Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // Author: Luciano Pandola 28 // 29 // History: 30 // -------- 31 // 03 Dec 2009 L Pandola First implementa 32 // 25 May 2011 L.Pandola Renamed (make v2 33 // 19 Sep 2013 L.Pandola Migration to MT 34 // 35 36 #include "G4PenelopeRayleighModel.hh" 37 #include "G4PhysicalConstants.hh" 38 #include "G4SystemOfUnits.hh" 39 #include "G4PenelopeSamplingData.hh" 40 #include "G4ParticleDefinition.hh" 41 #include "G4MaterialCutsCouple.hh" 42 #include "G4ProductionCutsTable.hh" 43 #include "G4DynamicParticle.hh" 44 #include "G4PhysicsTable.hh" 45 #include "G4ElementTable.hh" 46 #include "G4Element.hh" 47 #include "G4PhysicsFreeVector.hh" 48 #include "G4AutoLock.hh" 49 #include "G4Exp.hh" 50 51 //....oooOO0OOooo........oooOO0OOooo........oo 52 53 const G4int G4PenelopeRayleighModel::fMaxZ; 54 G4PhysicsFreeVector* G4PenelopeRayleighModel:: 55 G4PhysicsFreeVector* G4PenelopeRayleighModel:: 56 57 //....oooOO0OOooo........oooOO0OOooo........oo 58 59 G4PenelopeRayleighModel::G4PenelopeRayleighMod 60 const G4String& nam) 61 :G4VEmModel(nam),fParticleChange(nullptr),fP 62 fLogFormFactorTable(nullptr),fPMaxTable(nul 63 fIsInitialised(false),fLocalTable(false) 64 { 65 fIntrinsicLowEnergyLimit = 100.0*eV; 66 fIntrinsicHighEnergyLimit = 100.0*GeV; 67 // SetLowEnergyLimit(fIntrinsicLowEnergyLim 68 SetHighEnergyLimit(fIntrinsicHighEnergyLimit 69 70 if (part) 71 SetParticle(part); 72 73 // 74 fVerboseLevel= 0; 75 // Verbosity scale: 76 // 0 = nothing 77 // 1 = warning for energy non-conservation 78 // 2 = details of energy budget 79 // 3 = calculation of cross sections, file o 80 // 4 = entering in methods 81 82 //build the energy grid. It is the same for 83 G4double logenergy = G4Log(fIntrinsicLowEner 84 G4double logmaxenergy = G4Log(1.5*fIntrinsic 85 //finer grid below 160 keV 86 G4double logtransitionenergy = G4Log(160*keV 87 G4double logfactor1 = G4Log(10.)/250.; 88 G4double logfactor2 = logfactor1*10; 89 fLogEnergyGridPMax.push_back(logenergy); 90 do{ 91 if (logenergy < logtransitionenergy) 92 logenergy += logfactor1; 93 else 94 logenergy += logfactor2; 95 fLogEnergyGridPMax.push_back(logenergy); 96 }while (logenergy < logmaxenergy); 97 } 98 99 //....oooOO0OOooo........oooOO0OOooo........oo 100 101 G4PenelopeRayleighModel::~G4PenelopeRayleighMo 102 { 103 if (IsMaster() || fLocalTable) 104 { 105 106 for(G4int i=0; i<=fMaxZ; ++i) 107 { 108 if(fLogAtomicCrossSection[i]) 109 { 110 delete fLogAtomicCrossSection[i]; 111 fLogAtomicCrossSection[i] = nullptr; 112 } 113 if(fAtomicFormFactor[i]) 114 { 115 delete fAtomicFormFactor[i]; 116 fAtomicFormFactor[i] = nullptr; 117 } 118 } 119 ClearTables(); 120 } 121 } 122 123 //....oooOO0OOooo........oooOO0OOooo........oo 124 void G4PenelopeRayleighModel::ClearTables() 125 { 126 if (fLogFormFactorTable) 127 { 128 for (auto& item : (*fLogFormFactorTable 129 if (item.second) delete item.second; 130 delete fLogFormFactorTable; 131 fLogFormFactorTable = nullptr; //zero e 132 } 133 if (fPMaxTable) 134 { 135 for (auto& item : (*fPMaxTable)) 136 if (item.second) delete item.second; 137 delete fPMaxTable; 138 fPMaxTable = nullptr; //zero explicitly 139 } 140 if (fSamplingTable) 141 { 142 for (auto& item : (*fSamplingTable)) 143 if (item.second) delete item.second; 144 delete fSamplingTable; 145 fSamplingTable = nullptr; //zero explic 146 } 147 return; 148 } 149 150 //....oooOO0OOooo........oooOO0OOooo........oo 151 152 void G4PenelopeRayleighModel::Initialise(const 153 const G4DataVector& ) 154 { 155 if (fVerboseLevel > 3) 156 G4cout << "Calling G4PenelopeRayleighModel 157 158 SetParticle(part); 159 160 //Only the master model creates/fills/destro 161 if (IsMaster() && part == fParticle) 162 { 163 //clear tables depending on materials, n 164 ClearTables(); 165 166 if (fVerboseLevel > 3) 167 G4cout << "Calling G4PenelopeRayleighModel:: 168 169 //create new tables 170 if (!fLogFormFactorTable) 171 fLogFormFactorTable = new std::map<const G4M 172 if (!fPMaxTable) 173 fPMaxTable = new std::map<const G4Material*, 174 if (!fSamplingTable) 175 fSamplingTable = new std::map<const G4Materi 176 177 G4ProductionCutsTable* theCoupleTable = 178 G4ProductionCutsTable::GetProductionCutsTabl 179 180 for (G4int i=0;i<(G4int)theCoupleTable-> 181 { 182 const G4Material* material = 183 theCoupleTable->GetMaterialCutsCouple(i) 184 const G4ElementVector* theElementVector = 185 186 for (std::size_t j=0;j<material->GetNumber 187 { 188 G4int iZ = theElementVector->at(j)->Ge 189 //read data files only in the master 190 if (!fLogAtomicCrossSection[iZ]) 191 ReadDataFile(iZ); 192 } 193 194 //1) If the table has not been built for t 195 if (!fLogFormFactorTable->count(material)) 196 BuildFormFactorTable(material); 197 198 //2) retrieve or build the sampling table 199 if (!(fSamplingTable->count(material))) 200 InitializeSamplingAlgorithm(material); 201 202 //3) retrieve or build the pMax data 203 if (!fPMaxTable->count(material)) 204 GetPMaxTable(material); 205 } 206 207 if (fVerboseLevel > 1) { 208 G4cout << "Penelope Rayleigh model v2008 is 209 << "Energy range: " 210 << LowEnergyLimit() / keV << " keV - 211 << HighEnergyLimit() / GeV << " GeV" 212 << G4endl; 213 } 214 } 215 216 if(fIsInitialised) return; 217 fParticleChange = GetParticleChangeForGamma( 218 fIsInitialised = true; 219 } 220 221 //....oooOO0OOooo........oooOO0OOooo........oo 222 223 void G4PenelopeRayleighModel::InitialiseLocal( 224 G4VEmModel *masterModel) 225 { 226 if (fVerboseLevel > 3) 227 G4cout << "Calling G4PenelopeRayleighMode 228 // 229 //Check that particle matches: one might hav 230 //for e+ and e-). 231 // 232 if (part == fParticle) 233 { 234 //Get the const table pointers from the 235 const G4PenelopeRayleighModel* theModel 236 static_cast<G4PenelopeRayleighModel*> (maste 237 238 //Copy pointers to the data tables 239 for(G4int i=0; i<=fMaxZ; ++i) 240 { 241 fLogAtomicCrossSection[i] = theModel->fLog 242 fAtomicFormFactor[i] = theModel->fAtomicFo 243 } 244 fLogFormFactorTable = theModel->fLogForm 245 fPMaxTable = theModel->fPMaxTable; 246 fSamplingTable = theModel->fSamplingTabl 247 248 //copy the G4DataVector with the grid 249 fLogQSquareGrid = theModel->fLogQSquareG 250 251 //Same verbosity for all workers, as the 252 fVerboseLevel = theModel->fVerboseLevel; 253 } 254 255 return; 256 } 257 258 259 //....oooOO0OOooo........oooOO0OOooo........oo 260 namespace { G4Mutex PenelopeRayleighModelMute 261 G4double G4PenelopeRayleighModel::ComputeCross 262 G4double energy, 263 G4double Z, 264 G4double, 265 G4double, 266 G4double) 267 { 268 // Cross section of Rayleigh scattering in P 269 // tabulation, Cuellen et al. (1997), with n 270 // et al. J. Phys. Chem. Ref. Data 4 (1975) 271 272 if (fVerboseLevel > 3) 273 G4cout << "Calling CrossSectionPerAtom() o 274 275 G4int iZ = G4int(Z); 276 277 if (!fLogAtomicCrossSection[iZ]) 278 { 279 //If we are here, it means that Initial 280 //not filled up. This can happen in a U 281 if (fVerboseLevel > 0) 282 { 283 //Issue a G4Exception (warning) only in ve 284 G4ExceptionDescription ed; 285 ed << "Unable to retrieve the cross sectio 286 ed << "This can happen only in Unit Tests 287 G4Exception("G4PenelopeRayleighModel::Comp 288 "em2040",JustWarning,ed); 289 } 290 //protect file reading via autolock 291 G4AutoLock lock(&PenelopeRayleighModelM 292 ReadDataFile(iZ); 293 lock.unlock(); 294 } 295 296 G4double cross = 0; 297 G4PhysicsFreeVector* atom = fLogAtomicCross 298 if (!atom) 299 { 300 G4ExceptionDescription ed; 301 ed << "Unable to find Z=" << iZ << " in 302 G4Exception("G4PenelopeRayleighModel::C 303 "em2041",FatalException,ed); 304 return 0; 305 } 306 G4double logene = G4Log(energy); 307 G4double logXS = atom->Value(logene); 308 cross = G4Exp(logXS); 309 310 if (fVerboseLevel > 2) 311 { 312 G4cout << "Rayleigh cross section at " 313 " = " << cross/barn << " barn" << G4endl; 314 } 315 return cross; 316 } 317 318 319 //....oooOO0OOooo........oooOO0OOooo........oo 320 void G4PenelopeRayleighModel::BuildFormFactorT 321 { 322 /* 323 1) get composition and equivalent molecula 324 */ 325 std::size_t nElements = material->GetNumberO 326 const G4ElementVector* elementVector = mater 327 const G4double* fractionVector = material->G 328 329 std::vector<G4double> *StechiometricFactors 330 for (std::size_t i=0;i<nElements;++i) 331 { 332 G4double fraction = fractionVector[i]; 333 G4double atomicWeigth = (*elementVector) 334 StechiometricFactors->push_back(fraction 335 } 336 //Find max 337 G4double MaxStechiometricFactor = 0.; 338 for (std::size_t i=0;i<nElements;++i) 339 { 340 if ((*StechiometricFactors)[i] > MaxStec 341 MaxStechiometricFactor = (*Stechiometr 342 } 343 if (MaxStechiometricFactor<1e-16) 344 { 345 G4ExceptionDescription ed; 346 ed << "Inconsistent data of atomic compo 347 material->GetName() << G4endl; 348 G4Exception("G4PenelopeRayleighModel::Bu 349 "em2042",FatalException,ed); 350 } 351 //Normalize 352 for (std::size_t i=0;i<nElements;++i) 353 (*StechiometricFactors)[i] /= MaxStechiom 354 355 /* 356 CREATE THE FORM FACTOR TABLE 357 */ 358 G4PhysicsFreeVector* theFFVec = new G4Physic 359 360 for (std::size_t k=0;k<fLogQSquareGrid.size( 361 { 362 G4double ff2 = 0; //squared form factor 363 for (std::size_t i=0;i<nElements;++i) 364 { 365 G4int iZ = (*elementVector)[i]->GetZasInt( 366 G4PhysicsFreeVector* theAtomVec = fAtomicF 367 G4double f = (*theAtomVec)[k]; //the q-gri 368 ff2 += f*f*(*StechiometricFactors)[i]; 369 } 370 if (ff2) 371 theFFVec->PutValue(k,fLogQSquareGrid[k],G4Lo 372 } 373 theFFVec->FillSecondDerivatives(); //vector 374 fLogFormFactorTable->insert(std::make_pair(m 375 376 delete StechiometricFactors; 377 return; 378 } 379 380 //....oooOO0OOooo........oooOO0OOooo........oo 381 382 void G4PenelopeRayleighModel::SampleSecondarie 383 const G4MaterialCutsCouple* couple 384 const G4DynamicParticle* aDynamicG 385 G4double, 386 G4double) 387 { 388 // Sampling of the Rayleigh final state (nam 389 // from the Penelope2008 model. The scatteri 390 // cross section dOmega/d(cosTheta) from Bor 391 // anomalous scattering effects. The Form Fa 392 // analytical cross section is retrieved via 393 // are tabulated for F(Q). Form factor for c 394 // the additivity rule. The sampling from th 395 // Transform with Aliasing (RITA) algorithm; 396 // for each material and managed by G4Penelo 397 // The sampling algorithm (rejection method) 398 // increases with energy. For E=100 keV the 399 // hydrogen and uranium, respectively. 400 401 if (fVerboseLevel > 3) 402 G4cout << "Calling SamplingSecondaries() o 403 404 G4double photonEnergy0 = aDynamicGamma->GetK 405 406 if (photonEnergy0 <= fIntrinsicLowEnergyLimi 407 { 408 fParticleChange->ProposeTrackStatus(fSto 409 fParticleChange->SetProposedKineticEnerg 410 fParticleChange->ProposeLocalEnergyDepos 411 return ; 412 } 413 414 G4ParticleMomentum photonDirection0 = aDynam 415 416 const G4Material* theMat = couple->GetMateri 417 418 //1) Verify if tables are ready 419 //Either Initialize() was not called, or we 420 //not invoked 421 if (!fPMaxTable || !fSamplingTable || !fLogF 422 { 423 //create a **thread-local** version of t 424 //Unit Tests 425 fLocalTable = true; 426 if (!fLogFormFactorTable) 427 fLogFormFactorTable = new std::map<const G4M 428 if (!fPMaxTable) 429 fPMaxTable = new std::map<const G4Material*, 430 if (!fSamplingTable) 431 fSamplingTable = new std::map<const G4Materi 432 } 433 434 if (!fSamplingTable->count(theMat)) 435 { 436 //If we are here, it means that Initiali 437 //not filled up. This can happen in a Un 438 if (fVerboseLevel > 0) 439 { 440 //Issue a G4Exception (warning) only in ve 441 G4ExceptionDescription ed; 442 ed << "Unable to find the fSamplingTable d 443 theMat->GetName() << G4endl; 444 ed << "This can happen only in Unit Tests" 445 G4Exception("G4PenelopeRayleighModel::Samp 446 "em2019",JustWarning,ed); 447 } 448 const G4ElementVector* theElementVector 449 //protect file reading via autolock 450 G4AutoLock lock(&PenelopeRayleighModelMu 451 for (std::size_t j=0;j<theMat->GetNumber 452 { 453 G4int iZ = theElementVector->at(j)->GetZas 454 if (!fLogAtomicCrossSection[iZ]) 455 { 456 lock.lock(); 457 ReadDataFile(iZ); 458 lock.unlock(); 459 } 460 } 461 lock.lock(); 462 //1) If the table has not been built for 463 if (!fLogFormFactorTable->count(theMat)) 464 BuildFormFactorTable(theMat); 465 466 //2) retrieve or build the sampling tabl 467 if (!(fSamplingTable->count(theMat))) 468 InitializeSamplingAlgorithm(theMat); 469 470 //3) retrieve or build the pMax data 471 if (!fPMaxTable->count(theMat)) 472 GetPMaxTable(theMat); 473 lock.unlock(); 474 } 475 476 //Ok, restart the job 477 G4PenelopeSamplingData* theDataTable = fSamp 478 G4PhysicsFreeVector* thePMax = fPMaxTable->f 479 480 G4double cosTheta = 1.0; 481 482 //OK, ready to go! 483 G4double qmax = 2.0*photonEnergy0/electron_m 484 485 if (qmax < 1e-10) //very low momentum transf 486 { 487 G4bool loopAgain=false; 488 do 489 { 490 loopAgain = false; 491 cosTheta = 1.0-2.0*G4UniformRand(); 492 G4double G = 0.5*(1+cosTheta*cosTheta); 493 if (G4UniformRand()>G) 494 loopAgain = true; 495 }while(loopAgain); 496 } 497 else //larger momentum transfer 498 { 499 std::size_t nData = theDataTable->GetNum 500 G4double LastQ2inTheTable = theDataTable 501 G4double q2max = std::min(qmax*qmax,Last 502 503 G4bool loopAgain = false; 504 G4double MaxPValue = thePMax->Value(phot 505 G4double xx=0; 506 507 //Sampling by rejection method. The reje 508 //G = 0.5*(1+cos^2(theta)) 509 // 510 do{ 511 loopAgain = false; 512 G4double RandomMax = G4UniformRand()*MaxPVal 513 xx = theDataTable->SampleValue(RandomMax); 514 //xx is a random value of q^2 in (0,q2max),s 515 //F(Q^2) via the RITA algorithm 516 if (xx > q2max) 517 loopAgain = true; 518 cosTheta = 1.0-2.0*xx/q2max; 519 G4double G = 0.5*(1+cosTheta*cosTheta); 520 if (G4UniformRand()>G) 521 loopAgain = true; 522 }while(loopAgain); 523 } 524 525 G4double sinTheta = std::sqrt(1-cosTheta*cos 526 527 // Scattered photon angles. ( Z - axis along 528 G4double phi = twopi * G4UniformRand() ; 529 G4double dirX = sinTheta*std::cos(phi); 530 G4double dirY = sinTheta*std::sin(phi); 531 G4double dirZ = cosTheta; 532 533 // Update G4VParticleChange for the scattere 534 G4ThreeVector photonDirection1(dirX, dirY, d 535 536 photonDirection1.rotateUz(photonDirection0); 537 fParticleChange->ProposeMomentumDirection(ph 538 fParticleChange->SetProposedKineticEnergy(ph 539 540 return; 541 } 542 543 544 //....oooOO0OOooo........oooOO0OOooo........oo 545 546 void G4PenelopeRayleighModel::ReadDataFile(con 547 { 548 if (fVerboseLevel > 2) 549 { 550 G4cout << "G4PenelopeRayleighModel::Read 551 G4cout << "Going to read Rayleigh data f 552 } 553 const char* path = G4FindDataDir("G4LEDATA 554 if(!path) 555 { 556 G4String excep = "G4LEDATA environment v 557 G4Exception("G4PenelopeRayleighModel::Re 558 "em0006",FatalException,excep); 559 return; 560 } 561 562 /* 563 Read first the cross section file 564 */ 565 std::ostringstream ost; 566 if (Z>9) 567 ost << path << "/penelope/rayleigh/pdgra" 568 else 569 ost << path << "/penelope/rayleigh/pdgra0" 570 std::ifstream file(ost.str().c_str()); 571 if (!file.is_open()) 572 { 573 G4String excep = "Data file " + G4String 574 G4Exception("G4PenelopeRayleighModel::Re 575 "em0003",FatalException,excep); 576 } 577 G4int readZ =0; 578 std::size_t nPoints= 0; 579 file >> readZ >> nPoints; 580 //check the right file is opened. 581 if (readZ != Z || nPoints <= 0 || nPoints >= 582 { 583 G4ExceptionDescription ed; 584 ed << "Corrupted data file for Z=" << Z 585 G4Exception("G4PenelopeRayleighModel::Re 586 "em0005",FatalException,ed); 587 return; 588 } 589 590 fLogAtomicCrossSection[Z] = new G4PhysicsFre 591 G4double ene=0,f1=0,f2=0,xs=0; 592 for (std::size_t i=0;i<nPoints;++i) 593 { 594 file >> ene >> f1 >> f2 >> xs; 595 //dimensional quantities 596 ene *= eV; 597 xs *= cm2; 598 fLogAtomicCrossSection[Z]->PutValue(i,G4 599 if (file.eof() && i != (nPoints-1)) //fi 600 { 601 G4ExceptionDescription ed ; 602 ed << "Corrupted data file for Z=" << Z << 603 ed << "Found less than " << nPoints << "en 604 G4Exception("G4PenelopeRayleighModel::Read 605 "em0005",FatalException,ed); 606 } 607 } 608 file.close(); 609 610 /* 611 Then read the form factor file 612 */ 613 std::ostringstream ost2; 614 if (Z>9) 615 ost2 << path << "/penelope/rayleigh/pdaff" 616 else 617 ost2 << path << "/penelope/rayleigh/pdaff0 618 file.open(ost2.str().c_str()); 619 if (!file.is_open()) 620 { 621 G4String excep = "Data file " + G4String 622 G4Exception("G4PenelopeRayleighModel::Re 623 "em0003",FatalException,excep); 624 } 625 file >> readZ >> nPoints; 626 //check the right file is opened. 627 if (readZ != Z || nPoints <= 0 || nPoints >= 628 { 629 G4ExceptionDescription ed; 630 ed << "Corrupted data file for Z=" << Z 631 G4Exception("G4PenelopeRayleighModel::Re 632 "em0005",FatalException,ed); 633 return; 634 } 635 fAtomicFormFactor[Z] = new G4PhysicsFreeVect 636 G4double q=0,ff=0,incoh=0; 637 G4bool fillQGrid = false; 638 //fill this vector only the first time. 639 if (!fLogQSquareGrid.size()) 640 fillQGrid = true; 641 for (std::size_t i=0;i<nPoints;++i) 642 { 643 file >> q >> ff >> incoh; 644 //q and ff are dimensionless (q is in un 645 fAtomicFormFactor[Z]->PutValue(i,q,ff); 646 if (fillQGrid) 647 { 648 fLogQSquareGrid.push_back(2.0*G4Log(q)); 649 } 650 if (file.eof() && i != (nPoints-1)) //fi 651 { 652 G4ExceptionDescription ed; 653 ed << "Corrupted data file for Z=" << Z << 654 ed << "Found less than " << nPoints << "en 655 G4Exception("G4PenelopeRayleighModel::Read 656 "em0005",FatalException,ed); 657 } 658 } 659 file.close(); 660 return; 661 } 662 663 //....oooOO0OOooo........oooOO0OOooo........oo 664 665 G4double G4PenelopeRayleighModel::GetFSquared( 666 { 667 G4double f2 = 0; 668 //Input value QSquared could be zero: protec 669 //the FPE exception 670 //If Q<1e-10, set Q to 1e-10 671 G4double logQSquared = (QSquared>1e-10) ? G4 672 //last value of the table 673 G4double maxlogQ2 = fLogQSquareGrid[fLogQSqu 674 675 //now it should be all right 676 G4PhysicsFreeVector* theVec = fLogFormFactor 677 678 if (!theVec) 679 { 680 G4ExceptionDescription ed; 681 ed << "Unable to retrieve F squared tabl 682 G4Exception("G4PenelopeRayleighModel::Ge 683 "em2046",FatalException,ed); 684 return 0; 685 } 686 if (logQSquared < -20) // Q < 1e-9 687 { 688 G4double logf2 = (*theVec)[0]; //first v 689 f2 = G4Exp(logf2); 690 } 691 else if (logQSquared > maxlogQ2) 692 f2 =0; 693 else 694 { 695 //log(Q^2) vs. log(F^2) 696 G4double logf2 = theVec->Value(logQSquar 697 f2 = G4Exp(logf2); 698 699 } 700 if (fVerboseLevel > 3) 701 { 702 G4cout << "G4PenelopeRayleighModel::GetF 703 G4cout << "Q^2 = " << QSquared << " (un 704 } 705 return f2; 706 } 707 708 //....oooOO0OOooo........oooOO0OOooo........oo 709 710 void G4PenelopeRayleighModel::InitializeSampli 711 { 712 G4double q2min = 0; 713 G4double q2max = 0; 714 const std::size_t np = 150; //hard-coded in 715 //G4cout << "Init N= " << fLogQSquareGrid.si 716 for (std::size_t i=1;i<fLogQSquareGrid.size( 717 { 718 G4double Q2 = G4Exp(fLogQSquareGrid[i]); 719 if (GetFSquared(mat,Q2) > 1e-35) 720 { 721 q2max = G4Exp(fLogQSquareGrid[i-1]); 722 } 723 //G4cout << "Q2= " << Q2 << " q2max= " < 724 } 725 726 std::size_t nReducedPoints = np/4; 727 728 //check for errors 729 if (np < 16) 730 { 731 G4Exception("G4PenelopeRayleighModel::In 732 "em2047",FatalException, 733 "Too few points to initialize the sampli 734 } 735 if (q2min > (q2max-1e-10)) 736 { 737 G4cout << "q2min= " << q2min << " q2max= 738 G4Exception("G4PenelopeRayleighModel::In 739 "em2048",FatalException, 740 "Too narrow grid to initialize the sampl 741 } 742 743 //This is subroutine RITAI0 of Penelope 744 //Create an object of type G4PenelopeRayleig 745 746 //temporary vectors --> Then everything is s 747 G4DataVector* x = new G4DataVector(); 748 749 /******************************************* 750 Start with a grid of NUNIF points uniforml 751 ******************************************** 752 std::size_t NUNIF = std::min(std::max(((std: 753 const G4int nip = 51; //hard-coded in Penelo 754 755 G4double dx = (q2max-q2min)/((G4double) NUNI 756 x->push_back(q2min); 757 for (std::size_t i=1;i<NUNIF-1;++i) 758 { 759 G4double app = q2min + i*dx; 760 x->push_back(app); //increase 761 } 762 x->push_back(q2max); 763 764 if (fVerboseLevel> 3) 765 G4cout << "Vector x has " << x->size() << 766 767 //Allocate temporary storage vectors 768 G4DataVector* area = new G4DataVector(); 769 G4DataVector* a = new G4DataVector(); 770 G4DataVector* b = new G4DataVector(); 771 G4DataVector* c = new G4DataVector(); 772 G4DataVector* err = new G4DataVector(); 773 774 for (std::size_t i=0;i<NUNIF-1;++i) //build 775 { 776 //Temporary vectors for this loop 777 G4DataVector* pdfi = new G4DataVector(); 778 G4DataVector* pdfih = new G4DataVector() 779 G4DataVector* sumi = new G4DataVector(); 780 781 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4do 782 G4double pdfmax = 0; 783 for (G4int k=0;k<nip;k++) 784 { 785 G4double xik = (*x)[i]+k*dxi; 786 G4double pdfk = std::max(GetFSquared(mat,x 787 pdfi->push_back(pdfk); 788 pdfmax = std::max(pdfmax,pdfk); 789 if (k < (nip-1)) 790 { 791 G4double xih = xik + 0.5*dxi; 792 G4double pdfIK = std::max(GetFSquared( 793 pdfih->push_back(pdfIK); 794 pdfmax = std::max(pdfmax,pdfIK); 795 } 796 } 797 798 //Simpson's integration 799 G4double cons = dxi*0.5*(1./3.); 800 sumi->push_back(0.); 801 for (G4int k=1;k<nip;k++) 802 { 803 G4double previous = (*sumi)[k-1]; 804 G4double next = previous + cons*((*pdfi)[k 805 sumi->push_back(next); 806 } 807 808 G4double lastIntegral = (*sumi)[sumi->si 809 area->push_back(lastIntegral); 810 //Normalize cumulative function 811 G4double factor = 1.0/lastIntegral; 812 for (std::size_t k=0;k<sumi->size();++k) 813 (*sumi)[k] *= factor; 814 815 //When the PDF vanishes at one of the in 816 if ((*pdfi)[0] < 1e-35) 817 (*pdfi)[0] = 1e-5*pdfmax; 818 if ((*pdfi)[pdfi->size()-1] < 1e-35) 819 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 820 821 G4double pli = (*pdfi)[0]*factor; 822 G4double pui = (*pdfi)[pdfi->size()-1]*f 823 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx 824 G4double A_temp = (1.0/(pli*dx))-1.0-B_t 825 G4double C_temp = 1.0+A_temp+B_temp; 826 if (C_temp < 1e-35) 827 { 828 a->push_back(0.); 829 b->push_back(0.); 830 c->push_back(1.); 831 } 832 else 833 { 834 a->push_back(A_temp); 835 b->push_back(B_temp); 836 c->push_back(C_temp); 837 } 838 839 //OK, now get ERR(I), the integral of th 840 //and the true pdf, extended over the in 841 G4int icase = 1; //loop code 842 G4bool reLoop = false; 843 err->push_back(0.); 844 do 845 { 846 reLoop = false; 847 (*err)[i] = 0.; //zero variable 848 for (G4int k=0;k<nip;k++) 849 { 850 G4double rr = (*sumi)[k]; 851 G4double pap = (*area)[i]*(1.0+((*a)[i 852 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(* 853 if (k == 0 || k == nip-1) 854 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]) 855 else 856 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 857 } 858 (*err)[i] *= dxi; 859 860 //If err(I) is too large, the pdf is appro 861 if ((*err)[i] > 0.1*(*area)[i] && icase == 862 { 863 (*b)[i] = 0; 864 (*a)[i] = 0; 865 (*c)[i] = 1.; 866 icase = 2; 867 reLoop = true; 868 } 869 }while(reLoop); 870 delete pdfi; 871 delete pdfih; 872 delete sumi; 873 } //end of first loop over i 874 875 //Now assign last point 876 (*x)[x->size()-1] = q2max; 877 a->push_back(0.); 878 b->push_back(0.); 879 c->push_back(0.); 880 err->push_back(0.); 881 area->push_back(0.); 882 883 if (x->size() != NUNIF || a->size() != NUNIF 884 err->size() != NUNIF || area->size() != 885 { 886 G4ExceptionDescription ed; 887 ed << "Problem in building the Table for 888 G4Exception("G4PenelopeRayleighModel::In 889 "em2049",FatalException,ed); 890 } 891 892 /******************************************* 893 New grid points are added by halving the su 894 This is done up to np=150 points in the grid 895 ******************************************** 896 do 897 { 898 G4double maxError = 0.0; 899 std::size_t iErrMax = 0; 900 for (std::size_t i=0;i<err->size()-2;++i 901 { 902 //maxError is the lagest of the interval e 903 if ((*err)[i] > maxError) 904 { 905 maxError = (*err)[i]; 906 iErrMax = i; 907 } 908 } 909 910 //OK, now I have to insert one new point 911 G4double newx = 0.5*((*x)[iErrMax]+(*x)[ 912 913 x->insert(x->begin()+iErrMax+1,newx); 914 //Add place-holders in the other vectors 915 area->insert(area->begin()+iErrMax+1,0.) 916 a->insert(a->begin()+iErrMax+1,0.); 917 b->insert(b->begin()+iErrMax+1,0.); 918 c->insert(c->begin()+iErrMax+1,0.); 919 err->insert(err->begin()+iErrMax+1,0.); 920 921 //Now calculate the other parameters 922 for (std::size_t i=iErrMax;i<=iErrMax+1; 923 { 924 //Temporary vectors for this loop 925 G4DataVector* pdfi = new G4DataVector(); 926 G4DataVector* pdfih = new G4DataVector(); 927 G4DataVector* sumi = new G4DataVector(); 928 929 G4double dxLocal = (*x)[i+1]-(*x)[i]; 930 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4doub 931 G4double pdfmax = 0; 932 for (G4int k=0;k<nip;k++) 933 { 934 G4double xik = (*x)[i]+k*dxi; 935 G4double pdfk = std::max(GetFSquared(m 936 pdfi->push_back(pdfk); 937 pdfmax = std::max(pdfmax,pdfk); 938 if (k < (nip-1)) 939 { 940 G4double xih = xik + 0.5*dxi; 941 G4double pdfIK = std::max(GetFSquared(ma 942 pdfih->push_back(pdfIK); 943 pdfmax = std::max(pdfmax,pdfIK); 944 } 945 } 946 947 //Simpson's integration 948 G4double cons = dxi*0.5*(1./3.); 949 sumi->push_back(0.); 950 for (G4int k=1;k<nip;k++) 951 { 952 G4double previous = (*sumi)[k-1]; 953 G4double next = previous + cons*((*pdf 954 sumi->push_back(next); 955 } 956 G4double lastIntegral = (*sumi)[sumi->size 957 (*area)[i] = lastIntegral; 958 959 //Normalize cumulative function 960 G4double factor = 1.0/lastIntegral; 961 for (std::size_t k=0;k<sumi->size();++k) 962 (*sumi)[k] *= factor; 963 964 //When the PDF vanishes at one of the inte 965 if ((*pdfi)[0] < 1e-35) 966 (*pdfi)[0] = 1e-5*pdfmax; 967 if ((*pdfi)[pdfi->size()-1] < 1e-35) 968 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 969 970 G4double pli = (*pdfi)[0]*factor; 971 G4double pui = (*pdfi)[pdfi->size()-1]*fac 972 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal 973 G4double A_temp = (1.0/(pli*dxLocal))-1.0- 974 G4double C_temp = 1.0+A_temp+B_temp; 975 if (C_temp < 1e-35) 976 { 977 (*a)[i]= 0.; 978 (*b)[i] = 0.; 979 (*c)[i] = 1; 980 } 981 else 982 { 983 (*a)[i]= A_temp; 984 (*b)[i] = B_temp; 985 (*c)[i] = C_temp; 986 } 987 //OK, now get ERR(I), the integral of the 988 //and the true pdf, extended over the inte 989 G4int icase = 1; //loop code 990 G4bool reLoop = false; 991 do 992 { 993 reLoop = false; 994 (*err)[i] = 0.; //zero variable 995 for (G4int k=0;k<nip;k++) 996 { 997 G4double rr = (*sumi)[k]; 998 G4double pap = (*area)[i]*(1.0+((*a)[i]+ 999 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1 1000 if (k == 0 || k == nip-1) 1001 (*err)[i] += 0.5*std::fabs(pap-(*pdfi 1002 else 1003 (*err)[i] += std::fabs(pap-(*pdfi)[k] 1004 } 1005 (*err)[i] *= dxi; 1006 1007 //If err(I) is too large, the pdf is 1008 if ((*err)[i] > 0.1*(*area)[i] && ica 1009 { 1010 (*b)[i] = 0; 1011 (*a)[i] = 0; 1012 (*c)[i] = 1.; 1013 icase = 2; 1014 reLoop = true; 1015 } 1016 }while(reLoop); 1017 delete pdfi; 1018 delete pdfih; 1019 delete sumi; 1020 } 1021 }while(x->size() < np); 1022 1023 if (x->size() != np || a->size() != np || 1024 err->size() != np || area->size() != np 1025 { 1026 G4Exception("G4PenelopeRayleighModel::I 1027 "em2050",FatalException, 1028 "Problem in building the extended Table 1029 } 1030 1031 /****************************************** 1032 Renormalization 1033 ******************************************* 1034 G4double ws = 0; 1035 for (std::size_t i=0;i<np-1;++i) 1036 ws += (*area)[i]; 1037 ws = 1.0/ws; 1038 G4double errMax = 0; 1039 for (std::size_t i=0;i<np-1;++i) 1040 { 1041 (*area)[i] *= ws; 1042 (*err)[i] *= ws; 1043 errMax = std::max(errMax,(*err)[i]); 1044 } 1045 1046 //Vector with the normalized cumulative dis 1047 G4DataVector* PAC = new G4DataVector(); 1048 PAC->push_back(0.); 1049 for (std::size_t i=0;i<np-1;++i) 1050 { 1051 G4double previous = (*PAC)[i]; 1052 PAC->push_back(previous+(*area)[i]); 1053 } 1054 (*PAC)[PAC->size()-1] = 1.; 1055 1056 /****************************************** 1057 Pre-calculated limits for the initial binar 1058 ******************************************* 1059 std::vector<std::size_t> *ITTL = new std::v 1060 std::vector<std::size_t> *ITTU = new std::v 1061 1062 //Just create place-holders 1063 for (std::size_t i=0;i<np;++i) 1064 { 1065 ITTL->push_back(0); 1066 ITTU->push_back(0); 1067 } 1068 1069 G4double bin = 1.0/(np-1); 1070 (*ITTL)[0]=0; 1071 for (std::size_t i=1;i<(np-1);++i) 1072 { 1073 G4double ptst = i*bin; 1074 G4bool found = false; 1075 for (std::size_t j=(*ITTL)[i-1];j<np && 1076 { 1077 if ((*PAC)[j] > ptst) 1078 { 1079 (*ITTL)[i] = j-1; 1080 (*ITTU)[i-1] = j; 1081 found = true; 1082 } 1083 } 1084 } 1085 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1086 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1087 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1088 1089 if (ITTU->size() != np || ITTU->size() != n 1090 { 1091 G4Exception("G4PenelopeRayleighModel::I 1092 "em2051",FatalException, 1093 "Problem in building the Limit Tables f 1094 } 1095 1096 /****************************************** 1097 Copy tables 1098 ******************************************* 1099 G4PenelopeSamplingData* theTable = new G4Pe 1100 for (std::size_t i=0;i<np;++i) 1101 { 1102 theTable->AddPoint((*x)[i],(*PAC)[i],(* 1103 } 1104 1105 if (fVerboseLevel > 2) 1106 { 1107 G4cout << "**************************** 1108 G4endl; 1109 G4cout << "Sampling table for Penelope 1110 theTable->DumpTable(); 1111 } 1112 fSamplingTable->insert(std::make_pair(mat,t 1113 1114 //Clean up temporary vectors 1115 delete x; 1116 delete a; 1117 delete b; 1118 delete c; 1119 delete err; 1120 delete area; 1121 delete PAC; 1122 delete ITTL; 1123 delete ITTU; 1124 1125 //DONE! 1126 return; 1127 } 1128 1129 //....oooOO0OOooo........oooOO0OOooo........o 1130 1131 void G4PenelopeRayleighModel::GetPMaxTable(co 1132 { 1133 if (!fPMaxTable) 1134 { 1135 G4cout << "G4PenelopeRayleighModel::Bui 1136 G4cout << "Going to instanziate the fPM 1137 G4cout << "That should _not_ be here! " 1138 fPMaxTable = new std::map<const G4Mater 1139 } 1140 //check if the table is already there 1141 if (fPMaxTable->count(mat)) 1142 return; 1143 1144 //otherwise build it 1145 if (!fSamplingTable) 1146 { 1147 G4Exception("G4PenelopeRayleighModel::G 1148 "em2052",FatalException, 1149 "SamplingTable is not properly instanti 1150 return; 1151 } 1152 1153 //This should not be: the sampling table is 1154 if (!fSamplingTable->count(mat)) 1155 { 1156 G4ExceptionDescription ed; 1157 ed << "Sampling table for material " < 1158 G4Exception("G4PenelopeRayleighModel:: 1159 "em2052",FatalException, 1160 ed); 1161 return; 1162 } 1163 1164 G4PenelopeSamplingData *theTable = fSamplin 1165 std::size_t tablePoints = theTable->GetNumb 1166 1167 std::size_t nOfEnergyPoints = fLogEnergyGri 1168 G4PhysicsFreeVector* theVec = new G4Physics 1169 1170 const std::size_t nip = 51; //hard-coded in 1171 1172 for (std::size_t ie=0;ie<fLogEnergyGridPMax 1173 { 1174 G4double energy = G4Exp(fLogEnergyGridP 1175 G4double Qm = 2.0*energy/electron_mass_ 1176 G4double Qm2 = Qm*Qm; 1177 G4double firstQ2 = theTable->GetX(0); 1178 G4double lastQ2 = theTable->GetX(tableP 1179 G4double thePMax = 0; 1180 1181 if (Qm2 > firstQ2) 1182 { 1183 if (Qm2 < lastQ2) 1184 { 1185 //bisection to look for the index of 1186 std::size_t lowerBound = 0; 1187 std::size_t upperBound = tablePoints- 1188 while (lowerBound <= upperBound) 1189 { 1190 std::size_t midBin = (lowerBound + uppe 1191 if( Qm2 < theTable->GetX(midBin)) 1192 { upperBound = midBin-1; } 1193 else 1194 { lowerBound = midBin+1; } 1195 } 1196 //upperBound is the output (but also 1197 G4double Q1 = theTable->GetX(upperBou 1198 G4double Q2 = Qm2; 1199 G4double DQ = (Q2-Q1)/((G4double)(nip 1200 G4double theA = theTable->GetA(upperB 1201 G4double theB = theTable->GetB(upperB 1202 G4double thePAC = theTable->GetPAC(up 1203 G4DataVector* fun = new G4DataVector( 1204 for (std::size_t k=0;k<nip;++k) 1205 { 1206 G4double qi = Q1 + k*DQ; 1207 G4double tau = (qi-Q1)/ 1208 (theTable->GetX(upperBound+1)-Q1); 1209 G4double con1 = 2.0*theB*tau; 1210 G4double ci = 1.0+theA+theB; 1211 G4double con2 = ci-theA*tau; 1212 G4double etap = 0; 1213 if (std::fabs(con1) > 1.0e-16*std::fabs 1214 etap = con2*(1.0-std::sqrt(1.0-2.0*ta 1215 else 1216 etap = tau/con2; 1217 G4double theFun = (theTable->GetPAC(upp 1218 (1.0+(theA+theB*etap)*etap)*(1.0+(the 1219 ((1.0-theB*etap*etap)*ci*(theTable->G 1220 fun->push_back(theFun); 1221 } 1222 //Now intergrate numerically the fun 1223 G4DataVector* sum = new G4DataVector; 1224 G4double CONS = DQ*(1./12.); 1225 G4double HCONS = 0.5*CONS; 1226 sum->push_back(0.); 1227 G4double secondPoint = (*sum)[0] + 1228 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*C 1229 sum->push_back(secondPoint); 1230 for (std::size_t hh=2;hh<nip-1;++hh) 1231 { 1232 G4double previous = (*sum)[hh-1]; 1233 G4double next = previous+(13.0*((*fun)[ 1234 (*fun)[hh+1]-(*fun)[hh-2])*HCON 1235 sum->push_back(next); 1236 } 1237 G4double last = (*sum)[nip-2]+(5.0*(* 1238 (*fun)[nip-3])*CONS; 1239 sum->push_back(last); 1240 thePMax = thePAC + (*sum)[sum->size() 1241 delete fun; 1242 delete sum; 1243 } 1244 else 1245 { 1246 thePMax = 1.0; 1247 } 1248 } 1249 else 1250 { 1251 thePMax = theTable->GetPAC(0); 1252 } 1253 1254 //Write number in the table 1255 theVec->PutValue(ie,energy,thePMax); 1256 } 1257 1258 fPMaxTable->insert(std::make_pair(mat,theVe 1259 return; 1260 } 1261 1262 //....oooOO0OOooo........oooOO0OOooo........o 1263 1264 void G4PenelopeRayleighModel::DumpFormFactorT 1265 { 1266 G4cout << "******************************** 1267 G4cout << "G4PenelopeRayleighModel: Form Fa 1268 //try to use the same format as Penelope-Fo 1269 G4cout << "Q/(m_e*c) F(Q) 1270 G4cout << "******************************** 1271 if (!fLogFormFactorTable->count(mat)) 1272 BuildFormFactorTable(mat); 1273 1274 G4PhysicsFreeVector* theVec = fLogFormFacto 1275 for (std::size_t i=0;i<theVec->GetVectorLen 1276 { 1277 G4double logQ2 = theVec->GetLowEdgeEner 1278 G4double Q = G4Exp(0.5*logQ2); 1279 G4double logF2 = (*theVec)[i]; 1280 G4double F = G4Exp(0.5*logF2); 1281 G4cout << Q << " " << F << 1282 } 1283 //DONE 1284 return; 1285 } 1286 1287 //....oooOO0OOooo........oooOO0OOooo........o 1288 1289 void G4PenelopeRayleighModel::SetParticle(con 1290 { 1291 if(!fParticle) { 1292 fParticle = p; 1293 } 1294 } 1295