78 { 80 { 79 fIntrinsicLowEnergyLimit = 100.0*eV; 81 fIntrinsicLowEnergyLimit = 100.0*eV; 80 fIntrinsicHighEnergyLimit = 100.0*GeV; 82 fIntrinsicHighEnergyLimit = 100.0*GeV; 81 //SetLowEnergyLimit(fIntrinsicLowEnergyLimit 83 //SetLowEnergyLimit(fIntrinsicLowEnergyLimit); 82 SetHighEnergyLimit(fIntrinsicHighEnergyLimit 84 SetHighEnergyLimit(fIntrinsicHighEnergyLimit); 83 85 84 if (part) SetParticle(part); 86 if (part) SetParticle(part); 85 87 86 fVerboseLevel = 0; 88 fVerboseLevel = 0; 87 // Verbosity scale: 89 // Verbosity scale: 88 // 0 = nothing 90 // 0 = nothing 89 // 1 = warning for energy non-conservation 91 // 1 = warning for energy non-conservation 90 // 2 = details of energy budget 92 // 2 = details of energy budget 91 // 3 = calculation of FF and CS, file openin 93 // 3 = calculation of FF and CS, file openings, sampling of atoms 92 // 4 = entering in methods 94 // 4 = entering in methods 93 95 94 //build the energy grid. It is the same for 96 //build the energy grid. It is the same for all materials 95 G4double logenergy = G4Log(fIntrinsicLowEner 97 G4double logenergy = G4Log(fIntrinsicLowEnergyLimit/2.); 96 G4double logmaxenergy = G4Log(1.5*fIntrinsic 98 G4double logmaxenergy = G4Log(1.5*fIntrinsicHighEnergyLimit); 97 //finer grid below 160 keV 99 //finer grid below 160 keV 98 G4double logtransitionenergy = G4Log(160*keV 100 G4double logtransitionenergy = G4Log(160*keV); 99 G4double logfactor1 = G4Log(10.)/250.; 101 G4double logfactor1 = G4Log(10.)/250.; 100 G4double logfactor2 = logfactor1*10; 102 G4double logfactor2 = logfactor1*10; 101 fLogEnergyGridPMax.push_back(logenergy); 103 fLogEnergyGridPMax.push_back(logenergy); 102 do { 104 do { 103 if (logenergy < logtransitionenergy) 105 if (logenergy < logtransitionenergy) 104 logenergy += logfactor1; 106 logenergy += logfactor1; 105 else 107 else 106 logenergy += logfactor2; 108 logenergy += logfactor2; 107 fLogEnergyGridPMax.push_back(logenergy); 109 fLogEnergyGridPMax.push_back(logenergy); 108 } while (logenergy < logmaxenergy); 110 } while (logenergy < logmaxenergy); 109 } 111 } 110 112 111 //....oooOO0OOooo........oooOO0OOooo........oo 113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 112 114 113 G4PenelopeRayleighModelMI::~G4PenelopeRayleigh 115 G4PenelopeRayleighModelMI::~G4PenelopeRayleighModelMI() 114 { 116 { 115 if (IsMaster() || fLocalTable) { 117 if (IsMaster() || fLocalTable) { 116 118 117 for(G4int i=0; i<=fMaxZ; ++i) 119 for(G4int i=0; i<=fMaxZ; ++i) 118 { 120 { 119 if(fLogAtomicCrossSection[i]) 121 if(fLogAtomicCrossSection[i]) 120 { 122 { 121 delete fLogAtomicCrossSection[i]; 123 delete fLogAtomicCrossSection[i]; 122 fLogAtomicCrossSection[i] = nullptr; 124 fLogAtomicCrossSection[i] = nullptr; 123 } 125 } 124 if(fAtomicFormFactor[i]) 126 if(fAtomicFormFactor[i]) 125 { 127 { 126 delete fAtomicFormFactor[i]; 128 delete fAtomicFormFactor[i]; 127 fAtomicFormFactor[i] = nullptr; 129 fAtomicFormFactor[i] = nullptr; 128 } 130 } 129 } 131 } 130 if (fMolInterferenceData) { 132 if (fMolInterferenceData) { 131 for (auto& item : (*fMolInterferenceData 133 for (auto& item : (*fMolInterferenceData)) 132 if (item.second) delete item.second; 134 if (item.second) delete item.second; 133 delete fMolInterferenceData; 135 delete fMolInterferenceData; 134 fMolInterferenceData = nullptr; 136 fMolInterferenceData = nullptr; 135 } 137 } 136 if (fKnownMaterials) 138 if (fKnownMaterials) 137 { 139 { 138 delete fKnownMaterials; 140 delete fKnownMaterials; 139 fKnownMaterials = nullptr; 141 fKnownMaterials = nullptr; 140 } 142 } 141 if (fAngularFunction) 143 if (fAngularFunction) 142 { 144 { 143 delete fAngularFunction; 145 delete fAngularFunction; 144 fAngularFunction = nullptr; 146 fAngularFunction = nullptr; 145 } 147 } 146 ClearTables(); 148 ClearTables(); 147 } 149 } 148 } 150 } 149 151 150 //....oooOO0OOooo........oooOO0OOooo........oo 152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 151 153 152 void G4PenelopeRayleighModelMI::ClearTables() 154 void G4PenelopeRayleighModelMI::ClearTables() 153 { 155 { 154 if (fLogFormFactorTable) { 156 if (fLogFormFactorTable) { 155 for (auto& item : (*fLogFormFactorTable)) 157 for (auto& item : (*fLogFormFactorTable)) 156 if (item.second) delete item.second; 158 if (item.second) delete item.second; 157 delete fLogFormFactorTable; 159 delete fLogFormFactorTable; 158 fLogFormFactorTable = nullptr; //zero expl 160 fLogFormFactorTable = nullptr; //zero explicitly 159 } 161 } 160 162 161 if (fPMaxTable) { 163 if (fPMaxTable) { 162 for (auto& item : (*fPMaxTable)) 164 for (auto& item : (*fPMaxTable)) 163 if (item.second) delete item.second; 165 if (item.second) delete item.second; 164 delete fPMaxTable; 166 delete fPMaxTable; 165 fPMaxTable = nullptr; //zero explicitly 167 fPMaxTable = nullptr; //zero explicitly 166 } 168 } 167 169 168 if (fSamplingTable) { 170 if (fSamplingTable) { 169 for (auto& item : (*fSamplingTable)) 171 for (auto& item : (*fSamplingTable)) 170 if (item.second) delete item.second; 172 if (item.second) delete item.second; 171 delete fSamplingTable; 173 delete fSamplingTable; 172 fSamplingTable = nullptr; //zero explicitl 174 fSamplingTable = nullptr; //zero explicitly 173 } 175 } 174 176 175 return; 177 return; 176 } 178 } 177 179 178 //....oooOO0OOooo........oooOO0OOooo........oo 180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 179 181 180 void G4PenelopeRayleighModelMI::Initialise(con 182 void G4PenelopeRayleighModelMI::Initialise(const G4ParticleDefinition* part, 181 const G4DataVector& ) 183 const G4DataVector& ) 182 { 184 { 183 if (fVerboseLevel > 3) 185 if (fVerboseLevel > 3) 184 G4cout << "Calling G4PenelopeRayleighModel 186 G4cout << "Calling G4PenelopeRayleighModelMI::Initialise()" << G4endl; 185 187 186 SetParticle(part); 188 SetParticle(part); 187 189 188 if (fVerboseLevel) 190 if (fVerboseLevel) 189 G4cout << "# Molecular Interference is " < 191 G4cout << "# Molecular Interference is " << (fIsMIActive ? "ON" : "OFF") << " #" << G4endl; 190 192 191 //Only the master model creates/fills/destro 193 //Only the master model creates/fills/destroys the tables 192 if (IsMaster() && part == fParticle) { 194 if (IsMaster() && part == fParticle) { 193 //clear tables depending on materials, not 195 //clear tables depending on materials, not the atomic ones 194 ClearTables(); 196 ClearTables(); 195 197 196 //Use here the highest verbosity, from G4E 198 //Use here the highest verbosity, from G4EmParameter or local 197 G4int globVerb = G4EmParameters::Instance( 199 G4int globVerb = G4EmParameters::Instance()->Verbose(); 198 if (globVerb > fVerboseLevel) 200 if (globVerb > fVerboseLevel) 199 { 201 { 200 fVerboseLevel = globVerb; 202 fVerboseLevel = globVerb; 201 if (fVerboseLevel) 203 if (fVerboseLevel) 202 G4cout << "Verbosity level of G4PenelopeRa 204 G4cout << "Verbosity level of G4PenelopeRayleighModelMI set to " << fVerboseLevel << 203 " from G4EmParameters()" << G4endl; 205 " from G4EmParameters()" << G4endl; 204 } 206 } 205 if (fVerboseLevel > 3) 207 if (fVerboseLevel > 3) 206 G4cout << "Calling G4PenelopeRayleighMod 208 G4cout << "Calling G4PenelopeRayleighModelMI::Initialise() [master]" << G4endl; 207 209 208 //Load the list of known materials and the 210 //Load the list of known materials and the DCS integration grid 209 if (fIsMIActive) 211 if (fIsMIActive) 210 { 212 { 211 if (!fKnownMaterials) 213 if (!fKnownMaterials) 212 fKnownMaterials = new std::map<G4String,G4 214 fKnownMaterials = new std::map<G4String,G4String>; 213 if (!fKnownMaterials->size()) 215 if (!fKnownMaterials->size()) 214 LoadKnownMIFFMaterials(); 216 LoadKnownMIFFMaterials(); 215 if (!fAngularFunction) 217 if (!fAngularFunction) 216 { 218 { 217 //Create and fill once 219 //Create and fill once 218 fAngularFunction = new G4PhysicsFreeVect 220 fAngularFunction = new G4PhysicsFreeVector(fNtheta); 219 CalculateThetaAndAngFun(); //angular fun 221 CalculateThetaAndAngFun(); //angular funtion for DCS integration 220 } 222 } 221 } 223 } 222 if (fIsMIActive && !fMolInterferenceData) 224 if (fIsMIActive && !fMolInterferenceData) 223 fMolInterferenceData = new std::map<G4St 225 fMolInterferenceData = new std::map<G4String,G4PhysicsFreeVector*>; 224 if (!fLogFormFactorTable) 226 if (!fLogFormFactorTable) 225 fLogFormFactorTable = new std::map<const 227 fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 226 if (!fPMaxTable) 228 if (!fPMaxTable) 227 fPMaxTable = new std::map<const G4Materi 229 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 228 if (!fSamplingTable) 230 if (!fSamplingTable) 229 fSamplingTable = new std::map<const G4Ma 231 fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>; 230 232 231 //loop on the used materials 233 //loop on the used materials 232 G4ProductionCutsTable* theCoupleTable = G4 234 G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable(); 233 235 234 for (G4int i=0;i<(G4int)theCoupleTable->Ge << 236 for (size_t i=0;i<theCoupleTable->GetTableSize();i++) { 235 const G4Material* material = 237 const G4Material* material = 236 theCoupleTable->GetMaterialCutsCouple(i)->Ge 238 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial(); 237 const G4ElementVector* theElementVector 239 const G4ElementVector* theElementVector = material->GetElementVector(); 238 240 239 for (std::size_t j=0;j<material->GetNumb << 241 for (size_t j=0;j<material->GetNumberOfElements();j++) { 240 G4int iZ = theElementVector->at(j)->GetZasIn 242 G4int iZ = theElementVector->at(j)->GetZasInt(); 241 //read data files only in the master 243 //read data files only in the master 242 if (!fLogAtomicCrossSection[iZ]) 244 if (!fLogAtomicCrossSection[iZ]) 243 ReadDataFile(iZ); 245 ReadDataFile(iZ); 244 } 246 } 245 247 246 //1) Read MI form factors 248 //1) Read MI form factors 247 if (fIsMIActive && !fMolInterferenceData 249 if (fIsMIActive && !fMolInterferenceData->count(material->GetName())) 248 ReadMolInterferenceData(material->GetName()) 250 ReadMolInterferenceData(material->GetName()); 249 251 250 //2) If the table has not been built for 252 //2) If the table has not been built for the material, do it! 251 if (!fLogFormFactorTable->count(material 253 if (!fLogFormFactorTable->count(material)) 252 BuildFormFactorTable(material); 254 BuildFormFactorTable(material); 253 255 254 //3) retrieve or build the sampling tabl 256 //3) retrieve or build the sampling table 255 if (!(fSamplingTable->count(material))) 257 if (!(fSamplingTable->count(material))) 256 InitializeSamplingAlgorithm(material); 258 InitializeSamplingAlgorithm(material); 257 259 258 //4) retrieve or build the pMax data 260 //4) retrieve or build the pMax data 259 if (!fPMaxTable->count(material)) 261 if (!fPMaxTable->count(material)) 260 GetPMaxTable(material); 262 GetPMaxTable(material); 261 } 263 } 262 264 263 if (fVerboseLevel > 1) { 265 if (fVerboseLevel > 1) { 264 G4cout << G4endl << "Penelope Rayleigh m 266 G4cout << G4endl << "Penelope Rayleigh model v2008 is initialized" << G4endl 265 << "Energy range: " 267 << "Energy range: " 266 << LowEnergyLimit() / keV << " keV - " 268 << LowEnergyLimit() / keV << " keV - " 267 << HighEnergyLimit() / GeV << " GeV" 269 << HighEnergyLimit() / GeV << " GeV" 268 << G4endl; 270 << G4endl; 269 } 271 } 270 } 272 } 271 273 272 if (fIsInitialised) 274 if (fIsInitialised) 273 return; 275 return; 274 fParticleChange = GetParticleChangeForGamma( 276 fParticleChange = GetParticleChangeForGamma(); 275 fIsInitialised = true; 277 fIsInitialised = true; 276 } 278 } 277 279 278 //....oooOO0OOooo........oooOO0OOooo........oo 280 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 279 281 280 void G4PenelopeRayleighModelMI::InitialiseLoca 282 void G4PenelopeRayleighModelMI::InitialiseLocal(const G4ParticleDefinition* part, 281 G4VEmModel *masterModel) 283 G4VEmModel *masterModel) 282 { 284 { 283 if (fVerboseLevel > 3) 285 if (fVerboseLevel > 3) 284 G4cout << "Calling G4PenelopeRayleighMode 286 G4cout << "Calling G4PenelopeRayleighModelMI::InitialiseLocal()" << G4endl; 285 287 286 //Check that particle matches: one might hav 288 //Check that particle matches: one might have multiple master models 287 //(e.g. for e+ and e-) 289 //(e.g. for e+ and e-) 288 if (part == fParticle) { 290 if (part == fParticle) { 289 291 290 //Get the const table pointers from the ma 292 //Get the const table pointers from the master to the workers 291 const G4PenelopeRayleighModelMI* theModel 293 const G4PenelopeRayleighModelMI* theModel = 292 static_cast<G4PenelopeRayleighModelMI*> 294 static_cast<G4PenelopeRayleighModelMI*> (masterModel); 293 295 294 //Copy pointers to the data tables 296 //Copy pointers to the data tables 295 for(G4int i=0; i<=fMaxZ; ++i) 297 for(G4int i=0; i<=fMaxZ; ++i) 296 { 298 { 297 fLogAtomicCrossSection[i] = theModel->fLogAt 299 fLogAtomicCrossSection[i] = theModel->fLogAtomicCrossSection[i]; 298 fAtomicFormFactor[i] = theModel->fAtomicForm 300 fAtomicFormFactor[i] = theModel->fAtomicFormFactor[i]; 299 } 301 } 300 fMolInterferenceData = theModel->fMolInter 302 fMolInterferenceData = theModel->fMolInterferenceData; 301 fLogFormFactorTable = theModel->fLogFormFa 303 fLogFormFactorTable = theModel->fLogFormFactorTable; 302 fPMaxTable = theModel->fPMaxTable; 304 fPMaxTable = theModel->fPMaxTable; 303 fSamplingTable = theModel->fSamplingTable; 305 fSamplingTable = theModel->fSamplingTable; 304 fKnownMaterials = theModel->fKnownMaterial 306 fKnownMaterials = theModel->fKnownMaterials; 305 fAngularFunction = theModel->fAngularFunct 307 fAngularFunction = theModel->fAngularFunction; 306 308 307 //Copy the G4DataVector with the grid 309 //Copy the G4DataVector with the grid 308 fLogQSquareGrid = theModel->fLogQSquareGri 310 fLogQSquareGrid = theModel->fLogQSquareGrid; 309 311 310 //Same verbosity for all workers, as the m 312 //Same verbosity for all workers, as the master 311 fVerboseLevel = theModel->fVerboseLevel; 313 fVerboseLevel = theModel->fVerboseLevel; 312 } 314 } 313 return; 315 return; 314 } 316 } 315 317 316 //....oooOO0OOooo........oooOO0OOooo........oo 318 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 317 319 318 namespace {G4Mutex PenelopeRayleighModelMutex 320 namespace {G4Mutex PenelopeRayleighModelMutex = G4MUTEX_INITIALIZER;} 319 G4double G4PenelopeRayleighModelMI::ComputeCro 321 G4double G4PenelopeRayleighModelMI::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 320 G4double energy, 322 G4double energy, 321 G4double Z, 323 G4double Z, 322 G4double, 324 G4double, 323 G4double, 325 G4double, 324 G4double) 326 G4double) 325 { 327 { 326 //Cross section of Rayleigh scattering in Pe 328 //Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97 327 //tabulation, Cuellen et al. (1997), with no 329 //tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel 328 //et al. J. Phys. Chem. Ref. Data 4 (1975) 4 330 //et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615. 329 331 330 if (fVerboseLevel > 3) 332 if (fVerboseLevel > 3) 331 G4cout << "Calling CrossSectionPerAtom() o 333 G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModelMI" << G4endl; 332 334 333 G4int iZ = G4int(Z); 335 G4int iZ = G4int(Z); 334 if (!fLogAtomicCrossSection[iZ]) { 336 if (!fLogAtomicCrossSection[iZ]) { 335 //If we are here, it means that Initialize 337 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was 336 //not filled up. This can happen in a Unit 338 //not filled up. This can happen in a UnitTest or via G4EmCalculator 337 if (fVerboseLevel > 0) { 339 if (fVerboseLevel > 0) { 338 //Issue a G4Exception (warning) only in 340 //Issue a G4Exception (warning) only in verbose mode 339 G4ExceptionDescription ed; 341 G4ExceptionDescription ed; 340 ed << "Unable to retrieve the cross sect 342 ed << "Unable to retrieve the cross section table for Z=" << iZ << G4endl; 341 ed << "This can happen only in Unit Test 343 ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl; 342 G4Exception("G4PenelopeRayleighModelMI:: 344 G4Exception("G4PenelopeRayleighModelMI::ComputeCrossSectionPerAtom()", 343 "em2040",JustWarning,ed); 345 "em2040",JustWarning,ed); 344 } 346 } 345 347 346 //protect file reading via autolock 348 //protect file reading via autolock 347 G4AutoLock lock(&PenelopeRayleighModelMute 349 G4AutoLock lock(&PenelopeRayleighModelMutex); 348 ReadDataFile(iZ); 350 ReadDataFile(iZ); 349 lock.unlock(); 351 lock.unlock(); 350 } 352 } 351 353 352 G4double cross = 0; 354 G4double cross = 0; 353 G4PhysicsFreeVector* atom = fLogAtomicCrossS 355 G4PhysicsFreeVector* atom = fLogAtomicCrossSection[iZ]; 354 if (!atom) { 356 if (!atom) { 355 G4ExceptionDescription ed; 357 G4ExceptionDescription ed; 356 ed << "Unable to find Z=" << iZ << " in th 358 ed << "Unable to find Z=" << iZ << " in the atomic cross section table" << G4endl; 357 G4Exception("G4PenelopeRayleighModelMI::Co 359 G4Exception("G4PenelopeRayleighModelMI::ComputeCrossSectionPerAtom()", 358 "em2041",FatalException,ed); 360 "em2041",FatalException,ed); 359 return 0; 361 return 0; 360 } 362 } 361 363 362 G4double logene = G4Log(energy); 364 G4double logene = G4Log(energy); 363 G4double logXS = atom->Value(logene); 365 G4double logXS = atom->Value(logene); 364 cross = G4Exp(logXS); 366 cross = G4Exp(logXS); 365 367 366 if (fVerboseLevel > 2) { 368 if (fVerboseLevel > 2) { 367 G4cout << "Rayleigh cross section at " << 369 G4cout << "Rayleigh cross section at " << energy/keV << " keV for Z=" 368 << Z << " = " << cross/barn << " barn" << 370 << Z << " = " << cross/barn << " barn" << G4endl; 369 } 371 } 370 return cross; 372 return cross; 371 } 373 } 372 374 373 //....oooOO0OOooo........oooOO0OOooo........oo 375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 374 376 375 void G4PenelopeRayleighModelMI::CalculateTheta 377 void G4PenelopeRayleighModelMI::CalculateThetaAndAngFun() 376 { 378 { 377 G4double theta = 0; 379 G4double theta = 0; 378 for(G4int k=0; k<fNtheta; k++) { 380 for(G4int k=0; k<fNtheta; k++) { 379 theta += fDTheta; 381 theta += fDTheta; 380 G4double value = (1+std::cos(theta)*std::c 382 G4double value = (1+std::cos(theta)*std::cos(theta))*std::sin(theta); 381 fAngularFunction->PutValue(k,theta,value); 383 fAngularFunction->PutValue(k,theta,value); 382 if (fVerboseLevel > 3) 384 if (fVerboseLevel > 3) 383 G4cout << "theta[" << k << "]: " << fAn 385 G4cout << "theta[" << k << "]: " << fAngularFunction->Energy(k) 384 << ", angFun[" << k << "]: " << (*fAngu 386 << ", angFun[" << k << "]: " << (*fAngularFunction)[k] << G4endl; 385 } 387 } 386 } 388 } 387 389 388 //....oooOO0OOooo........oooOO0OOooo........oo 390 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 389 391 390 G4double G4PenelopeRayleighModelMI::CalculateQ 392 G4double G4PenelopeRayleighModelMI::CalculateQSquared(G4double angle, G4double energy) 391 { 393 { 392 G4double lambda,x,q,q2 = 0; 394 G4double lambda,x,q,q2 = 0; 393 395 394 lambda = hbarc*twopi/energy; 396 lambda = hbarc*twopi/energy; 395 x = 1./lambda*std::sin(angle/2.); 397 x = 1./lambda*std::sin(angle/2.); 396 q = 2.*h_Planck*x/(electron_mass_c2/c_light) 398 q = 2.*h_Planck*x/(electron_mass_c2/c_light); 397 399 398 if (fVerboseLevel > 3) { 400 if (fVerboseLevel > 3) { 399 G4cout << "E: " << energy/keV << " keV, la 401 G4cout << "E: " << energy/keV << " keV, lambda: " << lambda/nm << " nm" 400 << ", x: " << x*nm << ", q: " << q << G4e 402 << ", x: " << x*nm << ", q: " << q << G4endl; 401 } 403 } 402 q2 = std::pow(q,2); 404 q2 = std::pow(q,2); 403 return q2; 405 return q2; 404 } 406 } 405 407 406 //....oooOO0OOooo........oooOO0OOooo........oo 408 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 407 409 408 //Overriding of parent's (G4VEmModel) method 410 //Overriding of parent's (G4VEmModel) method 409 G4double G4PenelopeRayleighModelMI::CrossSecti 411 G4double G4PenelopeRayleighModelMI::CrossSectionPerVolume(const G4Material* material, 410 const G4ParticleDefinition* p, 412 const G4ParticleDefinition* p, 411 G4double energy, 413 G4double energy, 412 G4double, 414 G4double, 413 G4double) 415 G4double) 414 { 416 { 415 //check if we are in a Unit Test (only for t 417 //check if we are in a Unit Test (only for the first time) 416 static G4bool amInAUnitTest = false; 418 static G4bool amInAUnitTest = false; 417 if (G4ProductionCutsTable::GetProductionCuts 419 if (G4ProductionCutsTable::GetProductionCutsTable()->GetTableSize() == 0 && !amInAUnitTest) 418 { 420 { 419 amInAUnitTest = true; 421 amInAUnitTest = true; 420 G4ExceptionDescription ed; 422 G4ExceptionDescription ed; 421 ed << "The ProductionCuts table is empty 423 ed << "The ProductionCuts table is empty " << G4endl; 422 ed << "This should happen only in Unit T 424 ed << "This should happen only in Unit Tests" << G4endl; 423 G4Exception("G4PenelopeRayleighModelMI:: 425 G4Exception("G4PenelopeRayleighModelMI::CrossSectionPerVolume()", 424 "em2019",JustWarning,ed); 426 "em2019",JustWarning,ed); 425 } 427 } 426 //If the material does not have a MIFF, cont 428 //If the material does not have a MIFF, continue with the old-style calculation 427 G4String matname = material->GetName(); 429 G4String matname = material->GetName(); 428 if (amInAUnitTest) 430 if (amInAUnitTest) 429 { 431 { 430 //No need to lock, as this is always cal 432 //No need to lock, as this is always called in a master 431 const G4ElementVector* theElementVector 433 const G4ElementVector* theElementVector = material->GetElementVector(); 432 //protect file reading via autolock 434 //protect file reading via autolock 433 for (std::size_t j=0;j<material->GetNumb << 435 for (size_t j=0;j<material->GetNumberOfElements();j++) { 434 G4int iZ = theElementVector->at(j)->GetZasIn 436 G4int iZ = theElementVector->at(j)->GetZasInt(); 435 if (!fLogAtomicCrossSection[iZ]) { 437 if (!fLogAtomicCrossSection[iZ]) { 436 ReadDataFile(iZ); 438 ReadDataFile(iZ); 437 } 439 } 438 } 440 } 439 if (fIsMIActive) 441 if (fIsMIActive) 440 ReadMolInterferenceData(matname); 442 ReadMolInterferenceData(matname); 441 if (!fLogFormFactorTable->count(material 443 if (!fLogFormFactorTable->count(material)) 442 BuildFormFactorTable(material); 444 BuildFormFactorTable(material); 443 if (!(fSamplingTable->count(material))) 445 if (!(fSamplingTable->count(material))) 444 InitializeSamplingAlgorithm(material); 446 InitializeSamplingAlgorithm(material); 445 if (!fPMaxTable->count(material)) 447 if (!fPMaxTable->count(material)) 446 GetPMaxTable(material); 448 GetPMaxTable(material); 447 } 449 } 448 G4bool useMIFF = fIsMIActive && (fMolInterfe 450 G4bool useMIFF = fIsMIActive && (fMolInterferenceData->count(matname) || matname.find("MedMat") != std::string::npos); 449 if (!useMIFF) 451 if (!useMIFF) 450 { 452 { 451 if (fVerboseLevel > 2) 453 if (fVerboseLevel > 2) 452 G4cout << "Rayleigh CS of: " << matname << " 454 G4cout << "Rayleigh CS of: " << matname << " calculated through CSperAtom!" << G4endl; 453 return G4VEmModel::CrossSectionPerVolume 455 return G4VEmModel::CrossSectionPerVolume(material,p,energy); 454 } 456 } 455 457 456 // If we are here, it means that we have to 458 // If we are here, it means that we have to integrate the cross section 457 if (fVerboseLevel > 2) 459 if (fVerboseLevel > 2) 458 G4cout << "Rayleigh CS of: " << matname 460 G4cout << "Rayleigh CS of: " << matname 459 << " calculated through integration of th 461 << " calculated through integration of the DCS" << G4endl; 460 462 461 G4double cs = 0; 463 G4double cs = 0; 462 464 463 //force null cross-section if below the low- 465 //force null cross-section if below the low-energy edge of the table 464 if (energy < LowEnergyLimit()) 466 if (energy < LowEnergyLimit()) 465 return cs; 467 return cs; 466 468 467 //if the material is a CRYSTAL, forbid this 469 //if the material is a CRYSTAL, forbid this process 468 if (material->IsExtended() && material->GetN 470 if (material->IsExtended() && material->GetName() != "CustomMat") { 469 G4ExtendedMaterial* extendedmaterial = (G4 471 G4ExtendedMaterial* extendedmaterial = (G4ExtendedMaterial*)material; 470 G4CrystalExtension* crystalExtension = (G4 472 G4CrystalExtension* crystalExtension = (G4CrystalExtension*)extendedmaterial->RetrieveExtension("crystal"); 471 if (crystalExtension != 0) { 473 if (crystalExtension != 0) { 472 G4cout << "The material has a crystallin 474 G4cout << "The material has a crystalline structure, a dedicated diffraction model is used!" << G4endl; 473 return 0; 475 return 0; 474 } 476 } 475 } 477 } 476 478 477 //GET MATERIAL INFORMATION 479 //GET MATERIAL INFORMATION 478 G4double atomDensity = material->GetTotNbOfA 480 G4double atomDensity = material->GetTotNbOfAtomsPerVolume(); 479 std::size_t nElements = material->GetNumberO << 481 G4int nElements = material->GetNumberOfElements(); 480 const G4ElementVector* elementVector = mater 482 const G4ElementVector* elementVector = material->GetElementVector(); 481 const G4double* fractionVector = material->G 483 const G4double* fractionVector = material->GetFractionVector(); 482 484 483 //Stoichiometric factors 485 //Stoichiometric factors 484 std::vector<G4double> *StoichiometricFactors 486 std::vector<G4double> *StoichiometricFactors = new std::vector<G4double>; 485 for (std::size_t i=0;i<nElements;++i) { << 487 for (G4int i=0;i<nElements;i++) { 486 G4double fraction = fractionVector[i]; 488 G4double fraction = fractionVector[i]; 487 G4double atomicWeigth = (*elementVector)[i 489 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); 488 StoichiometricFactors->push_back(fraction/ 490 StoichiometricFactors->push_back(fraction/atomicWeigth); 489 } 491 } 490 G4double MaxStoichiometricFactor = 0.; 492 G4double MaxStoichiometricFactor = 0.; 491 for (std::size_t i=0;i<nElements;++i) { << 493 for (G4int i=0;i<nElements;i++) { 492 if ((*StoichiometricFactors)[i] > MaxStoic 494 if ((*StoichiometricFactors)[i] > MaxStoichiometricFactor) 493 MaxStoichiometricFactor = (*Stoichiometr 495 MaxStoichiometricFactor = (*StoichiometricFactors)[i]; 494 } 496 } 495 for (std::size_t i=0;i<nElements;++i) { << 497 for (G4int i=0;i<nElements;i++) { 496 (*StoichiometricFactors)[i] /= MaxStoichi 498 (*StoichiometricFactors)[i] /= MaxStoichiometricFactor; 497 } 499 } 498 500 499 //Equivalent atoms per molecule 501 //Equivalent atoms per molecule 500 G4double atPerMol = 0.; << 502 G4double atPerMol = 0; 501 for (std::size_t i=0;i<nElements;++i) << 503 for (G4int i=0;i<nElements;i++) 502 atPerMol += (*StoichiometricFactors)[i]; 504 atPerMol += (*StoichiometricFactors)[i]; 503 G4double moleculeDensity = 0.; 505 G4double moleculeDensity = 0.; 504 if (atPerMol != 0.) moleculeDensity = atomDe << 506 if (atPerMol) moleculeDensity = atomDensity/atPerMol; 505 507 506 if (fVerboseLevel > 2) 508 if (fVerboseLevel > 2) 507 G4cout << "Material " << material->GetName 509 G4cout << "Material " << material->GetName() << " has " << atPerMol << " atoms " 508 << "per molecule and " << moleculeDensity 510 << "per molecule and " << moleculeDensity/(cm*cm*cm) << " molecule/cm3" << G4endl; 509 511 510 //Equivalent molecular weight (dimensionless 512 //Equivalent molecular weight (dimensionless) 511 G4double MolWeight = 0.; 513 G4double MolWeight = 0.; 512 for (std::size_t i=0;i<nElements;++i) << 514 for (G4int i=0;i<nElements;i++) 513 MolWeight += (*StoichiometricFactors)[i]*( 515 MolWeight += (*StoichiometricFactors)[i]*(*elementVector)[i]->GetA()/(g/mole); 514 516 515 if (fVerboseLevel > 2) 517 if (fVerboseLevel > 2) 516 G4cout << "Molecular weight of " << matnam 518 G4cout << "Molecular weight of " << matname << ": " << MolWeight << " g/mol" << G4endl; 517 519 518 G4double IntegrandFun[fNtheta]; 520 G4double IntegrandFun[fNtheta]; 519 for (G4int k=0; k<fNtheta; k++) { 521 for (G4int k=0; k<fNtheta; k++) { 520 G4double theta = fAngularFunction->Energy( 522 G4double theta = fAngularFunction->Energy(k); //the x-value is called "Energy", but is an angle 521 G4double F2 = GetFSquared(material,Calcula 523 G4double F2 = GetFSquared(material,CalculateQSquared(theta,energy)); 522 IntegrandFun[k] = (*fAngularFunction)[k]*F 524 IntegrandFun[k] = (*fAngularFunction)[k]*F2; 523 } 525 } 524 526 525 G4double constant = pi*classic_electr_radius 527 G4double constant = pi*classic_electr_radius*classic_electr_radius; 526 cs = constant*IntegrateFun(IntegrandFun,fNth 528 cs = constant*IntegrateFun(IntegrandFun,fNtheta,fDTheta); 527 529 528 //Now cs is the cross section per molecule, 530 //Now cs is the cross section per molecule, let's calculate the cross section per volume 529 G4double csvolume = cs*moleculeDensity; 531 G4double csvolume = cs*moleculeDensity; 530 532 531 //print CS and mfp 533 //print CS and mfp 532 if (fVerboseLevel > 2) 534 if (fVerboseLevel > 2) 533 G4cout << "Rayleigh CS of " << matname << 535 G4cout << "Rayleigh CS of " << matname << " at " << energy/keV 534 << " keV: " << cs/barn << " barn" 536 << " keV: " << cs/barn << " barn" 535 << ", mean free path: " << 1./csvolume/mm 537 << ", mean free path: " << 1./csvolume/mm << " mm" << G4endl; 536 538 537 delete StoichiometricFactors; 539 delete StoichiometricFactors; 538 //return CS 540 //return CS 539 return csvolume; 541 return csvolume; 540 } 542 } 541 543 542 //....oooOO0OOooo........oooOO0OOooo........oo 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 543 545 544 void G4PenelopeRayleighModelMI::BuildFormFacto 546 void G4PenelopeRayleighModelMI::BuildFormFactorTable(const G4Material* material) 545 { 547 { 546 if (fVerboseLevel > 3) 548 if (fVerboseLevel > 3) 547 G4cout << "Calling BuildFormFactorTable() 549 G4cout << "Calling BuildFormFactorTable() of G4PenelopeRayleighModelMI" << G4endl; 548 550 549 //GET MATERIAL INFORMATION 551 //GET MATERIAL INFORMATION 550 std::size_t nElements = material->GetNumberO << 552 G4int nElements = material->GetNumberOfElements(); 551 const G4ElementVector* elementVector = mater 553 const G4ElementVector* elementVector = material->GetElementVector(); 552 const G4double* fractionVector = material->G 554 const G4double* fractionVector = material->GetFractionVector(); 553 555 554 //Stoichiometric factors 556 //Stoichiometric factors 555 std::vector<G4double> *StoichiometricFactors 557 std::vector<G4double> *StoichiometricFactors = new std::vector<G4double>; 556 for (std::size_t i=0;i<nElements;++i) { << 558 for (G4int i=0;i<nElements;i++) { 557 G4double fraction = fractionVector[i]; 559 G4double fraction = fractionVector[i]; 558 G4double atomicWeigth = (*elementVector)[i 560 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); 559 StoichiometricFactors->push_back(fraction/ 561 StoichiometricFactors->push_back(fraction/atomicWeigth); 560 } 562 } 561 G4double MaxStoichiometricFactor = 0.; 563 G4double MaxStoichiometricFactor = 0.; 562 for (std::size_t i=0;i<nElements;++i) { << 564 for (G4int i=0;i<nElements;i++) { 563 if ((*StoichiometricFactors)[i] > MaxStoic 565 if ((*StoichiometricFactors)[i] > MaxStoichiometricFactor) 564 MaxStoichiometricFactor = (*Stoichiometr 566 MaxStoichiometricFactor = (*StoichiometricFactors)[i]; 565 } 567 } 566 if (MaxStoichiometricFactor<1e-16) { 568 if (MaxStoichiometricFactor<1e-16) { 567 G4ExceptionDescription ed; 569 G4ExceptionDescription ed; 568 ed << "Inconsistent data of atomic composi 570 ed << "Inconsistent data of atomic composition for " << material->GetName() << G4endl; 569 G4Exception("G4PenelopeRayleighModelMI::Bu 571 G4Exception("G4PenelopeRayleighModelMI::BuildFormFactorTable()", 570 "em2042",FatalException,ed); 572 "em2042",FatalException,ed); 571 } 573 } 572 for (std::size_t i=0;i<nElements;++i) << 574 for (G4int i=0;i<nElements;i++) 573 (*StoichiometricFactors)[i] /= MaxStoichi 575 (*StoichiometricFactors)[i] /= MaxStoichiometricFactor; 574 576 575 //Equivalent molecular weight (dimensionless 577 //Equivalent molecular weight (dimensionless) 576 G4double MolWeight = 0.; 578 G4double MolWeight = 0.; 577 for (std::size_t i=0;i<nElements;++i) << 579 for (G4int i=0;i<nElements;i++) 578 MolWeight += (*StoichiometricFactors)[i]*( 580 MolWeight += (*StoichiometricFactors)[i]*(*elementVector)[i]->GetA()/(g/mole); 579 581 580 //CREATE THE FORM FACTOR TABLE 582 //CREATE THE FORM FACTOR TABLE 581 //First, the form factors are retrieved [F/s 583 //First, the form factors are retrieved [F/sqrt(W)]. 582 //Then, they are squared and multiplied for 584 //Then, they are squared and multiplied for MolWeight -> F2 [dimensionless]. 583 //This makes difference for CS calculation, 585 //This makes difference for CS calculation, but not for theta sampling. 584 G4PhysicsFreeVector* theFFVec = new G4Physic 586 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector(fLogQSquareGrid.size(), 585 /*spline=*/true); 587 /*spline=*/true); 586 588 587 G4String matname = material->GetName(); 589 G4String matname = material->GetName(); 588 G4String aFileNameFF = ""; 590 G4String aFileNameFF = ""; 589 591 590 //retrieve MIdata (fFileNameFF) 592 //retrieve MIdata (fFileNameFF) 591 G4MIData* dataMI = GetMIData(material); 593 G4MIData* dataMI = GetMIData(material); 592 if (dataMI) 594 if (dataMI) 593 aFileNameFF = dataMI->GetFilenameFF(); 595 aFileNameFF = dataMI->GetFilenameFF(); 594 596 595 //read the MIFF from a file passed by the us 597 //read the MIFF from a file passed by the user 596 if (fIsMIActive && aFileNameFF != "") { 598 if (fIsMIActive && aFileNameFF != "") { 597 if (fVerboseLevel) 599 if (fVerboseLevel) 598 G4cout << "Read MIFF for " << matname << 600 G4cout << "Read MIFF for " << matname << " from custom file: " << aFileNameFF << G4endl; 599 601 600 ReadMolInterferenceData(matname,aFileNameF 602 ReadMolInterferenceData(matname,aFileNameFF); 601 G4PhysicsFreeVector* Fvector = fMolInterf 603 G4PhysicsFreeVector* Fvector = fMolInterferenceData->find(matname)->second; 602 604 603 for (std::size_t k=0;k<fLogQSquareGrid.siz << 605 for (size_t k=0;k<fLogQSquareGrid.size();k++) { 604 G4double q = std::pow(G4Exp(fLogQSquareG 606 G4double q = std::pow(G4Exp(fLogQSquareGrid[k]),0.5); 605 G4double f = Fvector->Value(q); 607 G4double f = Fvector->Value(q); 606 G4double ff2 = f*f*MolWeight; 608 G4double ff2 = f*f*MolWeight; 607 if (ff2) 609 if (ff2) 608 theFFVec->PutValue(k,fLogQSquareGrid[k],G4Lo 610 theFFVec->PutValue(k,fLogQSquareGrid[k],G4Log(ff2)); 609 } 611 } 610 } 612 } 611 //retrieve the MIFF from the database or use 613 //retrieve the MIFF from the database or use the IAM 612 else { 614 else { 613 //medical material: composition of fat, wa 615 //medical material: composition of fat, water, bonematrix, mineral 614 if (fIsMIActive && matname.find("MedMat") 616 if (fIsMIActive && matname.find("MedMat") != std::string::npos) { 615 if (fVerboseLevel) 617 if (fVerboseLevel) 616 G4cout << "Build MIFF from components for " 618 G4cout << "Build MIFF from components for " << matname << G4endl; 617 619 618 //get the material composition from its 620 //get the material composition from its name 619 G4int ki, kf=6, ktot=19; 621 G4int ki, kf=6, ktot=19; 620 G4double comp[4]; 622 G4double comp[4]; 621 G4String compstring = matname.substr(kf+ 623 G4String compstring = matname.substr(kf+1, ktot); 622 for (std::size_t j=0; j<4; ++j) { << 624 for (size_t j=0; j<4; j++) { 623 ki = kf+1; 625 ki = kf+1; 624 kf = ki+4; 626 kf = ki+4; 625 compstring = matname.substr(ki, 4); 627 compstring = matname.substr(ki, 4); 626 comp[j] = atof(compstring.c_str()); 628 comp[j] = atof(compstring.c_str()); 627 if (fVerboseLevel > 2) 629 if (fVerboseLevel > 2) 628 G4cout << " -- MedMat comp[" << j+1 << "]: 630 G4cout << " -- MedMat comp[" << j+1 << "]: " << comp[j] << G4endl; 629 } 631 } 630 632 631 const char* path = G4FindDataDir("G4LEDA << 633 char* path = std::getenv("G4LEDATA"); 632 if (!path) { 634 if (!path) { 633 G4String excep = "G4LEDATA environment varia 635 G4String excep = "G4LEDATA environment variable not set!"; 634 G4Exception("G4PenelopeRayleighModelMI::Buil 636 G4Exception("G4PenelopeRayleighModelMI::BuildFormFactorTable()", 635 "em0006",FatalException,excep); 637 "em0006",FatalException,excep); 636 } 638 } 637 639 638 if (!fMolInterferenceData->count("Fat_MI 640 if (!fMolInterferenceData->count("Fat_MI")) 639 ReadMolInterferenceData("Fat_MI"); 641 ReadMolInterferenceData("Fat_MI"); 640 G4PhysicsFreeVector* fatFF = fMolInterfe 642 G4PhysicsFreeVector* fatFF = fMolInterferenceData->find("Fat_MI")->second; 641 643 642 if (!fMolInterferenceData->count("Water_ 644 if (!fMolInterferenceData->count("Water_MI")) 643 ReadMolInterferenceData("Water_MI"); 645 ReadMolInterferenceData("Water_MI"); 644 G4PhysicsFreeVector* waterFF = fMolInter 646 G4PhysicsFreeVector* waterFF = fMolInterferenceData->find("Water_MI")->second; 645 647 646 if (!fMolInterferenceData->count("BoneMa 648 if (!fMolInterferenceData->count("BoneMatrix_MI")) 647 ReadMolInterferenceData("BoneMatrix_MI"); 649 ReadMolInterferenceData("BoneMatrix_MI"); 648 G4PhysicsFreeVector* bonematrixFF = fMol 650 G4PhysicsFreeVector* bonematrixFF = fMolInterferenceData->find("BoneMatrix_MI")->second; 649 651 650 if (!fMolInterferenceData->count("Minera 652 if (!fMolInterferenceData->count("Mineral_MI")) 651 ReadMolInterferenceData("Mineral_MI"); 653 ReadMolInterferenceData("Mineral_MI"); 652 G4PhysicsFreeVector* mineralFF = fMolInt 654 G4PhysicsFreeVector* mineralFF = fMolInterferenceData->find("Mineral_MI")->second; 653 655 654 //get and combine the molecular form fac 656 //get and combine the molecular form factors with interference effect 655 for (std::size_t k=0;k<fLogQSquareGrid.s << 657 for (size_t k=0;k<fLogQSquareGrid.size();k++) { 656 G4double ff2 = 0; 658 G4double ff2 = 0; 657 G4double q = std::pow(G4Exp(fLogQSquareGrid[ 659 G4double q = std::pow(G4Exp(fLogQSquareGrid[k]),0.5); 658 G4double ffat = fatFF->Value(q); 660 G4double ffat = fatFF->Value(q); 659 G4double fwater = waterFF->Value(q); 661 G4double fwater = waterFF->Value(q); 660 G4double fbonematrix = bonematrixFF->Value(q 662 G4double fbonematrix = bonematrixFF->Value(q); 661 G4double fmineral = mineralFF->Value(q); 663 G4double fmineral = mineralFF->Value(q); 662 ff2 = comp[0]*ffat*ffat+comp[1]*fwater*fwate 664 ff2 = comp[0]*ffat*ffat+comp[1]*fwater*fwater+ 663 comp[2]*fbonematrix*fbonematrix+comp[3]*fm 665 comp[2]*fbonematrix*fbonematrix+comp[3]*fmineral*fmineral; 664 ff2 *= MolWeight; 666 ff2 *= MolWeight; 665 if (ff2) theFFVec->PutValue(k,fLogQSquareGri 667 if (ff2) theFFVec->PutValue(k,fLogQSquareGrid[k],G4Log(ff2)); 666 } 668 } 667 } 669 } 668 //other materials with MIFF (from the data 670 //other materials with MIFF (from the database) 669 else if (fIsMIActive && fMolInterferenceDa 671 else if (fIsMIActive && fMolInterferenceData->count(matname)) { 670 if (fVerboseLevel) 672 if (fVerboseLevel) 671 G4cout << "Read MIFF from database " << matn 673 G4cout << "Read MIFF from database " << matname << G4endl; 672 G4PhysicsFreeVector* FF = fMolInterferen 674 G4PhysicsFreeVector* FF = fMolInterferenceData->find(matname)->second; 673 for (std::size_t k=0;k<fLogQSquareGrid.s << 675 for (size_t k=0;k<fLogQSquareGrid.size();k++) { 674 G4double ff2 = 0; 676 G4double ff2 = 0; 675 G4double q = std::pow(G4Exp(fLogQSquareGrid[ 677 G4double q = std::pow(G4Exp(fLogQSquareGrid[k]),0.5); 676 G4double f = FF->Value(q); 678 G4double f = FF->Value(q); 677 ff2 = f*f*MolWeight; 679 ff2 = f*f*MolWeight; 678 if (ff2) theFFVec->PutValue(k,fLogQSquareGri 680 if (ff2) theFFVec->PutValue(k,fLogQSquareGrid[k],G4Log(ff2)); 679 } 681 } 680 } 682 } 681 //IAM 683 //IAM 682 else { 684 else { 683 if (fVerboseLevel) 685 if (fVerboseLevel) 684 G4cout << "FF of " << matname << " calculate 686 G4cout << "FF of " << matname << " calculated according to the IAM" << G4endl; 685 for (std::size_t k=0;k<fLogQSquareGrid.s << 687 for (size_t k=0;k<fLogQSquareGrid.size();k++) { 686 G4double ff2 = 0; 688 G4double ff2 = 0; 687 for (std::size_t i=0;i<nElements;++i) { << 689 for (G4int i=0;i<nElements;i++) { 688 G4int iZ = (*elementVector)[i]->GetZasInt( 690 G4int iZ = (*elementVector)[i]->GetZasInt(); 689 G4PhysicsFreeVector* theAtomVec = fAtomicF 691 G4PhysicsFreeVector* theAtomVec = fAtomicFormFactor[iZ]; 690 G4double q = std::pow(G4Exp(fLogQSquareGri 692 G4double q = std::pow(G4Exp(fLogQSquareGrid[k]),0.5); 691 G4double f = theAtomVec->Value(q); 693 G4double f = theAtomVec->Value(q); 692 ff2 += f*f*(*StoichiometricFactors)[i]; 694 ff2 += f*f*(*StoichiometricFactors)[i]; 693 } 695 } 694 if (ff2) theFFVec->PutValue(k,fLogQSquareGri 696 if (ff2) theFFVec->PutValue(k,fLogQSquareGrid[k],G4Log(ff2)); 695 } 697 } 696 } 698 } 697 } 699 } 698 theFFVec->FillSecondDerivatives(); 700 theFFVec->FillSecondDerivatives(); 699 fLogFormFactorTable->insert(std::make_pair(m 701 fLogFormFactorTable->insert(std::make_pair(material,theFFVec)); 700 702 701 if (fVerboseLevel > 3) 703 if (fVerboseLevel > 3) 702 DumpFormFactorTable(material); 704 DumpFormFactorTable(material); 703 delete StoichiometricFactors; 705 delete StoichiometricFactors; 704 706 705 return; 707 return; 706 } 708 } 707 709 708 //....oooOO0OOooo........oooOO0OOooo........oo 710 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 709 711 710 void G4PenelopeRayleighModelMI::SampleSecondar 712 void G4PenelopeRayleighModelMI::SampleSecondaries(std::vector<G4DynamicParticle*>*, 711 const G4MaterialCutsCouple* coup 713 const G4MaterialCutsCouple* couple, 712 const G4DynamicParticle* aDynami 714 const G4DynamicParticle* aDynamicGamma, 713 G4double, 715 G4double, 714 G4double) 716 G4double) 715 { 717 { 716 // Sampling of the Rayleigh final state (nam 718 // Sampling of the Rayleigh final state (namely, scattering angle of the photon) 717 // from the Penelope2008 model. The scatteri 719 // from the Penelope2008 model. The scattering angle is sampled from the atomic 718 // cross section dOmega/d(cosTheta) from Bor 720 // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding 719 // anomalous scattering effects. The Form Fa 721 // anomalous scattering effects. The Form Factor F(Q) function which appears in the 720 // analytical cross section is retrieved via 722 // analytical cross section is retrieved via the method GetFSquared(); atomic data 721 // are tabulated for F(Q). Form factor for c 723 // are tabulated for F(Q). Form factor for compounds is calculated according to 722 // the additivity rule. The sampling from th 724 // the additivity rule. The sampling from the F(Q) is made via a Rational Inverse 723 // Transform with Aliasing (RITA) algorithm; 725 // Transform with Aliasing (RITA) algorithm; RITA parameters are calculated once 724 // for each material and managed by G4Penelo 726 // for each material and managed by G4PenelopeSamplingData objects. 725 // The sampling algorithm (rejection method) 727 // The sampling algorithm (rejection method) has efficiency 67% at low energy, and 726 // increases with energy. For E=100 keV the 728 // increases with energy. For E=100 keV the efficiency is 100% and 86% for 727 // hydrogen and uranium, respectively. 729 // hydrogen and uranium, respectively. 728 730 729 if (fVerboseLevel > 3) 731 if (fVerboseLevel > 3) 730 G4cout << "Calling SamplingSecondaries() o 732 G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModelMI" << G4endl; 731 733 732 G4double photonEnergy0 = aDynamicGamma->GetK 734 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 733 735 734 if (photonEnergy0 <= fIntrinsicLowEnergyLimi 736 if (photonEnergy0 <= fIntrinsicLowEnergyLimit) { 735 fParticleChange->ProposeTrackStatus(fStopA 737 fParticleChange->ProposeTrackStatus(fStopAndKill); 736 fParticleChange->SetProposedKineticEnergy( 738 fParticleChange->SetProposedKineticEnergy(0.); 737 fParticleChange->ProposeLocalEnergyDeposit 739 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 738 return; 740 return; 739 } 741 } 740 742 741 G4ParticleMomentum photonDirection0 = aDynam 743 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 742 const G4Material* theMat = couple->GetMateri 744 const G4Material* theMat = couple->GetMaterial(); 743 745 744 //1) Verify if tables are ready 746 //1) Verify if tables are ready 745 //Either Initialize() was not called, or we 747 //Either Initialize() was not called, or we are in a slave and InitializeLocal() was 746 //not invoked 748 //not invoked 747 if (!fPMaxTable || !fSamplingTable || !fLogF 749 if (!fPMaxTable || !fSamplingTable || !fLogFormFactorTable) { 748 //create a **thread-local** version of the 750 //create a **thread-local** version of the table. Used only for G4EmCalculator and 749 //Unit Tests 751 //Unit Tests 750 fLocalTable = true; 752 fLocalTable = true; 751 if (!fLogFormFactorTable) 753 if (!fLogFormFactorTable) 752 fLogFormFactorTable = new std::map<const 754 fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 753 if (!fPMaxTable) 755 if (!fPMaxTable) 754 fPMaxTable = new std::map<const G4Materi 756 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 755 if (!fSamplingTable) 757 if (!fSamplingTable) 756 fSamplingTable = new std::map<const G4Ma 758 fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>; 757 if (fIsMIActive && !fMolInterferenceData) 759 if (fIsMIActive && !fMolInterferenceData) 758 fMolInterferenceData = new std::map<G4St 760 fMolInterferenceData = new std::map<G4String,G4PhysicsFreeVector*>; 759 } 761 } 760 762 761 if (!fSamplingTable->count(theMat)) { 763 if (!fSamplingTable->count(theMat)) { 762 //If we are here, it means that Initialize 764 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was 763 //not filled up. This can happen in a Unit 765 //not filled up. This can happen in a UnitTest 764 if (fVerboseLevel > 0) { 766 if (fVerboseLevel > 0) { 765 //Issue a G4Exception (warning) only in 767 //Issue a G4Exception (warning) only in verbose mode 766 G4ExceptionDescription ed; 768 G4ExceptionDescription ed; 767 ed << "Unable to find the fSamplingTable 769 ed << "Unable to find the fSamplingTable data for " << 768 theMat->GetName() << G4endl; 770 theMat->GetName() << G4endl; 769 ed << "This can happen only in Unit Test 771 ed << "This can happen only in Unit Tests" << G4endl; 770 G4Exception("G4PenelopeRayleighModelMI:: 772 G4Exception("G4PenelopeRayleighModelMI::SampleSecondaries()", 771 "em2019",JustWarning,ed); 773 "em2019",JustWarning,ed); 772 } 774 } 773 const G4ElementVector* theElementVector = 775 const G4ElementVector* theElementVector = theMat->GetElementVector(); 774 //protect file reading via autolock 776 //protect file reading via autolock 775 G4AutoLock lock(&PenelopeRayleighModelMute 777 G4AutoLock lock(&PenelopeRayleighModelMutex); 776 for (std::size_t j=0;j<theMat->GetNumberOf << 778 for (size_t j=0;j<theMat->GetNumberOfElements();j++) { 777 G4int iZ = theElementVector->at(j)->GetZ 779 G4int iZ = theElementVector->at(j)->GetZasInt(); 778 if (!fLogAtomicCrossSection[iZ]) { 780 if (!fLogAtomicCrossSection[iZ]) { 779 lock.lock(); 781 lock.lock(); 780 ReadDataFile(iZ); 782 ReadDataFile(iZ); 781 lock.unlock(); 783 lock.unlock(); 782 } 784 } 783 } 785 } 784 lock.lock(); 786 lock.lock(); 785 787 786 //1) If the table has not been built for t 788 //1) If the table has not been built for the material, do it! 787 if (!fLogFormFactorTable->count(theMat)) 789 if (!fLogFormFactorTable->count(theMat)) 788 BuildFormFactorTable(theMat); 790 BuildFormFactorTable(theMat); 789 791 790 //2) retrieve or build the sampling table 792 //2) retrieve or build the sampling table 791 if (!(fSamplingTable->count(theMat))) 793 if (!(fSamplingTable->count(theMat))) 792 InitializeSamplingAlgorithm(theMat); 794 InitializeSamplingAlgorithm(theMat); 793 795 794 //3) retrieve or build the pMax data 796 //3) retrieve or build the pMax data 795 if (!fPMaxTable->count(theMat)) 797 if (!fPMaxTable->count(theMat)) 796 GetPMaxTable(theMat); 798 GetPMaxTable(theMat); 797 799 798 lock.unlock(); 800 lock.unlock(); 799 } 801 } 800 802 801 //Ok, restart the job 803 //Ok, restart the job 802 G4PenelopeSamplingData* theDataTable = fSamp 804 G4PenelopeSamplingData* theDataTable = fSamplingTable->find(theMat)->second; 803 G4PhysicsFreeVector* thePMax = fPMaxTable->f 805 G4PhysicsFreeVector* thePMax = fPMaxTable->find(theMat)->second; 804 G4double cosTheta = 1.0; 806 G4double cosTheta = 1.0; 805 807 806 //OK, ready to go! 808 //OK, ready to go! 807 G4double qmax = 2.0*photonEnergy0/electron_m 809 G4double qmax = 2.0*photonEnergy0/electron_mass_c2; //this is non-dimensional now 808 810 809 if (qmax < 1e-10) { //very low momentum tran 811 if (qmax < 1e-10) { //very low momentum transfer 810 G4bool loopAgain=false; 812 G4bool loopAgain=false; 811 do { 813 do { 812 loopAgain = false; 814 loopAgain = false; 813 cosTheta = 1.0-2.0*G4UniformRand(); 815 cosTheta = 1.0-2.0*G4UniformRand(); 814 G4double G = 0.5*(1+cosTheta*cosTheta); 816 G4double G = 0.5*(1+cosTheta*cosTheta); 815 if (G4UniformRand()>G) 817 if (G4UniformRand()>G) 816 loopAgain = true; 818 loopAgain = true; 817 } while(loopAgain); 819 } while(loopAgain); 818 } 820 } 819 else { //larger momentum transfer 821 else { //larger momentum transfer 820 std::size_t nData = theDataTable->GetNumbe << 822 size_t nData = theDataTable->GetNumberOfStoredPoints(); 821 G4double LastQ2inTheTable = theDataTable-> 823 G4double LastQ2inTheTable = theDataTable->GetX(nData-1); 822 G4double q2max = std::min(qmax*qmax,LastQ2 824 G4double q2max = std::min(qmax*qmax,LastQ2inTheTable); 823 825 824 G4bool loopAgain = false; 826 G4bool loopAgain = false; 825 G4double MaxPValue = thePMax->Value(photon 827 G4double MaxPValue = thePMax->Value(photonEnergy0); 826 G4double xx=0; 828 G4double xx=0; 827 829 828 //Sampling by rejection method. The reject 830 //Sampling by rejection method. The rejection function is 829 //G = 0.5*(1+cos^2(theta)) 831 //G = 0.5*(1+cos^2(theta)) 830 do { 832 do { 831 loopAgain = false; 833 loopAgain = false; 832 G4double RandomMax = G4UniformRand()*Max 834 G4double RandomMax = G4UniformRand()*MaxPValue; 833 xx = theDataTable->SampleValue(RandomMax 835 xx = theDataTable->SampleValue(RandomMax); 834 836 835 //xx is a random value of q^2 in (0,q2ma 837 //xx is a random value of q^2 in (0,q2max),sampled according to 836 //F(Q^2) via the RITA algorithm 838 //F(Q^2) via the RITA algorithm 837 if (xx > q2max) 839 if (xx > q2max) 838 loopAgain = true; 840 loopAgain = true; 839 cosTheta = 1.0-2.0*xx/q2max; 841 cosTheta = 1.0-2.0*xx/q2max; 840 G4double G = 0.5*(1+cosTheta*cosTheta); 842 G4double G = 0.5*(1+cosTheta*cosTheta); 841 if (G4UniformRand()>G) 843 if (G4UniformRand()>G) 842 loopAgain = true; 844 loopAgain = true; 843 } while(loopAgain); 845 } while(loopAgain); 844 } 846 } 845 847 846 G4double sinTheta = std::sqrt(1-cosTheta*cos 848 G4double sinTheta = std::sqrt(1-cosTheta*cosTheta); 847 849 848 //Scattered photon angles. ( Z - axis along 850 //Scattered photon angles. ( Z - axis along the parent photon) 849 G4double phi = twopi * G4UniformRand() ; 851 G4double phi = twopi * G4UniformRand() ; 850 G4double dirX = sinTheta*std::cos(phi); 852 G4double dirX = sinTheta*std::cos(phi); 851 G4double dirY = sinTheta*std::sin(phi); 853 G4double dirY = sinTheta*std::sin(phi); 852 G4double dirZ = cosTheta; 854 G4double dirZ = cosTheta; 853 855 854 //Update G4VParticleChange for the scattered 856 //Update G4VParticleChange for the scattered photon 855 G4ThreeVector photonDirection1(dirX, dirY, d 857 G4ThreeVector photonDirection1(dirX, dirY, dirZ); 856 858 857 photonDirection1.rotateUz(photonDirection0); 859 photonDirection1.rotateUz(photonDirection0); 858 fParticleChange->ProposeMomentumDirection(ph 860 fParticleChange->ProposeMomentumDirection(photonDirection1) ; 859 fParticleChange->SetProposedKineticEnergy(ph 861 fParticleChange->SetProposedKineticEnergy(photonEnergy0) ; 860 862 861 return; 863 return; 862 } 864 } 863 865 864 //....oooOO0OOooo........oooOO0OOooo........oo 866 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 865 867 866 void G4PenelopeRayleighModelMI::ReadDataFile(c 868 void G4PenelopeRayleighModelMI::ReadDataFile(const G4int Z) 867 { 869 { 868 if (fVerboseLevel > 2) { 870 if (fVerboseLevel > 2) { 869 G4cout << "G4PenelopeRayleighModelMI::Read 871 G4cout << "G4PenelopeRayleighModelMI::ReadDataFile()" << G4endl; 870 G4cout << "Going to read Rayleigh data fil 872 G4cout << "Going to read Rayleigh data files for Z=" << Z << G4endl; 871 } 873 } 872 874 873 const char* path = G4FindDataDir("G4LEDATA") << 875 char* path = std::getenv("G4LEDATA"); 874 if (!path) { 876 if (!path) { 875 G4String excep = "G4LEDATA environment var 877 G4String excep = "G4LEDATA environment variable not set!"; 876 G4Exception("G4PenelopeRayleighModelMI::Re 878 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 877 "em0006",FatalException,excep); 879 "em0006",FatalException,excep); 878 return; 880 return; 879 } 881 } 880 882 881 //Read first the cross section file (all the 883 //Read first the cross section file (all the files have 250 points) 882 std::ostringstream ost; 884 std::ostringstream ost; 883 if (Z>9) 885 if (Z>9) 884 ost << path << "/penelope/rayleigh/pdgra" 886 ost << path << "/penelope/rayleigh/pdgra" << Z << ".p08"; 885 else 887 else 886 ost << path << "/penelope/rayleigh/pdgra0" 888 ost << path << "/penelope/rayleigh/pdgra0" << Z << ".p08"; 887 std::ifstream file(ost.str().c_str()); 889 std::ifstream file(ost.str().c_str()); 888 890 889 if (!file.is_open()) { 891 if (!file.is_open()) { 890 G4String excep = "Data file " + G4String(o 892 G4String excep = "Data file " + G4String(ost.str()) + " not found!"; 891 G4Exception("G4PenelopeRayleighModelMI::Re 893 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 892 "em0003",FatalException,excep); 894 "em0003",FatalException,excep); 893 } 895 } 894 896 895 G4int readZ = 0; 897 G4int readZ = 0; 896 std::size_t nPoints = 0; << 898 size_t nPoints = 0; 897 file >> readZ >> nPoints; 899 file >> readZ >> nPoints; 898 900 899 if (readZ != Z || nPoints <= 0 || nPoints >= 901 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) { 900 G4ExceptionDescription ed; 902 G4ExceptionDescription ed; 901 ed << "Corrupted data file for Z=" << Z << 903 ed << "Corrupted data file for Z=" << Z << G4endl; 902 G4Exception("G4PenelopeRayleighModelMI::Re 904 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 903 "em0005",FatalException,ed); 905 "em0005",FatalException,ed); 904 return; 906 return; 905 } 907 } 906 908 907 fLogAtomicCrossSection[Z] = new G4PhysicsFre << 909 fLogAtomicCrossSection[Z] = new G4PhysicsFreeVector((size_t)nPoints); 908 G4double ene=0,f1=0,f2=0,xs=0; 910 G4double ene=0,f1=0,f2=0,xs=0; 909 for (std::size_t i=0;i<nPoints;++i) { << 911 for (size_t i=0;i<nPoints;i++) { 910 file >> ene >> f1 >> f2 >> xs; 912 file >> ene >> f1 >> f2 >> xs; 911 //dimensional quantities 913 //dimensional quantities 912 ene *= eV; 914 ene *= eV; 913 xs *= cm2; 915 xs *= cm2; 914 fLogAtomicCrossSection[Z]->PutValue(i,G4Lo 916 fLogAtomicCrossSection[Z]->PutValue(i,G4Log(ene),G4Log(xs)); 915 if (file.eof() && i != (nPoints-1)) { //fi 917 if (file.eof() && i != (nPoints-1)) { //file ended too early 916 G4ExceptionDescription ed ; 918 G4ExceptionDescription ed ; 917 ed << "Corrupted data file for Z=" << Z 919 ed << "Corrupted data file for Z=" << Z << G4endl; 918 ed << "Found less than " << nPoints << " 920 ed << "Found less than " << nPoints << " entries" << G4endl; 919 G4Exception("G4PenelopeRayleighModelMI:: 921 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 920 "em0005",FatalException,ed); 922 "em0005",FatalException,ed); 921 } 923 } 922 } 924 } 923 file.close(); 925 file.close(); 924 926 925 //Then, read the extended momentum transfer 927 //Then, read the extended momentum transfer file 926 std::ostringstream ost2; 928 std::ostringstream ost2; 927 ost2 << path << "/penelope/rayleigh/MIFF/qex 929 ost2 << path << "/penelope/rayleigh/MIFF/qext.dat"; 928 file.open(ost2.str().c_str()); 930 file.open(ost2.str().c_str()); 929 931 930 if (!file.is_open()) { 932 if (!file.is_open()) { 931 G4String excep = "Data file " + G4String(o 933 G4String excep = "Data file " + G4String(ost2.str()) + " not found!"; 932 G4Exception("G4PenelopeRayleighModelMI::Re 934 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 933 "em0003",FatalException,excep); 935 "em0003",FatalException,excep); 934 } 936 } 935 G4bool fillQGrid = false; 937 G4bool fillQGrid = false; 936 if (!fLogQSquareGrid.size()) { 938 if (!fLogQSquareGrid.size()) { 937 fillQGrid = true; 939 fillQGrid = true; 938 nPoints = 1142; 940 nPoints = 1142; 939 } 941 } 940 G4double qext = 0; 942 G4double qext = 0; 941 if (fillQGrid) { //fLogQSquareGrid filled o 943 if (fillQGrid) { //fLogQSquareGrid filled only one time 942 for (std::size_t i=0;i<nPoints;++i) { << 944 for (size_t i=0;i<nPoints;i++) { 943 file >> qext; 945 file >> qext; 944 fLogQSquareGrid.push_back(2.0*G4Log(qext 946 fLogQSquareGrid.push_back(2.0*G4Log(qext)); 945 } 947 } 946 } 948 } 947 file.close(); 949 file.close(); 948 950 949 //Finally, read the form factor file 951 //Finally, read the form factor file 950 std::ostringstream ost3; 952 std::ostringstream ost3; 951 if (Z>9) 953 if (Z>9) 952 ost3 << path << "/penelope/rayleigh/pdaff" 954 ost3 << path << "/penelope/rayleigh/pdaff" << Z << ".p08"; 953 else 955 else 954 ost3 << path << "/penelope/rayleigh/pdaff0 956 ost3 << path << "/penelope/rayleigh/pdaff0" << Z << ".p08"; 955 file.open(ost3.str().c_str()); 957 file.open(ost3.str().c_str()); 956 958 957 if (!file.is_open()) { 959 if (!file.is_open()) { 958 G4String excep = "Data file " + G4String(o 960 G4String excep = "Data file " + G4String(ost3.str()) + " not found!"; 959 G4Exception("G4PenelopeRayleighModelMI::Re 961 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 960 "em0003",FatalException,excep); 962 "em0003",FatalException,excep); 961 } 963 } 962 964 963 file >> readZ >> nPoints; 965 file >> readZ >> nPoints; 964 966 965 if (readZ != Z || nPoints <= 0 || nPoints >= 967 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) { 966 G4ExceptionDescription ed; 968 G4ExceptionDescription ed; 967 ed << "Corrupted data file for Z=" << Z << 969 ed << "Corrupted data file for Z=" << Z << G4endl; 968 G4Exception("G4PenelopeRayleighModelMI::Re 970 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 969 "em0005",FatalException,ed); 971 "em0005",FatalException,ed); 970 return; 972 return; 971 } 973 } 972 974 973 fAtomicFormFactor[Z] = new G4PhysicsFreeVect << 975 fAtomicFormFactor[Z] = new G4PhysicsFreeVector((size_t)nPoints); 974 G4double q=0,ff=0,incoh=0; 976 G4double q=0,ff=0,incoh=0; 975 for (std::size_t i=0;i<nPoints;++i) { << 977 for (size_t i=0;i<nPoints;i++) { 976 file >> q >> ff >> incoh; //q and ff are d 978 file >> q >> ff >> incoh; //q and ff are dimensionless (q is in units of (m_e*c)) 977 fAtomicFormFactor[Z]->PutValue(i,q,ff); 979 fAtomicFormFactor[Z]->PutValue(i,q,ff); 978 if (file.eof() && i != (nPoints-1)) { //fi 980 if (file.eof() && i != (nPoints-1)) { //file ended too early 979 G4ExceptionDescription ed; 981 G4ExceptionDescription ed; 980 ed << "Corrupted data file for Z=" << Z 982 ed << "Corrupted data file for Z=" << Z << G4endl; 981 ed << "Found less than " << nPoints << " 983 ed << "Found less than " << nPoints << " entries" << G4endl; 982 G4Exception("G4PenelopeRayleighModelMI:: 984 G4Exception("G4PenelopeRayleighModelMI::ReadDataFile()", 983 "em0005",FatalException,ed); 985 "em0005",FatalException,ed); 984 } 986 } 985 } 987 } 986 file.close(); 988 file.close(); 987 return; 989 return; 988 } 990 } 989 991 990 //....oooOO0OOooo........oooOO0OOooo........oo 992 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 991 993 992 void G4PenelopeRayleighModelMI::ReadMolInterfe 994 void G4PenelopeRayleighModelMI::ReadMolInterferenceData(const G4String& matname, 993 const G4String& FFfilename) 995 const G4String& FFfilename) 994 { 996 { 995 if (fVerboseLevel > 2) { 997 if (fVerboseLevel > 2) { 996 G4cout << "G4PenelopeRayleighModelMI::Read 998 G4cout << "G4PenelopeRayleighModelMI::ReadMolInterferenceData() for material " << 997 matname << G4endl; 999 matname << G4endl; 998 } 1000 } 999 G4bool isLocalFile = (FFfilename != "NULL"); 1001 G4bool isLocalFile = (FFfilename != "NULL"); 1000 1002 1001 const char* path = G4FindDataDir("G4LEDATA" << 1003 char* path = std::getenv("G4LEDATA"); 1002 if (!path) { 1004 if (!path) { 1003 G4String excep = "G4LEDATA environment va 1005 G4String excep = "G4LEDATA environment variable not set!"; 1004 G4Exception("G4PenelopeRayleighModelMI::R 1006 G4Exception("G4PenelopeRayleighModelMI::ReadMolInterferenceData()", 1005 "em0006",FatalException,excep); 1007 "em0006",FatalException,excep); 1006 return; 1008 return; 1007 } 1009 } 1008 1010 1009 if (!(fKnownMaterials->count(matname)) && ! 1011 if (!(fKnownMaterials->count(matname)) && !isLocalFile) //material not found 1010 return; 1012 return; 1011 1013 1012 G4String aFileName = (isLocalFile) ? FFfile 1014 G4String aFileName = (isLocalFile) ? FFfilename : fKnownMaterials->find(matname)->second; 1013 1015 1014 //if the material has a MIFF, read it from 1016 //if the material has a MIFF, read it from the database 1015 if (aFileName != "") { 1017 if (aFileName != "") { 1016 if (fVerboseLevel > 2) 1018 if (fVerboseLevel > 2) 1017 G4cout << "ReadMolInterferenceData(). R 1019 G4cout << "ReadMolInterferenceData(). Read material: " << matname << ", filename: " << 1018 aFileName << " " << 1020 aFileName << " " << 1019 (isLocalFile ? "(local)" : "(database)") << 1021 (isLocalFile ? "(local)" : "(database)") << G4endl; 1020 std::ifstream file; 1022 std::ifstream file; 1021 std::ostringstream ostIMFF; 1023 std::ostringstream ostIMFF; 1022 if (isLocalFile) 1024 if (isLocalFile) 1023 ostIMFF << aFileName; 1025 ostIMFF << aFileName; 1024 else 1026 else 1025 ostIMFF << path << "/penelope/rayleigh/ 1027 ostIMFF << path << "/penelope/rayleigh/MIFF/" << aFileName; 1026 file.open(ostIMFF.str().c_str()); 1028 file.open(ostIMFF.str().c_str()); 1027 1029 1028 if (!file.is_open()) { 1030 if (!file.is_open()) { 1029 G4String excep = "Data file " + G4Strin 1031 G4String excep = "Data file " + G4String(ostIMFF.str()) + " not found!"; 1030 G4Exception("G4PenelopeRayleighModelMI: 1032 G4Exception("G4PenelopeRayleighModelMI::ReadMolInterferenceData()", 1031 "em1031",FatalException,excep); 1033 "em1031",FatalException,excep); 1032 return; 1034 return; 1033 } 1035 } 1034 1036 1035 //check the number of points in the file 1037 //check the number of points in the file 1036 std::size_t nPoints = 0; << 1038 size_t nPoints = 0; 1037 G4double x=0,y=0; 1039 G4double x=0,y=0; 1038 while (file.good()) { 1040 while (file.good()) { 1039 file >> x >> y; 1041 file >> x >> y; 1040 nPoints++; 1042 nPoints++; 1041 } 1043 } 1042 file.close(); 1044 file.close(); 1043 nPoints--; 1045 nPoints--; 1044 if (fVerboseLevel > 3) 1046 if (fVerboseLevel > 3) 1045 G4cout << "Number of nPoints: " << nPoi 1047 G4cout << "Number of nPoints: " << nPoints << G4endl; 1046 1048 1047 //read the file 1049 //read the file 1048 file.open(ostIMFF.str().c_str()); 1050 file.open(ostIMFF.str().c_str()); 1049 G4PhysicsFreeVector* theFFVec = new G4Phy << 1051 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector((size_t)nPoints); 1050 G4double q=0,ff=0; 1052 G4double q=0,ff=0; 1051 for (std::size_t i=0; i<nPoints; ++i) { << 1053 for (size_t i=0; i<nPoints; i++) { 1052 file >> q >> ff; 1054 file >> q >> ff; 1053 1055 1054 //q and ff are dimensionless (q is in u 1056 //q and ff are dimensionless (q is in units of (m_e*c)) 1055 theFFVec->PutValue(i,q,ff); 1057 theFFVec->PutValue(i,q,ff); 1056 1058 1057 //file ended too early 1059 //file ended too early 1058 if (file.eof() && i != (nPoints-1)) { 1060 if (file.eof() && i != (nPoints-1)) { 1059 G4ExceptionDescription ed; 1061 G4ExceptionDescription ed; 1060 ed << "Corrupted data file" << G4endl; 1062 ed << "Corrupted data file" << G4endl; 1061 ed << "Found less than " << nPoints << " en 1063 ed << "Found less than " << nPoints << " entries" << G4endl; 1062 G4Exception("G4PenelopeRayleighModelMI::Rea 1064 G4Exception("G4PenelopeRayleighModelMI::ReadMolInterferenceData()", 1063 "em1005",FatalException,ed); 1065 "em1005",FatalException,ed); 1064 } 1066 } 1065 } 1067 } 1066 if (!fMolInterferenceData) { 1068 if (!fMolInterferenceData) { 1067 G4Exception("G4PenelopeRayleighModelMI: 1069 G4Exception("G4PenelopeRayleighModelMI::ReadMolInterferenceData()", 1068 "em2145",FatalException, 1070 "em2145",FatalException, 1069 "Unable to allocate the Molecular Inter 1071 "Unable to allocate the Molecular Interference data table"); 1070 delete theFFVec; 1072 delete theFFVec; 1071 return; 1073 return; 1072 } 1074 } 1073 file.close(); 1075 file.close(); 1074 fMolInterferenceData->insert(std::make_pa 1076 fMolInterferenceData->insert(std::make_pair(matname,theFFVec)); 1075 } 1077 } 1076 return; 1078 return; 1077 } 1079 } 1078 1080 1079 //....oooOO0OOooo........oooOO0OOooo........o 1081 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1080 1082 1081 G4double G4PenelopeRayleighModelMI::GetFSquar 1083 G4double G4PenelopeRayleighModelMI::GetFSquared(const G4Material* mat, const G4double QSquared) 1082 { 1084 { 1083 G4double f2 = 0; 1085 G4double f2 = 0; 1084 //Input value QSquared could be zero: prote 1086 //Input value QSquared could be zero: protect the log() below against 1085 //the FPE exception 1087 //the FPE exception 1086 1088 1087 //If Q<1e-10, set Q to 1e-10 1089 //If Q<1e-10, set Q to 1e-10 1088 G4double logQSquared = (QSquared>1e-10) ? G 1090 G4double logQSquared = (QSquared>1e-10) ? G4Log(QSquared) : -23.; 1089 //last value of the table 1091 //last value of the table 1090 G4double maxlogQ2 = fLogQSquareGrid[fLogQSq 1092 G4double maxlogQ2 = fLogQSquareGrid[fLogQSquareGrid.size()-1]; 1091 1093 1092 //now it should be all right 1094 //now it should be all right 1093 G4PhysicsFreeVector* theVec = fLogFormFacto 1095 G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second; 1094 1096 1095 if (!theVec) { 1097 if (!theVec) { 1096 G4ExceptionDescription ed; 1098 G4ExceptionDescription ed; 1097 ed << "Unable to retrieve F squared table 1099 ed << "Unable to retrieve F squared table for " << mat->GetName() << G4endl; 1098 G4Exception("G4PenelopeRayleighModelMI::G 1100 G4Exception("G4PenelopeRayleighModelMI::GetFSquared()", 1099 "em2046",FatalException,ed); 1101 "em2046",FatalException,ed); 1100 return 0; 1102 return 0; 1101 } 1103 } 1102 1104 1103 if (logQSquared < -20) { //Q < 1e-9 1105 if (logQSquared < -20) { //Q < 1e-9 1104 G4double logf2 = (*theVec)[0]; //first va 1106 G4double logf2 = (*theVec)[0]; //first value of the table 1105 f2 = G4Exp(logf2); 1107 f2 = G4Exp(logf2); 1106 } 1108 } 1107 else if (logQSquared > maxlogQ2) 1109 else if (logQSquared > maxlogQ2) 1108 f2 =0; 1110 f2 =0; 1109 else { 1111 else { 1110 //log(Q^2) vs. log(F^2) 1112 //log(Q^2) vs. log(F^2) 1111 G4double logf2 = theVec->Value(logQSquare 1113 G4double logf2 = theVec->Value(logQSquared); 1112 f2 = G4Exp(logf2); 1114 f2 = G4Exp(logf2); 1113 } 1115 } 1114 1116 1115 if (fVerboseLevel > 3) { 1117 if (fVerboseLevel > 3) { 1116 G4cout << "G4PenelopeRayleighModelMI::Get 1118 G4cout << "G4PenelopeRayleighModelMI::GetFSquared() in " << mat->GetName() << G4endl; 1117 G4cout << "Q^2 = " << QSquared << " (uni 1119 G4cout << "Q^2 = " << QSquared << " (units of 1/(m_e*c)); F^2 = " << f2 << G4endl; 1118 } 1120 } 1119 return f2; 1121 return f2; 1120 } 1122 } 1121 1123 1122 //....oooOO0OOooo........oooOO0OOooo........o 1124 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1123 1125 1124 void G4PenelopeRayleighModelMI::InitializeSam 1126 void G4PenelopeRayleighModelMI::InitializeSamplingAlgorithm(const G4Material* mat) 1125 { 1127 { 1126 G4double q2min = 0; 1128 G4double q2min = 0; 1127 G4double q2max = 0; 1129 G4double q2max = 0; 1128 const std::size_t np = 150; //hard-coded in << 1130 const size_t np = 150; //hard-coded in Penelope 1129 for (std::size_t i=1;i<fLogQSquareGrid.size << 1131 for (size_t i=1;i<fLogQSquareGrid.size();i++) 1130 { 1132 { 1131 G4double Q2 = G4Exp(fLogQSquareGrid[i]) 1133 G4double Q2 = G4Exp(fLogQSquareGrid[i]); 1132 if (GetFSquared(mat,Q2) > 1e-35) 1134 if (GetFSquared(mat,Q2) > 1e-35) 1133 { 1135 { 1134 q2max = G4Exp(fLogQSquareGrid[i-1]); 1136 q2max = G4Exp(fLogQSquareGrid[i-1]); 1135 } 1137 } 1136 } 1138 } 1137 std::size_t nReducedPoints = np/4; << 1139 size_t nReducedPoints = np/4; 1138 1140 1139 //check for errors 1141 //check for errors 1140 if (np < 16) 1142 if (np < 16) 1141 { 1143 { 1142 G4Exception("G4PenelopeRayleighModelMI: 1144 G4Exception("G4PenelopeRayleighModelMI::InitializeSamplingAlgorithm()", 1143 "em2047",FatalException, 1145 "em2047",FatalException, 1144 "Too few points to initialize the sampl 1146 "Too few points to initialize the sampling algorithm"); 1145 } 1147 } 1146 if (q2min > (q2max-1e-10)) 1148 if (q2min > (q2max-1e-10)) 1147 { 1149 { 1148 G4cout << "q2min= " << q2min << " q2max 1150 G4cout << "q2min= " << q2min << " q2max= " << q2max << G4endl; 1149 G4Exception("G4PenelopeRayleighModelMI: 1151 G4Exception("G4PenelopeRayleighModelMI::InitializeSamplingAlgorithm()", 1150 "em2048",FatalException, 1152 "em2048",FatalException, 1151 "Too narrow grid to initialize the samp 1153 "Too narrow grid to initialize the sampling algorithm"); 1152 } 1154 } 1153 1155 1154 //This is subroutine RITAI0 of Penelope 1156 //This is subroutine RITAI0 of Penelope 1155 //Create an object of type G4PenelopeRaylei 1157 //Create an object of type G4PenelopeRayleighSamplingData --> store in a map::Material* 1156 1158 1157 //temporary vectors --> Then everything is 1159 //temporary vectors --> Then everything is stored in G4PenelopeSamplingData 1158 G4DataVector* x = new G4DataVector(); 1160 G4DataVector* x = new G4DataVector(); 1159 1161 1160 /****************************************** 1162 /******************************************************************************* 1161 Start with a grid of NUNIF points uniform 1163 Start with a grid of NUNIF points uniformly spaced in the interval q2min,q2max 1162 ******************************************* 1164 ********************************************************************************/ 1163 std::size_t NUNIF = std::min(std::max(((std << 1165 size_t NUNIF = std::min(std::max(((size_t)8),nReducedPoints),np/2); 1164 const G4int nip = 51; //hard-coded in Penel 1166 const G4int nip = 51; //hard-coded in Penelope 1165 1167 1166 G4double dx = (q2max-q2min)/((G4double) NUN 1168 G4double dx = (q2max-q2min)/((G4double) NUNIF-1); 1167 x->push_back(q2min); 1169 x->push_back(q2min); 1168 for (std::size_t i=1;i<NUNIF-1;++i) << 1170 for (size_t i=1;i<NUNIF-1;i++) 1169 { 1171 { 1170 G4double app = q2min + i*dx; 1172 G4double app = q2min + i*dx; 1171 x->push_back(app); //increase 1173 x->push_back(app); //increase 1172 } 1174 } 1173 x->push_back(q2max); 1175 x->push_back(q2max); 1174 1176 1175 if (fVerboseLevel> 3) 1177 if (fVerboseLevel> 3) 1176 G4cout << "Vector x has " << x->size() << 1178 G4cout << "Vector x has " << x->size() << " points, while NUNIF = " << NUNIF << G4endl; 1177 1179 1178 //Allocate temporary storage vectors 1180 //Allocate temporary storage vectors 1179 G4DataVector* area = new G4DataVector(); 1181 G4DataVector* area = new G4DataVector(); 1180 G4DataVector* a = new G4DataVector(); 1182 G4DataVector* a = new G4DataVector(); 1181 G4DataVector* b = new G4DataVector(); 1183 G4DataVector* b = new G4DataVector(); 1182 G4DataVector* c = new G4DataVector(); 1184 G4DataVector* c = new G4DataVector(); 1183 G4DataVector* err = new G4DataVector(); 1185 G4DataVector* err = new G4DataVector(); 1184 1186 1185 for (std::size_t i=0;i<NUNIF-1;++i) //build << 1187 for (size_t i=0;i<NUNIF-1;i++) //build all points but the last 1186 { 1188 { 1187 //Temporary vectors for this loop 1189 //Temporary vectors for this loop 1188 G4DataVector* pdfi = new G4DataVector() 1190 G4DataVector* pdfi = new G4DataVector(); 1189 G4DataVector* pdfih = new G4DataVector( 1191 G4DataVector* pdfih = new G4DataVector(); 1190 G4DataVector* sumi = new G4DataVector() 1192 G4DataVector* sumi = new G4DataVector(); 1191 1193 1192 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4d 1194 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 1193 G4double pdfmax = 0; 1195 G4double pdfmax = 0; 1194 for (G4int k=0;k<nip;k++) 1196 for (G4int k=0;k<nip;k++) 1195 { 1197 { 1196 G4double xik = (*x)[i]+k*dxi; 1198 G4double xik = (*x)[i]+k*dxi; 1197 G4double pdfk = std::max(GetFSquared(mat, 1199 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 1198 pdfi->push_back(pdfk); 1200 pdfi->push_back(pdfk); 1199 pdfmax = std::max(pdfmax,pdfk); 1201 pdfmax = std::max(pdfmax,pdfk); 1200 if (k < (nip-1)) 1202 if (k < (nip-1)) 1201 { 1203 { 1202 G4double xih = xik + 0.5*dxi; 1204 G4double xih = xik + 0.5*dxi; 1203 G4double pdfIK = std::max(GetFSquared 1205 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 1204 pdfih->push_back(pdfIK); 1206 pdfih->push_back(pdfIK); 1205 pdfmax = std::max(pdfmax,pdfIK); 1207 pdfmax = std::max(pdfmax,pdfIK); 1206 } 1208 } 1207 } 1209 } 1208 1210 1209 //Simpson's integration 1211 //Simpson's integration 1210 G4double cons = dxi*0.5*(1./3.); 1212 G4double cons = dxi*0.5*(1./3.); 1211 sumi->push_back(0.); 1213 sumi->push_back(0.); 1212 for (G4int k=1;k<nip;k++) 1214 for (G4int k=1;k<nip;k++) 1213 { 1215 { 1214 G4double previous = (*sumi)[k-1]; 1216 G4double previous = (*sumi)[k-1]; 1215 G4double next = previous + cons*((*pdfi)[ 1217 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 1216 sumi->push_back(next); 1218 sumi->push_back(next); 1217 } 1219 } 1218 1220 1219 G4double lastIntegral = (*sumi)[sumi->s 1221 G4double lastIntegral = (*sumi)[sumi->size()-1]; 1220 area->push_back(lastIntegral); 1222 area->push_back(lastIntegral); 1221 //Normalize cumulative function 1223 //Normalize cumulative function 1222 G4double factor = 1.0/lastIntegral; 1224 G4double factor = 1.0/lastIntegral; 1223 for (std::size_t k=0;k<sumi->size();++k << 1225 for (size_t k=0;k<sumi->size();k++) 1224 (*sumi)[k] *= factor; 1226 (*sumi)[k] *= factor; 1225 1227 1226 //When the PDF vanishes at one of the i 1228 //When the PDF vanishes at one of the interval end points, its value is modified 1227 if ((*pdfi)[0] < 1e-35) 1229 if ((*pdfi)[0] < 1e-35) 1228 (*pdfi)[0] = 1e-5*pdfmax; 1230 (*pdfi)[0] = 1e-5*pdfmax; 1229 if ((*pdfi)[pdfi->size()-1] < 1e-35) 1231 if ((*pdfi)[pdfi->size()-1] < 1e-35) 1230 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 1232 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 1231 1233 1232 G4double pli = (*pdfi)[0]*factor; 1234 G4double pli = (*pdfi)[0]*factor; 1233 G4double pui = (*pdfi)[pdfi->size()-1]* 1235 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 1234 G4double B_temp = 1.0-1.0/(pli*pui*dx*d 1236 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx); 1235 G4double A_temp = (1.0/(pli*dx))-1.0-B_ 1237 G4double A_temp = (1.0/(pli*dx))-1.0-B_temp; 1236 G4double C_temp = 1.0+A_temp+B_temp; 1238 G4double C_temp = 1.0+A_temp+B_temp; 1237 if (C_temp < 1e-35) 1239 if (C_temp < 1e-35) 1238 { 1240 { 1239 a->push_back(0.); 1241 a->push_back(0.); 1240 b->push_back(0.); 1242 b->push_back(0.); 1241 c->push_back(1.); 1243 c->push_back(1.); 1242 } 1244 } 1243 else 1245 else 1244 { 1246 { 1245 a->push_back(A_temp); 1247 a->push_back(A_temp); 1246 b->push_back(B_temp); 1248 b->push_back(B_temp); 1247 c->push_back(C_temp); 1249 c->push_back(C_temp); 1248 } 1250 } 1249 1251 1250 //OK, now get ERR(I), the integral of t 1252 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 1251 //and the true pdf, extended over the i 1253 //and the true pdf, extended over the interval (X(I),X(I+1)) 1252 G4int icase = 1; //loop code 1254 G4int icase = 1; //loop code 1253 G4bool reLoop = false; 1255 G4bool reLoop = false; 1254 err->push_back(0.); 1256 err->push_back(0.); 1255 do 1257 do 1256 { 1258 { 1257 reLoop = false; 1259 reLoop = false; 1258 (*err)[i] = 0.; //zero variable 1260 (*err)[i] = 0.; //zero variable 1259 for (G4int k=0;k<nip;k++) 1261 for (G4int k=0;k<nip;k++) 1260 { 1262 { 1261 G4double rr = (*sumi)[k]; 1263 G4double rr = (*sumi)[k]; 1262 G4double pap = (*area)[i]*(1.0+((*a)[ 1264 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 1263 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-( 1265 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 1264 if (k == 0 || k == nip-1) 1266 if (k == 0 || k == nip-1) 1265 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k] 1267 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 1266 else 1268 else 1267 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 1269 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 1268 } 1270 } 1269 (*err)[i] *= dxi; 1271 (*err)[i] *= dxi; 1270 1272 1271 //If err(I) is too large, the pdf is appr 1273 //If err(I) is too large, the pdf is approximated by a uniform distribution 1272 if ((*err)[i] > 0.1*(*area)[i] && icase = 1274 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 1273 { 1275 { 1274 (*b)[i] = 0; 1276 (*b)[i] = 0; 1275 (*a)[i] = 0; 1277 (*a)[i] = 0; 1276 (*c)[i] = 1.; 1278 (*c)[i] = 1.; 1277 icase = 2; 1279 icase = 2; 1278 reLoop = true; 1280 reLoop = true; 1279 } 1281 } 1280 }while(reLoop); 1282 }while(reLoop); 1281 1283 1282 delete pdfi; 1284 delete pdfi; 1283 delete pdfih; 1285 delete pdfih; 1284 delete sumi; 1286 delete sumi; 1285 } //end of first loop over i 1287 } //end of first loop over i 1286 1288 1287 //Now assign last point 1289 //Now assign last point 1288 (*x)[x->size()-1] = q2max; 1290 (*x)[x->size()-1] = q2max; 1289 a->push_back(0.); 1291 a->push_back(0.); 1290 b->push_back(0.); 1292 b->push_back(0.); 1291 c->push_back(0.); 1293 c->push_back(0.); 1292 err->push_back(0.); 1294 err->push_back(0.); 1293 area->push_back(0.); 1295 area->push_back(0.); 1294 1296 1295 if (x->size() != NUNIF || a->size() != NUNI 1297 if (x->size() != NUNIF || a->size() != NUNIF || 1296 err->size() != NUNIF || area->size() != 1298 err->size() != NUNIF || area->size() != NUNIF) 1297 { 1299 { 1298 G4ExceptionDescription ed; 1300 G4ExceptionDescription ed; 1299 ed << "Problem in building the Table fo 1301 ed << "Problem in building the Table for Sampling: array dimensions do not match" << G4endl; 1300 G4Exception("G4PenelopeRayleighModelMI: 1302 G4Exception("G4PenelopeRayleighModelMI::InitializeSamplingAlgorithm()", 1301 "em2049",FatalException,ed); 1303 "em2049",FatalException,ed); 1302 } 1304 } 1303 1305 1304 /****************************************** 1306 /******************************************************************************* 1305 New grid points are added by halving the s 1307 New grid points are added by halving the sub-intervals with the largest absolute error 1306 This is done up to np=150 points in the gri 1308 This is done up to np=150 points in the grid 1307 ******************************************* 1309 ********************************************************************************/ 1308 do 1310 do 1309 { 1311 { 1310 G4double maxError = 0.0; 1312 G4double maxError = 0.0; 1311 std::size_t iErrMax = 0; << 1313 size_t iErrMax = 0; 1312 for (std::size_t i=0;i<err->size()-2;++ << 1314 for (size_t i=0;i<err->size()-2;i++) 1313 { 1315 { 1314 //maxError is the lagest of the interval 1316 //maxError is the lagest of the interval errors err[i] 1315 if ((*err)[i] > maxError) 1317 if ((*err)[i] > maxError) 1316 { 1318 { 1317 maxError = (*err)[i]; 1319 maxError = (*err)[i]; 1318 iErrMax = i; 1320 iErrMax = i; 1319 } 1321 } 1320 } 1322 } 1321 1323 1322 //OK, now I have to insert one new poin 1324 //OK, now I have to insert one new point in the position iErrMax 1323 G4double newx = 0.5*((*x)[iErrMax]+(*x) 1325 G4double newx = 0.5*((*x)[iErrMax]+(*x)[iErrMax+1]); 1324 1326 1325 x->insert(x->begin()+iErrMax+1,newx); 1327 x->insert(x->begin()+iErrMax+1,newx); 1326 //Add place-holders in the other vector 1328 //Add place-holders in the other vectors 1327 area->insert(area->begin()+iErrMax+1,0. 1329 area->insert(area->begin()+iErrMax+1,0.); 1328 a->insert(a->begin()+iErrMax+1,0.); 1330 a->insert(a->begin()+iErrMax+1,0.); 1329 b->insert(b->begin()+iErrMax+1,0.); 1331 b->insert(b->begin()+iErrMax+1,0.); 1330 c->insert(c->begin()+iErrMax+1,0.); 1332 c->insert(c->begin()+iErrMax+1,0.); 1331 err->insert(err->begin()+iErrMax+1,0.); 1333 err->insert(err->begin()+iErrMax+1,0.); 1332 1334 1333 //Now calculate the other parameters 1335 //Now calculate the other parameters 1334 for (std::size_t i=iErrMax;i<=iErrMax+1 << 1336 for (size_t i=iErrMax;i<=iErrMax+1;i++) 1335 { 1337 { 1336 //Temporary vectors for this loop 1338 //Temporary vectors for this loop 1337 G4DataVector* pdfi = new G4DataVector(); 1339 G4DataVector* pdfi = new G4DataVector(); 1338 G4DataVector* pdfih = new G4DataVector(); 1340 G4DataVector* pdfih = new G4DataVector(); 1339 G4DataVector* sumi = new G4DataVector(); 1341 G4DataVector* sumi = new G4DataVector(); 1340 1342 1341 G4double dxLocal = (*x)[i+1]-(*x)[i]; 1343 G4double dxLocal = (*x)[i+1]-(*x)[i]; 1342 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4dou 1344 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 1343 G4double pdfmax = 0; 1345 G4double pdfmax = 0; 1344 for (G4int k=0;k<nip;k++) 1346 for (G4int k=0;k<nip;k++) 1345 { 1347 { 1346 G4double xik = (*x)[i]+k*dxi; 1348 G4double xik = (*x)[i]+k*dxi; 1347 G4double pdfk = std::max(GetFSquared( 1349 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 1348 pdfi->push_back(pdfk); 1350 pdfi->push_back(pdfk); 1349 pdfmax = std::max(pdfmax,pdfk); 1351 pdfmax = std::max(pdfmax,pdfk); 1350 if (k < (nip-1)) 1352 if (k < (nip-1)) 1351 { 1353 { 1352 G4double xih = xik + 0.5*dxi; 1354 G4double xih = xik + 0.5*dxi; 1353 G4double pdfIK = std::max(GetFSquared(m 1355 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 1354 pdfih->push_back(pdfIK); 1356 pdfih->push_back(pdfIK); 1355 pdfmax = std::max(pdfmax,pdfIK); 1357 pdfmax = std::max(pdfmax,pdfIK); 1356 } 1358 } 1357 } 1359 } 1358 1360 1359 //Simpson's integration 1361 //Simpson's integration 1360 G4double cons = dxi*0.5*(1./3.); 1362 G4double cons = dxi*0.5*(1./3.); 1361 sumi->push_back(0.); 1363 sumi->push_back(0.); 1362 for (G4int k=1;k<nip;k++) 1364 for (G4int k=1;k<nip;k++) 1363 { 1365 { 1364 G4double previous = (*sumi)[k-1]; 1366 G4double previous = (*sumi)[k-1]; 1365 G4double next = previous + cons*((*pd 1367 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 1366 sumi->push_back(next); 1368 sumi->push_back(next); 1367 } 1369 } 1368 G4double lastIntegral = (*sumi)[sumi->siz 1370 G4double lastIntegral = (*sumi)[sumi->size()-1]; 1369 (*area)[i] = lastIntegral; 1371 (*area)[i] = lastIntegral; 1370 1372 1371 //Normalize cumulative function 1373 //Normalize cumulative function 1372 G4double factor = 1.0/lastIntegral; 1374 G4double factor = 1.0/lastIntegral; 1373 for (std::size_t k=0;k<sumi->size();++k) << 1375 for (size_t k=0;k<sumi->size();k++) 1374 (*sumi)[k] *= factor; 1376 (*sumi)[k] *= factor; 1375 1377 1376 //When the PDF vanishes at one of the int 1378 //When the PDF vanishes at one of the interval end points, its value is modified 1377 if ((*pdfi)[0] < 1e-35) 1379 if ((*pdfi)[0] < 1e-35) 1378 (*pdfi)[0] = 1e-5*pdfmax; 1380 (*pdfi)[0] = 1e-5*pdfmax; 1379 if ((*pdfi)[pdfi->size()-1] < 1e-35) 1381 if ((*pdfi)[pdfi->size()-1] < 1e-35) 1380 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 1382 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 1381 1383 1382 G4double pli = (*pdfi)[0]*factor; 1384 G4double pli = (*pdfi)[0]*factor; 1383 G4double pui = (*pdfi)[pdfi->size()-1]*fa 1385 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 1384 G4double B_temp = 1.0-1.0/(pli*pui*dxLoca 1386 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal*dxLocal); 1385 G4double A_temp = (1.0/(pli*dxLocal))-1.0 1387 G4double A_temp = (1.0/(pli*dxLocal))-1.0-B_temp; 1386 G4double C_temp = 1.0+A_temp+B_temp; 1388 G4double C_temp = 1.0+A_temp+B_temp; 1387 if (C_temp < 1e-35) 1389 if (C_temp < 1e-35) 1388 { 1390 { 1389 (*a)[i]= 0.; 1391 (*a)[i]= 0.; 1390 (*b)[i] = 0.; 1392 (*b)[i] = 0.; 1391 (*c)[i] = 1; 1393 (*c)[i] = 1; 1392 } 1394 } 1393 else 1395 else 1394 { 1396 { 1395 (*a)[i]= A_temp; 1397 (*a)[i]= A_temp; 1396 (*b)[i] = B_temp; 1398 (*b)[i] = B_temp; 1397 (*c)[i] = C_temp; 1399 (*c)[i] = C_temp; 1398 } 1400 } 1399 //OK, now get ERR(I), the integral of the 1401 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 1400 //and the true pdf, extended over the int 1402 //and the true pdf, extended over the interval (X(I),X(I+1)) 1401 G4int icase = 1; //loop code 1403 G4int icase = 1; //loop code 1402 G4bool reLoop = false; 1404 G4bool reLoop = false; 1403 do 1405 do 1404 { 1406 { 1405 reLoop = false; 1407 reLoop = false; 1406 (*err)[i] = 0.; //zero variable 1408 (*err)[i] = 0.; //zero variable 1407 for (G4int k=0;k<nip;k++) 1409 for (G4int k=0;k<nip;k++) 1408 { 1410 { 1409 G4double rr = (*sumi)[k]; 1411 G4double rr = (*sumi)[k]; 1410 G4double pap = (*area)[i]*(1.0+((*a)[i] 1412 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 1411 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+ 1413 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 1412 if (k == 0 || k == nip-1) 1414 if (k == 0 || k == nip-1) 1413 (*err)[i] += 0.5*std::fabs(pap-(*pdfi 1415 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 1414 else 1416 else 1415 (*err)[i] += std::fabs(pap-(*pdfi)[k] 1417 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 1416 } 1418 } 1417 (*err)[i] *= dxi; 1419 (*err)[i] *= dxi; 1418 1420 1419 //If err(I) is too large, the pdf is 1421 //If err(I) is too large, the pdf is approximated by a uniform distribution 1420 if ((*err)[i] > 0.1*(*area)[i] && ica 1422 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 1421 { 1423 { 1422 (*b)[i] = 0; 1424 (*b)[i] = 0; 1423 (*a)[i] = 0; 1425 (*a)[i] = 0; 1424 (*c)[i] = 1.; 1426 (*c)[i] = 1.; 1425 icase = 2; 1427 icase = 2; 1426 reLoop = true; 1428 reLoop = true; 1427 } 1429 } 1428 }while(reLoop); 1430 }while(reLoop); 1429 delete pdfi; 1431 delete pdfi; 1430 delete pdfih; 1432 delete pdfih; 1431 delete sumi; 1433 delete sumi; 1432 } 1434 } 1433 }while(x->size() < np); 1435 }while(x->size() < np); 1434 1436 1435 if (x->size() != np || a->size() != np || 1437 if (x->size() != np || a->size() != np || 1436 err->size() != np || area->size() != np 1438 err->size() != np || area->size() != np) 1437 { 1439 { 1438 G4Exception("G4PenelopeRayleighModelMI: 1440 G4Exception("G4PenelopeRayleighModelMI::InitializeSamplingAlgorithm()", 1439 "em2050",FatalException, 1441 "em2050",FatalException, 1440 "Problem in building the extended Table 1442 "Problem in building the extended Table for Sampling: array dimensions do not match "); 1441 } 1443 } 1442 1444 1443 /****************************************** 1445 /******************************************************************************* 1444 Renormalization 1446 Renormalization 1445 ******************************************* 1447 ********************************************************************************/ 1446 G4double ws = 0; 1448 G4double ws = 0; 1447 for (std::size_t i=0;i<np-1;++i) << 1449 for (size_t i=0;i<np-1;i++) 1448 ws += (*area)[i]; 1450 ws += (*area)[i]; 1449 ws = 1.0/ws; 1451 ws = 1.0/ws; 1450 G4double errMax = 0; 1452 G4double errMax = 0; 1451 for (std::size_t i=0;i<np-1;++i) << 1453 for (size_t i=0;i<np-1;i++) 1452 { 1454 { 1453 (*area)[i] *= ws; 1455 (*area)[i] *= ws; 1454 (*err)[i] *= ws; 1456 (*err)[i] *= ws; 1455 errMax = std::max(errMax,(*err)[i]); 1457 errMax = std::max(errMax,(*err)[i]); 1456 } 1458 } 1457 1459 1458 //Vector with the normalized cumulative dis 1460 //Vector with the normalized cumulative distribution 1459 G4DataVector* PAC = new G4DataVector(); 1461 G4DataVector* PAC = new G4DataVector(); 1460 PAC->push_back(0.); 1462 PAC->push_back(0.); 1461 for (std::size_t i=0;i<np-1;++i) << 1463 for (size_t i=0;i<np-1;i++) 1462 { 1464 { 1463 G4double previous = (*PAC)[i]; 1465 G4double previous = (*PAC)[i]; 1464 PAC->push_back(previous+(*area)[i]); 1466 PAC->push_back(previous+(*area)[i]); 1465 } 1467 } 1466 (*PAC)[PAC->size()-1] = 1.; 1468 (*PAC)[PAC->size()-1] = 1.; 1467 1469 1468 /****************************************** 1470 /******************************************************************************* 1469 Pre-calculated limits for the initial binar 1471 Pre-calculated limits for the initial binary search for subsequent sampling 1470 ******************************************* 1472 ********************************************************************************/ 1471 std::vector<std::size_t> *ITTL = new std::v << 1473 std::vector<size_t> *ITTL = new std::vector<size_t>; 1472 std::vector<std::size_t> *ITTU = new std::v << 1474 std::vector<size_t> *ITTU = new std::vector<size_t>; 1473 1475 1474 //Just create place-holders 1476 //Just create place-holders 1475 for (std::size_t i=0;i<np;++i) << 1477 for (size_t i=0;i<np;i++) 1476 { 1478 { 1477 ITTL->push_back(0); 1479 ITTL->push_back(0); 1478 ITTU->push_back(0); 1480 ITTU->push_back(0); 1479 } 1481 } 1480 1482 1481 G4double bin = 1.0/(np-1); 1483 G4double bin = 1.0/(np-1); 1482 (*ITTL)[0]=0; 1484 (*ITTL)[0]=0; 1483 for (std::size_t i=1;i<(np-1);++i) << 1485 for (size_t i=1;i<(np-1);i++) 1484 { 1486 { 1485 G4double ptst = i*bin; 1487 G4double ptst = i*bin; 1486 G4bool found = false; 1488 G4bool found = false; 1487 for (std::size_t j=(*ITTL)[i-1];j<np && << 1489 for (size_t j=(*ITTL)[i-1];j<np && !found;j++) 1488 { 1490 { 1489 if ((*PAC)[j] > ptst) 1491 if ((*PAC)[j] > ptst) 1490 { 1492 { 1491 (*ITTL)[i] = j-1; 1493 (*ITTL)[i] = j-1; 1492 (*ITTU)[i-1] = j; 1494 (*ITTU)[i-1] = j; 1493 found = true; 1495 found = true; 1494 } 1496 } 1495 } 1497 } 1496 } 1498 } 1497 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1499 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1498 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1500 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1499 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1501 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1500 1502 1501 if (ITTU->size() != np || ITTU->size() != n 1503 if (ITTU->size() != np || ITTU->size() != np) 1502 { 1504 { 1503 G4Exception("G4PenelopeRayleighModelMI: 1505 G4Exception("G4PenelopeRayleighModelMI::InitializeSamplingAlgorithm()", 1504 "em2051",FatalException, 1506 "em2051",FatalException, 1505 "Problem in building the Limit Tables f 1507 "Problem in building the Limit Tables for Sampling: array dimensions do not match"); 1506 } 1508 } 1507 1509 1508 /****************************************** 1510 /******************************************************************************** 1509 Copy tables 1511 Copy tables 1510 ******************************************* 1512 ********************************************************************************/ 1511 G4PenelopeSamplingData* theTable = new G4Pe 1513 G4PenelopeSamplingData* theTable = new G4PenelopeSamplingData(np); 1512 for (std::size_t i=0;i<np;++i) << 1514 for (size_t i=0;i<np;i++) 1513 { 1515 { 1514 theTable->AddPoint((*x)[i],(*PAC)[i],(* 1516 theTable->AddPoint((*x)[i],(*PAC)[i],(*a)[i],(*b)[i],(*ITTL)[i],(*ITTU)[i]); 1515 } 1517 } 1516 if (fVerboseLevel > 2) 1518 if (fVerboseLevel > 2) 1517 { 1519 { 1518 G4cout << "**************************** 1520 G4cout << "*************************************************************************" << 1519 G4endl; 1521 G4endl; 1520 G4cout << "Sampling table for Penelope 1522 G4cout << "Sampling table for Penelope Rayleigh scattering in " << mat->GetName() << G4endl; 1521 theTable->DumpTable(); 1523 theTable->DumpTable(); 1522 } 1524 } 1523 fSamplingTable->insert(std::make_pair(mat,t 1525 fSamplingTable->insert(std::make_pair(mat,theTable)); 1524 1526 1525 //Clean up temporary vectors 1527 //Clean up temporary vectors 1526 delete x; 1528 delete x; 1527 delete a; 1529 delete a; 1528 delete b; 1530 delete b; 1529 delete c; 1531 delete c; 1530 delete err; 1532 delete err; 1531 delete area; 1533 delete area; 1532 delete PAC; 1534 delete PAC; 1533 delete ITTL; 1535 delete ITTL; 1534 delete ITTU; 1536 delete ITTU; 1535 1537 1536 //DONE! 1538 //DONE! 1537 return; 1539 return; 1538 } 1540 } 1539 1541 1540 //....oooOO0OOooo........oooOO0OOooo........o 1542 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1541 1543 1542 void G4PenelopeRayleighModelMI::GetPMaxTable( 1544 void G4PenelopeRayleighModelMI::GetPMaxTable(const G4Material* mat) 1543 { 1545 { 1544 if (!fPMaxTable) 1546 if (!fPMaxTable) 1545 { 1547 { 1546 G4cout << "G4PenelopeRayleighModelMI::B 1548 G4cout << "G4PenelopeRayleighModelMI::BuildPMaxTable" << G4endl; 1547 G4cout << "Going to instanziate the fPM 1549 G4cout << "Going to instanziate the fPMaxTable !" << G4endl; 1548 G4cout << "That should _not_ be here! " 1550 G4cout << "That should _not_ be here! " << G4endl; 1549 fPMaxTable = new std::map<const G4Mater 1551 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 1550 } 1552 } 1551 //check if the table is already there 1553 //check if the table is already there 1552 if (fPMaxTable->count(mat)) 1554 if (fPMaxTable->count(mat)) 1553 return; 1555 return; 1554 1556 1555 //otherwise build it 1557 //otherwise build it 1556 if (!fSamplingTable) 1558 if (!fSamplingTable) 1557 { 1559 { 1558 G4Exception("G4PenelopeRayleighModelMI: 1560 G4Exception("G4PenelopeRayleighModelMI::GetPMaxTable()", 1559 "em2052",FatalException, 1561 "em2052",FatalException, 1560 "SamplingTable is not properly instanti 1562 "SamplingTable is not properly instantiated"); 1561 return; 1563 return; 1562 } 1564 } 1563 1565 1564 //This should not be: the sampling table is 1566 //This should not be: the sampling table is built before the p-table 1565 if (!fSamplingTable->count(mat)) 1567 if (!fSamplingTable->count(mat)) 1566 { 1568 { 1567 G4ExceptionDescription ed; 1569 G4ExceptionDescription ed; 1568 ed << "Sampling table for material " << 1570 ed << "Sampling table for material " << mat->GetName() << " not found"; 1569 G4Exception("G4PenelopeRayleighModelMI: 1571 G4Exception("G4PenelopeRayleighModelMI::GetPMaxTable()", 1570 "em2052",FatalException, 1572 "em2052",FatalException, 1571 ed); 1573 ed); 1572 return; 1574 return; 1573 } 1575 } 1574 1576 1575 G4PenelopeSamplingData *theTable = fSamplin 1577 G4PenelopeSamplingData *theTable = fSamplingTable->find(mat)->second; 1576 std::size_t tablePoints = theTable->GetNumb << 1578 size_t tablePoints = theTable->GetNumberOfStoredPoints(); 1577 std::size_t nOfEnergyPoints = fLogEnergyGri << 1579 size_t nOfEnergyPoints = fLogEnergyGridPMax.size(); 1578 G4PhysicsFreeVector* theVec = new G4Physics 1580 G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector(nOfEnergyPoints); 1579 1581 1580 const std::size_t nip = 51; //hard-coded in << 1582 const size_t nip = 51; //hard-coded in Penelope 1581 1583 1582 for (std::size_t ie=0;ie<fLogEnergyGridPMax << 1584 for (size_t ie=0;ie<fLogEnergyGridPMax.size();ie++) 1583 { 1585 { 1584 G4double energy = G4Exp(fLogEnergyGridP 1586 G4double energy = G4Exp(fLogEnergyGridPMax[ie]); 1585 G4double Qm = 2.0*energy/electron_mass_ 1587 G4double Qm = 2.0*energy/electron_mass_c2; //this is non-dimensional now 1586 G4double Qm2 = Qm*Qm; 1588 G4double Qm2 = Qm*Qm; 1587 G4double firstQ2 = theTable->GetX(0); 1589 G4double firstQ2 = theTable->GetX(0); 1588 G4double lastQ2 = theTable->GetX(tableP 1590 G4double lastQ2 = theTable->GetX(tablePoints-1); 1589 G4double thePMax = 0; 1591 G4double thePMax = 0; 1590 1592 1591 if (Qm2 > firstQ2) 1593 if (Qm2 > firstQ2) 1592 { 1594 { 1593 if (Qm2 < lastQ2) 1595 if (Qm2 < lastQ2) 1594 { 1596 { 1595 //bisection to look for the index of 1597 //bisection to look for the index of Qm 1596 std::size_t lowerBound = 0; << 1598 size_t lowerBound = 0; 1597 std::size_t upperBound = tablePoints- << 1599 size_t upperBound = tablePoints-1; 1598 while (lowerBound <= upperBound) 1600 while (lowerBound <= upperBound) 1599 { 1601 { 1600 std::size_t midBin = (lowerBound + uppe << 1602 size_t midBin = (lowerBound + upperBound)/2; 1601 if( Qm2 < theTable->GetX(midBin)) 1603 if( Qm2 < theTable->GetX(midBin)) 1602 { upperBound = midBin-1; } 1604 { upperBound = midBin-1; } 1603 else 1605 else 1604 { lowerBound = midBin+1; } 1606 { lowerBound = midBin+1; } 1605 } 1607 } 1606 //upperBound is the output (but also 1608 //upperBound is the output (but also lowerBounf --> should be the same!) 1607 G4double Q1 = theTable->GetX(upperBou 1609 G4double Q1 = theTable->GetX(upperBound); 1608 G4double Q2 = Qm2; 1610 G4double Q2 = Qm2; 1609 G4double DQ = (Q2-Q1)/((G4double)(nip 1611 G4double DQ = (Q2-Q1)/((G4double)(nip-1)); 1610 G4double theA = theTable->GetA(upperB 1612 G4double theA = theTable->GetA(upperBound); 1611 G4double theB = theTable->GetB(upperB 1613 G4double theB = theTable->GetB(upperBound); 1612 G4double thePAC = theTable->GetPAC(up 1614 G4double thePAC = theTable->GetPAC(upperBound); 1613 G4DataVector* fun = new G4DataVector( 1615 G4DataVector* fun = new G4DataVector(); 1614 for (std::size_t k=0;k<nip;++k) << 1616 for (size_t k=0;k<nip;k++) 1615 { 1617 { 1616 G4double qi = Q1 + k*DQ; 1618 G4double qi = Q1 + k*DQ; 1617 G4double tau = (qi-Q1)/ 1619 G4double tau = (qi-Q1)/ 1618 (theTable->GetX(upperBound+1)-Q1); 1620 (theTable->GetX(upperBound+1)-Q1); 1619 G4double con1 = 2.0*theB*tau; 1621 G4double con1 = 2.0*theB*tau; 1620 G4double ci = 1.0+theA+theB; 1622 G4double ci = 1.0+theA+theB; 1621 G4double con2 = ci-theA*tau; 1623 G4double con2 = ci-theA*tau; 1622 G4double etap = 0; 1624 G4double etap = 0; 1623 if (std::fabs(con1) > 1.0e-16*std::fabs 1625 if (std::fabs(con1) > 1.0e-16*std::fabs(con2)) 1624 etap = con2*(1.0-std::sqrt(1.0-2.0*ta 1626 etap = con2*(1.0-std::sqrt(1.0-2.0*tau*con1/(con2*con2)))/con1; 1625 else 1627 else 1626 etap = tau/con2; 1628 etap = tau/con2; 1627 G4double theFun = (theTable->GetPAC(upp 1629 G4double theFun = (theTable->GetPAC(upperBound+1)-thePAC)* 1628 (1.0+(theA+theB*etap)*etap)*(1.0+(the 1630 (1.0+(theA+theB*etap)*etap)*(1.0+(theA+theB*etap)*etap)/ 1629 ((1.0-theB*etap*etap)*ci*(theTable->G 1631 ((1.0-theB*etap*etap)*ci*(theTable->GetX(upperBound+1)-Q1)); 1630 fun->push_back(theFun); 1632 fun->push_back(theFun); 1631 } 1633 } 1632 //Now intergrate numerically the fun 1634 //Now intergrate numerically the fun Cavalieri-Simpson's method 1633 G4DataVector* sum = new G4DataVector; 1635 G4DataVector* sum = new G4DataVector; 1634 G4double CONS = DQ*(1./12.); 1636 G4double CONS = DQ*(1./12.); 1635 G4double HCONS = 0.5*CONS; 1637 G4double HCONS = 0.5*CONS; 1636 sum->push_back(0.); 1638 sum->push_back(0.); 1637 G4double secondPoint = (*sum)[0] + 1639 G4double secondPoint = (*sum)[0] + 1638 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*C 1640 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*CONS; 1639 sum->push_back(secondPoint); 1641 sum->push_back(secondPoint); 1640 for (std::size_t hh=2;hh<nip-1;++hh) << 1642 for (size_t hh=2;hh<nip-1;hh++) 1641 { 1643 { 1642 G4double previous = (*sum)[hh-1]; 1644 G4double previous = (*sum)[hh-1]; 1643 G4double next = previous+(13.0*((*fun)[ 1645 G4double next = previous+(13.0*((*fun)[hh-1]+(*fun)[hh])- 1644 (*fun)[hh+1]-(*fun)[hh-2])*HCON 1646 (*fun)[hh+1]-(*fun)[hh-2])*HCONS; 1645 sum->push_back(next); 1647 sum->push_back(next); 1646 } 1648 } 1647 G4double last = (*sum)[nip-2]+(5.0*(* 1649 G4double last = (*sum)[nip-2]+(5.0*(*fun)[nip-1]+8.0*(*fun)[nip-2]- 1648 (*fun)[nip-3])*CONS; 1650 (*fun)[nip-3])*CONS; 1649 sum->push_back(last); 1651 sum->push_back(last); 1650 thePMax = thePAC + (*sum)[sum->size() 1652 thePMax = thePAC + (*sum)[sum->size()-1]; //last point 1651 delete fun; 1653 delete fun; 1652 delete sum; 1654 delete sum; 1653 } 1655 } 1654 else 1656 else 1655 { 1657 { 1656 thePMax = 1.0; 1658 thePMax = 1.0; 1657 } 1659 } 1658 } 1660 } 1659 else 1661 else 1660 { 1662 { 1661 thePMax = theTable->GetPAC(0); 1663 thePMax = theTable->GetPAC(0); 1662 } 1664 } 1663 1665 1664 //Write number in the table 1666 //Write number in the table 1665 theVec->PutValue(ie,energy,thePMax); 1667 theVec->PutValue(ie,energy,thePMax); 1666 } 1668 } 1667 1669 1668 fPMaxTable->insert(std::make_pair(mat,theVe 1670 fPMaxTable->insert(std::make_pair(mat,theVec)); 1669 return; 1671 return; 1670 } 1672 } 1671 1673 1672 //....oooOO0OOooo........oooOO0OOooo........o 1674 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1673 1675 1674 void G4PenelopeRayleighModelMI::DumpFormFacto 1676 void G4PenelopeRayleighModelMI::DumpFormFactorTable(const G4Material* mat) 1675 { 1677 { 1676 G4cout << "******************************** 1678 G4cout << "*****************************************************************" << G4endl; 1677 G4cout << "G4PenelopeRayleighModelMI: Form 1679 G4cout << "G4PenelopeRayleighModelMI: Form Factor Table for " << mat->GetName() << G4endl; 1678 //try to use the same format as Penelope-Fo 1680 //try to use the same format as Penelope-Fortran, namely Q (/m_e*c) and F 1679 G4cout << "Q/(m_e*c) F(Q) 1681 G4cout << "Q/(m_e*c) F(Q) " << G4endl; 1680 G4cout << "******************************** 1682 G4cout << "*****************************************************************" << G4endl; 1681 if (!fLogFormFactorTable->count(mat)) 1683 if (!fLogFormFactorTable->count(mat)) 1682 BuildFormFactorTable(mat); 1684 BuildFormFactorTable(mat); 1683 1685 1684 G4PhysicsFreeVector* theVec = fLogFormFacto 1686 G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second; 1685 for (std::size_t i=0;i<theVec->GetVectorLen << 1687 for (size_t i=0;i<theVec->GetVectorLength();i++) 1686 { 1688 { 1687 G4double logQ2 = theVec->GetLowEdgeEner 1689 G4double logQ2 = theVec->GetLowEdgeEnergy(i); 1688 G4double Q = G4Exp(0.5*logQ2); 1690 G4double Q = G4Exp(0.5*logQ2); 1689 G4double logF2 = (*theVec)[i]; 1691 G4double logF2 = (*theVec)[i]; 1690 G4double F = G4Exp(0.5*logF2); 1692 G4double F = G4Exp(0.5*logF2); 1691 G4cout << Q << " " << F << 1693 G4cout << Q << " " << F << G4endl; 1692 } 1694 } 1693 //DONE 1695 //DONE 1694 return; 1696 return; 1695 } 1697 } 1696 1698 1697 //....oooOO0OOooo........oooOO0OOooo........o 1699 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo... 1698 1700 1699 void G4PenelopeRayleighModelMI::SetParticle(c 1701 void G4PenelopeRayleighModelMI::SetParticle(const G4ParticleDefinition* p) 1700 { 1702 { 1701 if(!fParticle) { 1703 if(!fParticle) { 1702 fParticle = p; 1704 fParticle = p; 1703 } 1705 } 1704 } 1706 } 1705 1707 1706 //....oooOO0OOooo........oooOO0OOooo........o 1708 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo... 1707 void G4PenelopeRayleighModelMI::LoadKnownMIFF 1709 void G4PenelopeRayleighModelMI::LoadKnownMIFFMaterials() 1708 { 1710 { 1709 fKnownMaterials->insert(std::pair<G4String, 1711 fKnownMaterials->insert(std::pair<G4String,G4String>("Fat_MI","FF_fat_Tartari2002.dat")); 1710 fKnownMaterials->insert(std::pair<G4String, 1712 fKnownMaterials->insert(std::pair<G4String,G4String>("Water_MI","FF_water_Tartari2002.dat")); 1711 fKnownMaterials->insert(std::pair<G4String, 1713 fKnownMaterials->insert(std::pair<G4String,G4String>("BoneMatrix_MI","FF_bonematrix_Tartari2002.dat")); 1712 fKnownMaterials->insert(std::pair<G4String, 1714 fKnownMaterials->insert(std::pair<G4String,G4String>("Mineral_MI","FF_mineral_Tartari2002.dat")); 1713 fKnownMaterials->insert(std::pair<G4String, 1715 fKnownMaterials->insert(std::pair<G4String,G4String>("adipose_MI","FF_adipose_Poletti2002.dat")); 1714 fKnownMaterials->insert(std::pair<G4String, 1716 fKnownMaterials->insert(std::pair<G4String,G4String>("glandular_MI","FF_glandular_Poletti2002.dat")); 1715 fKnownMaterials->insert(std::pair<G4String, 1717 fKnownMaterials->insert(std::pair<G4String,G4String>("breast5050_MI","FF_human_breast_Peplow1998.dat")); 1716 fKnownMaterials->insert(std::pair<G4String, 1718 fKnownMaterials->insert(std::pair<G4String,G4String>("carcinoma_MI","FF_carcinoma_Kidane1999.dat")); 1717 fKnownMaterials->insert(std::pair<G4String, 1719 fKnownMaterials->insert(std::pair<G4String,G4String>("muscle_MI","FF_pork_muscle_Peplow1998.dat")); 1718 fKnownMaterials->insert(std::pair<G4String, 1720 fKnownMaterials->insert(std::pair<G4String,G4String>("kidney_MI","FF_pork_kidney_Peplow1998.dat")); 1719 fKnownMaterials->insert(std::pair<G4String, 1721 fKnownMaterials->insert(std::pair<G4String,G4String>("liver_MI","FF_pork_liver_Peplow1998.dat")); 1720 fKnownMaterials->insert(std::pair<G4String, 1722 fKnownMaterials->insert(std::pair<G4String,G4String>("heart_MI","FF_pork_heart_Peplow1998.dat")); 1721 fKnownMaterials->insert(std::pair<G4String, 1723 fKnownMaterials->insert(std::pair<G4String,G4String>("blood_MI","FF_beef_blood_Peplow1998.dat")); 1722 fKnownMaterials->insert(std::pair<G4String, 1724 fKnownMaterials->insert(std::pair<G4String,G4String>("grayMatter_MI","FF_gbrain_DeFelici2008.dat")); 1723 fKnownMaterials->insert(std::pair<G4String, 1725 fKnownMaterials->insert(std::pair<G4String,G4String>("whiteMatter_MI","FF_wbrain_DeFelici2008.dat")); 1724 fKnownMaterials->insert(std::pair<G4String, 1726 fKnownMaterials->insert(std::pair<G4String,G4String>("bone_MI","FF_bone_King2011.dat")); 1725 fKnownMaterials->insert(std::pair<G4String, 1727 fKnownMaterials->insert(std::pair<G4String,G4String>("FatLowX_MI","FF_fat_Tartari2002_joint_lowXdata_ESRF2003.dat")); 1726 fKnownMaterials->insert(std::pair<G4String, 1728 fKnownMaterials->insert(std::pair<G4String,G4String>("BoneMatrixLowX_MI","FF_bonematrix_Tartari2002_joint_lowXdata.dat")); 1727 fKnownMaterials->insert(std::pair<G4String, 1729 fKnownMaterials->insert(std::pair<G4String,G4String>("PMMALowX_MI", "FF_PMMA_Tartari2002_joint_lowXdata_ESRF2003.dat")); 1728 fKnownMaterials->insert(std::pair<G4String, 1730 fKnownMaterials->insert(std::pair<G4String,G4String>("dryBoneLowX_MI","FF_drybone_Tartari2002_joint_lowXdata_ESRF2003.dat")); 1729 fKnownMaterials->insert(std::pair<G4String, 1731 fKnownMaterials->insert(std::pair<G4String,G4String>("CIRS30-70_MI","FF_CIRS30-70_Poletti2002.dat")); 1730 fKnownMaterials->insert(std::pair<G4String, 1732 fKnownMaterials->insert(std::pair<G4String,G4String>("CIRS50-50_MI","FF_CIRS50-50_Poletti2002.dat")); 1731 fKnownMaterials->insert(std::pair<G4String, 1733 fKnownMaterials->insert(std::pair<G4String,G4String>("CIRS70-30_MI","FF_CIRS70-30_Poletti2002.dat")); 1732 fKnownMaterials->insert(std::pair<G4String, 1734 fKnownMaterials->insert(std::pair<G4String,G4String>("RMI454_MI", "FF_RMI454_Poletti2002.dat")); 1733 fKnownMaterials->insert(std::pair<G4String, 1735 fKnownMaterials->insert(std::pair<G4String,G4String>("PMMA_MI","FF_PMMA_Tartari2002.dat")); 1734 fKnownMaterials->insert(std::pair<G4String, 1736 fKnownMaterials->insert(std::pair<G4String,G4String>("Lexan_MI","FF_lexan_Peplow1998.dat")); 1735 fKnownMaterials->insert(std::pair<G4String, 1737 fKnownMaterials->insert(std::pair<G4String,G4String>("Kapton_MI","FF_kapton_Peplow1998.dat")); 1736 fKnownMaterials->insert(std::pair<G4String, 1738 fKnownMaterials->insert(std::pair<G4String,G4String>("Nylon_MI","FF_nylon_Kosanetzky1987.dat")); 1737 fKnownMaterials->insert(std::pair<G4String, 1739 fKnownMaterials->insert(std::pair<G4String,G4String>("Polyethylene_MI","FF_polyethylene_Kosanetzky1987.dat")); 1738 fKnownMaterials->insert(std::pair<G4String, 1740 fKnownMaterials->insert(std::pair<G4String,G4String>("Polystyrene_MI","FF_polystyrene_Kosanetzky1987.dat")); 1739 fKnownMaterials->insert(std::pair<G4String, 1741 fKnownMaterials->insert(std::pair<G4String,G4String>("Formaline_MI","FF_formaline_Peplow1998.dat")); 1740 fKnownMaterials->insert(std::pair<G4String, 1742 fKnownMaterials->insert(std::pair<G4String,G4String>("Acetone_MI","FF_acetone_Cozzini2010.dat")); 1741 fKnownMaterials->insert(std::pair<G4String, 1743 fKnownMaterials->insert(std::pair<G4String,G4String>("Hperoxide_MI","FF_Hperoxide_Cozzini2010.dat")); 1742 } 1744 } 1743 1745 1744 //....oooOO0OOooo........oooOO0OOooo........o 1746 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1745 1747 1746 G4double G4PenelopeRayleighModelMI::Integrate 1748 G4double G4PenelopeRayleighModelMI::IntegrateFun(G4double y[], G4int n, G4double dTheta) 1747 { 1749 { 1748 G4double integral = 0.; 1750 G4double integral = 0.; 1749 for (G4int k=0; k<n-1; k++) { 1751 for (G4int k=0; k<n-1; k++) { 1750 integral += (y[k]+y[k+1]); 1752 integral += (y[k]+y[k+1]); 1751 } 1753 } 1752 integral *= dTheta*0.5; 1754 integral *= dTheta*0.5; 1753 return integral; 1755 return integral; 1754 } 1756 } 1755 1757 1756 //....oooOO0OOooo........oooOO0OOooo........o 1758 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1757 G4MIData* G4PenelopeRayleighModelMI::GetMIDat 1759 G4MIData* G4PenelopeRayleighModelMI::GetMIData(const G4Material* material) 1758 { 1760 { 1759 if (material->IsExtended()) { 1761 if (material->IsExtended()) { 1760 G4ExtendedMaterial* aEM = (G4ExtendedMate 1762 G4ExtendedMaterial* aEM = (G4ExtendedMaterial*)material; 1761 G4MIData* dataMI = (G4MIData*)aEM->Retrie 1763 G4MIData* dataMI = (G4MIData*)aEM->RetrieveExtension("MI"); 1762 return dataMI; 1764 return dataMI; 1763 } else { 1765 } else { 1764 return nullptr; 1766 return nullptr; 1765 } 1767 } 1766 } 1768 } 1767 1769