Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4PenelopeRayleighModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4PenelopeRayleighModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4PenelopeRayleighModel.cc (Version 10.7.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // Author: Luciano Pandola                         27 // Author: Luciano Pandola
 28 //                                                 28 //
 29 // History:                                        29 // History:
 30 // --------                                        30 // --------
 31 // 03 Dec 2009   L Pandola    First implementa     31 // 03 Dec 2009   L Pandola    First implementation
 32 // 25 May 2011   L.Pandola    Renamed (make v2     32 // 25 May 2011   L.Pandola    Renamed (make v2008 as default Penelope)
 33 // 19 Sep 2013   L.Pandola    Migration to MT      33 // 19 Sep 2013   L.Pandola    Migration to MT
 34 //                                                 34 //
 35                                                    35 
 36 #include "G4PenelopeRayleighModel.hh"              36 #include "G4PenelopeRayleighModel.hh"
 37 #include "G4PhysicalConstants.hh"                  37 #include "G4PhysicalConstants.hh"
 38 #include "G4SystemOfUnits.hh"                      38 #include "G4SystemOfUnits.hh"
 39 #include "G4PenelopeSamplingData.hh"               39 #include "G4PenelopeSamplingData.hh"
 40 #include "G4ParticleDefinition.hh"                 40 #include "G4ParticleDefinition.hh"
 41 #include "G4MaterialCutsCouple.hh"                 41 #include "G4MaterialCutsCouple.hh"
 42 #include "G4ProductionCutsTable.hh"                42 #include "G4ProductionCutsTable.hh"
 43 #include "G4DynamicParticle.hh"                    43 #include "G4DynamicParticle.hh"
 44 #include "G4PhysicsTable.hh"                       44 #include "G4PhysicsTable.hh"
 45 #include "G4ElementTable.hh"                       45 #include "G4ElementTable.hh"
 46 #include "G4Element.hh"                            46 #include "G4Element.hh"
 47 #include "G4PhysicsFreeVector.hh"                  47 #include "G4PhysicsFreeVector.hh"
 48 #include "G4AutoLock.hh"                           48 #include "G4AutoLock.hh"
 49 #include "G4Exp.hh"                                49 #include "G4Exp.hh"
 50                                                    50 
 51 //....oooOO0OOooo........oooOO0OOooo........oo     51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 52                                                    52 
 53 const G4int G4PenelopeRayleighModel::fMaxZ;    << 
 54 G4PhysicsFreeVector* G4PenelopeRayleighModel:: << 
 55 G4PhysicsFreeVector* G4PenelopeRayleighModel:: << 
 56                                                << 
 57 //....oooOO0OOooo........oooOO0OOooo........oo << 
 58                                                << 
 59 G4PenelopeRayleighModel::G4PenelopeRayleighMod     53 G4PenelopeRayleighModel::G4PenelopeRayleighModel(const G4ParticleDefinition* part,
 60              const G4String& nam)                  54              const G4String& nam)
 61   :G4VEmModel(nam),fParticleChange(nullptr),fP <<  55   :G4VEmModel(nam),fParticleChange(0),fParticle(0),isInitialised(false),
 62    fLogFormFactorTable(nullptr),fPMaxTable(nul <<  56    logAtomicCrossSection(0),atomicFormFactor(0),logFormFactorTable(0),
 63    fIsInitialised(false),fLocalTable(false)    <<  57    pMaxTable(0),samplingTable(0),fLocalTable(false)
 64 {                                                  58 {
 65   fIntrinsicLowEnergyLimit = 100.0*eV;             59   fIntrinsicLowEnergyLimit = 100.0*eV;
 66   fIntrinsicHighEnergyLimit = 100.0*GeV;           60   fIntrinsicHighEnergyLimit = 100.0*GeV;
 67   //  SetLowEnergyLimit(fIntrinsicLowEnergyLim     61   //  SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
 68   SetHighEnergyLimit(fIntrinsicHighEnergyLimit     62   SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
 69                                                    63 
 70   if (part)                                        64   if (part)
 71     SetParticle(part);                             65     SetParticle(part);
 72                                                    66 
 73   //                                               67   //
 74   fVerboseLevel= 0;                            <<  68   verboseLevel= 0;
 75   // Verbosity scale:                              69   // Verbosity scale:
 76   // 0 = nothing                                   70   // 0 = nothing
 77   // 1 = warning for energy non-conservation       71   // 1 = warning for energy non-conservation
 78   // 2 = details of energy budget                  72   // 2 = details of energy budget
 79   // 3 = calculation of cross sections, file o     73   // 3 = calculation of cross sections, file openings, sampling of atoms
 80   // 4 = entering in methods                       74   // 4 = entering in methods
 81                                                    75 
 82   //build the energy grid. It is the same for      76   //build the energy grid. It is the same for all materials
 83   G4double logenergy = G4Log(fIntrinsicLowEner     77   G4double logenergy = G4Log(fIntrinsicLowEnergyLimit/2.);
 84   G4double logmaxenergy = G4Log(1.5*fIntrinsic     78   G4double logmaxenergy = G4Log(1.5*fIntrinsicHighEnergyLimit);
 85   //finer grid below 160 keV                       79   //finer grid below 160 keV
 86   G4double logtransitionenergy = G4Log(160*keV     80   G4double logtransitionenergy = G4Log(160*keV);
 87   G4double logfactor1 = G4Log(10.)/250.;           81   G4double logfactor1 = G4Log(10.)/250.;
 88   G4double logfactor2 = logfactor1*10;             82   G4double logfactor2 = logfactor1*10;
 89   fLogEnergyGridPMax.push_back(logenergy);     <<  83   logEnergyGridPMax.push_back(logenergy);
 90   do{                                              84   do{
 91     if (logenergy < logtransitionenergy)           85     if (logenergy < logtransitionenergy)
 92       logenergy += logfactor1;                     86       logenergy += logfactor1;
 93     else                                           87     else
 94       logenergy += logfactor2;                     88       logenergy += logfactor2;
 95     fLogEnergyGridPMax.push_back(logenergy);   <<  89     logEnergyGridPMax.push_back(logenergy);
 96   }while (logenergy < logmaxenergy);               90   }while (logenergy < logmaxenergy);
 97 }                                                  91 }
 98                                                    92 
 99 //....oooOO0OOooo........oooOO0OOooo........oo     93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100                                                    94 
101 G4PenelopeRayleighModel::~G4PenelopeRayleighMo     95 G4PenelopeRayleighModel::~G4PenelopeRayleighModel()
102 {                                                  96 {
103   if (IsMaster() || fLocalTable)                   97   if (IsMaster() || fLocalTable)
104     {                                              98     {
105                                                <<  99       if (logAtomicCrossSection)
106       for(G4int i=0; i<=fMaxZ; ++i)            << 
107   {                                               100   {
108     if(fLogAtomicCrossSection[i])              << 101     for (auto& item : (*logAtomicCrossSection))
109       {                                        << 102       if (item.second) delete item.second;
110         delete fLogAtomicCrossSection[i];      << 103     delete logAtomicCrossSection;
111         fLogAtomicCrossSection[i] = nullptr;   << 104     logAtomicCrossSection = nullptr;
112       }                                        << 105   }
113     if(fAtomicFormFactor[i])                   << 106       if (atomicFormFactor)
114       {                                        << 107   {
115         delete fAtomicFormFactor[i];           << 108     for (auto& item : (*atomicFormFactor))
116         fAtomicFormFactor[i] = nullptr;        << 109       if (item.second) delete item.second;
117       }                                        << 110     delete atomicFormFactor;
                                                   >> 111     atomicFormFactor = nullptr;
118   }                                               112   }
119       ClearTables();                              113       ClearTables();
120     }                                             114     }
121 }                                                 115 }
122                                                   116 
123 //....oooOO0OOooo........oooOO0OOooo........oo    117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124 void G4PenelopeRayleighModel::ClearTables()       118 void G4PenelopeRayleighModel::ClearTables()
125 {                                                 119 {
126    if (fLogFormFactorTable)                    << 120   /*
                                                   >> 121   if (!IsMaster())
                                                   >> 122     //Should not be here!
                                                   >> 123     G4Exception("G4PenelopeRayleighModel::ClearTables()",
                                                   >> 124     "em0100",FatalException,"Worker thread in this method");
                                                   >> 125   */
                                                   >> 126 
                                                   >> 127    if (logFormFactorTable)
127      {                                            128      {
128        for (auto& item : (*fLogFormFactorTable << 129        for (auto& item : (*logFormFactorTable))
129    if (item.second) delete item.second;           130    if (item.second) delete item.second;
130        delete fLogFormFactorTable;             << 131        delete logFormFactorTable;
131        fLogFormFactorTable = nullptr; //zero e << 132        logFormFactorTable = nullptr; //zero explicitly
132      }                                            133      }
133    if (fPMaxTable)                             << 134 
                                                   >> 135    if (pMaxTable)
134      {                                            136      {
135        for (auto& item : (*fPMaxTable))        << 137        for (auto& item : (*pMaxTable))
136    if (item.second) delete item.second;           138    if (item.second) delete item.second;
137        delete fPMaxTable;                      << 139        delete pMaxTable;
138        fPMaxTable = nullptr; //zero explicitly << 140        pMaxTable = nullptr; //zero explicitly
139      }                                            141      }
140    if (fSamplingTable)                         << 142 
                                                   >> 143    if (samplingTable)
141      {                                            144      {
142        for (auto& item : (*fSamplingTable))    << 145        for (auto& item : (*samplingTable))
143    if (item.second) delete item.second;           146    if (item.second) delete item.second;
144        delete fSamplingTable;                  << 147        delete samplingTable;
145        fSamplingTable = nullptr; //zero explic << 148        samplingTable = nullptr; //zero explicitly
146      }                                            149      }
                                                   >> 150 
147    return;                                        151    return;
148 }                                                 152 }
149                                                   153 
150 //....oooOO0OOooo........oooOO0OOooo........oo    154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
151                                                   155 
152 void G4PenelopeRayleighModel::Initialise(const    156 void G4PenelopeRayleighModel::Initialise(const G4ParticleDefinition* part,
153            const G4DataVector& )                  157            const G4DataVector& )
154 {                                                 158 {
155   if (fVerboseLevel > 3)                       << 159   if (verboseLevel > 3)
156     G4cout << "Calling G4PenelopeRayleighModel    160     G4cout << "Calling G4PenelopeRayleighModel::Initialise()" << G4endl;
157                                                   161 
158   SetParticle(part);                              162   SetParticle(part);
159                                                   163 
160   //Only the master model creates/fills/destro    164   //Only the master model creates/fills/destroys the tables
161   if (IsMaster() && part == fParticle)            165   if (IsMaster() && part == fParticle)
162     {                                             166     {
163       //clear tables depending on materials, n    167       //clear tables depending on materials, not the atomic ones
164       ClearTables();                              168       ClearTables();
165                                                   169 
166       if (fVerboseLevel > 3)                   << 170       if (verboseLevel > 3)
167   G4cout << "Calling G4PenelopeRayleighModel::    171   G4cout << "Calling G4PenelopeRayleighModel::Initialise() [master]" << G4endl;
168                                                   172 
169       //create new tables                      << 173       //create new tables
170       if (!fLogFormFactorTable)                << 174       //
171   fLogFormFactorTable = new std::map<const G4M << 175       // logAtomicCrossSection and atomicFormFactor are created only once,
172       if (!fPMaxTable)                         << 176       // since they are never cleared
173   fPMaxTable = new std::map<const G4Material*, << 177       if (!logAtomicCrossSection)
174       if (!fSamplingTable)                     << 178   logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>;
175   fSamplingTable = new std::map<const G4Materi << 179       if (!atomicFormFactor)
                                                   >> 180   atomicFormFactor = new std::map<G4int,G4PhysicsFreeVector*>;
                                                   >> 181 
                                                   >> 182       if (!logFormFactorTable)
                                                   >> 183   logFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
                                                   >> 184       if (!pMaxTable)
                                                   >> 185   pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
                                                   >> 186       if (!samplingTable)
                                                   >> 187   samplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>;
                                                   >> 188 
176                                                   189 
177       G4ProductionCutsTable* theCoupleTable =     190       G4ProductionCutsTable* theCoupleTable =
178   G4ProductionCutsTable::GetProductionCutsTabl    191   G4ProductionCutsTable::GetProductionCutsTable();
179                                                   192 
180       for (G4int i=0;i<(G4int)theCoupleTable-> << 193       for (size_t i=0;i<theCoupleTable->GetTableSize();i++)
181   {                                               194   {
182     const G4Material* material =                  195     const G4Material* material =
183       theCoupleTable->GetMaterialCutsCouple(i)    196       theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
184     const G4ElementVector* theElementVector =     197     const G4ElementVector* theElementVector = material->GetElementVector();
185                                                   198 
186     for (std::size_t j=0;j<material->GetNumber << 199     for (size_t j=0;j<material->GetNumberOfElements();j++)
187       {                                           200       {
188         G4int iZ = theElementVector->at(j)->Ge    201         G4int iZ = theElementVector->at(j)->GetZasInt();
189         //read data files only in the master      202         //read data files only in the master
190         if (!fLogAtomicCrossSection[iZ])       << 203         if (!logAtomicCrossSection->count(iZ))
191     ReadDataFile(iZ);                             204     ReadDataFile(iZ);
192       }                                           205       }
193                                                   206 
194     //1) If the table has not been built for t    207     //1) If the table has not been built for the material, do it!
195     if (!fLogFormFactorTable->count(material)) << 208     if (!logFormFactorTable->count(material))
196       BuildFormFactorTable(material);             209       BuildFormFactorTable(material);
197                                                   210 
198     //2) retrieve or build the sampling table     211     //2) retrieve or build the sampling table
199     if (!(fSamplingTable->count(material)))    << 212     if (!(samplingTable->count(material)))
200       InitializeSamplingAlgorithm(material);      213       InitializeSamplingAlgorithm(material);
201                                                   214 
202     //3) retrieve or build the pMax data          215     //3) retrieve or build the pMax data
203     if (!fPMaxTable->count(material))          << 216     if (!pMaxTable->count(material))
204       GetPMaxTable(material);                     217       GetPMaxTable(material);
                                                   >> 218 
205   }                                               219   }
206                                                   220 
207       if (fVerboseLevel > 1) {                 << 221       if (verboseLevel > 1) {
208   G4cout << "Penelope Rayleigh model v2008 is     222   G4cout << "Penelope Rayleigh model v2008 is initialized " << G4endl
209          << "Energy range: "                      223          << "Energy range: "
210          << LowEnergyLimit() / keV << " keV -     224          << LowEnergyLimit() / keV << " keV - "
211          << HighEnergyLimit() / GeV << " GeV"     225          << HighEnergyLimit() / GeV << " GeV"
212          << G4endl;                               226          << G4endl;
213       }                                           227       }
214     }                                             228     }
215                                                   229 
216   if(fIsInitialised) return;                   << 230   if(isInitialised) return;
217   fParticleChange = GetParticleChangeForGamma(    231   fParticleChange = GetParticleChangeForGamma();
218   fIsInitialised = true;                       << 232   isInitialised = true;
219 }                                                 233 }
220                                                   234 
221 //....oooOO0OOooo........oooOO0OOooo........oo    235 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
222                                                   236 
223 void G4PenelopeRayleighModel::InitialiseLocal(    237 void G4PenelopeRayleighModel::InitialiseLocal(const G4ParticleDefinition* part,
224                  G4VEmModel *masterModel)         238                  G4VEmModel *masterModel)
225 {                                                 239 {
226   if (fVerboseLevel > 3)                       << 240   if (verboseLevel > 3)
227     G4cout << "Calling  G4PenelopeRayleighMode    241     G4cout << "Calling  G4PenelopeRayleighModel::InitialiseLocal()" << G4endl;
                                                   >> 242 
228   //                                              243   //
229   //Check that particle matches: one might hav    244   //Check that particle matches: one might have multiple master models (e.g.
230   //for e+ and e-).                               245   //for e+ and e-).
231   //                                              246   //
232   if (part == fParticle)                          247   if (part == fParticle)
233     {                                             248     {
234       //Get the const table pointers from the     249       //Get the const table pointers from the master to the workers
235       const G4PenelopeRayleighModel* theModel     250       const G4PenelopeRayleighModel* theModel =
236   static_cast<G4PenelopeRayleighModel*> (maste    251   static_cast<G4PenelopeRayleighModel*> (masterModel);
237                                                   252 
238       //Copy pointers to the data tables          253       //Copy pointers to the data tables
239       for(G4int i=0; i<=fMaxZ; ++i)            << 254       logAtomicCrossSection = theModel->logAtomicCrossSection;
240   {                                            << 255       atomicFormFactor = theModel->atomicFormFactor;
241     fLogAtomicCrossSection[i] = theModel->fLog << 256       logFormFactorTable = theModel->logFormFactorTable;
242     fAtomicFormFactor[i] = theModel->fAtomicFo << 257       pMaxTable = theModel->pMaxTable;
243   }                                            << 258       samplingTable = theModel->samplingTable;
244       fLogFormFactorTable = theModel->fLogForm << 
245       fPMaxTable = theModel->fPMaxTable;       << 
246       fSamplingTable = theModel->fSamplingTabl << 
247                                                   259 
248       //copy the G4DataVector with the grid       260       //copy the G4DataVector with the grid
249       fLogQSquareGrid = theModel->fLogQSquareG << 261       logQSquareGrid = theModel->logQSquareGrid;
250                                                   262 
251       //Same verbosity for all workers, as the    263       //Same verbosity for all workers, as the master
252       fVerboseLevel = theModel->fVerboseLevel; << 264       verboseLevel = theModel->verboseLevel;
253     }                                             265     }
254                                                   266 
255   return;                                         267   return;
256 }                                                 268 }
257                                                   269 
258                                                   270 
259 //....oooOO0OOooo........oooOO0OOooo........oo    271 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
260 namespace { G4Mutex  PenelopeRayleighModelMute    272 namespace { G4Mutex  PenelopeRayleighModelMutex = G4MUTEX_INITIALIZER; }
261 G4double G4PenelopeRayleighModel::ComputeCross    273 G4double G4PenelopeRayleighModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
262                    G4double energy,               274                    G4double energy,
263                    G4double Z,                    275                    G4double Z,
264                    G4double,                      276                    G4double,
265                    G4double,                      277                    G4double,
266                    G4double)                      278                    G4double)
267 {                                                 279 {
268   // Cross section of Rayleigh scattering in P    280   // Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97
269   // tabulation, Cuellen et al. (1997), with n    281   // tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel
270   // et al. J. Phys. Chem. Ref. Data 4 (1975)     282   // et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615.
271                                                   283 
272    if (fVerboseLevel > 3)                      << 284    if (verboseLevel > 3)
273     G4cout << "Calling CrossSectionPerAtom() o    285     G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModel" << G4endl;
274                                                   286 
275    G4int iZ = G4int(Z);                        << 287    G4int iZ = (G4int) Z;
276                                                   288 
277    if (!fLogAtomicCrossSection[iZ])            << 289    //Either Initialize() was not called, or we are in a slave and InitializeLocal() was
                                                   >> 290    //not invoked
                                                   >> 291    if (!logAtomicCrossSection)
                                                   >> 292      {
                                                   >> 293        //create a **thread-local** version of the table. Used only for G4EmCalculator and
                                                   >> 294        //Unit Tests
                                                   >> 295        fLocalTable = true;
                                                   >> 296        logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>;
                                                   >> 297      }
                                                   >> 298    //now it should be ok
                                                   >> 299    if (!logAtomicCrossSection->count(iZ))
278      {                                            300      {
279        //If we are here, it means that Initial    301        //If we are here, it means that Initialize() was inkoved, but the MaterialTable was
280        //not filled up. This can happen in a U    302        //not filled up. This can happen in a UnitTest or via G4EmCalculator
281        if (fVerboseLevel > 0)                  << 303        if (verboseLevel > 0)
282   {                                               304   {
283     //Issue a G4Exception (warning) only in ve    305     //Issue a G4Exception (warning) only in verbose mode
284     G4ExceptionDescription ed;                    306     G4ExceptionDescription ed;
285     ed << "Unable to retrieve the cross sectio    307     ed << "Unable to retrieve the cross section table for Z=" << iZ << G4endl;
286     ed << "This can happen only in Unit Tests     308     ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl;
287     G4Exception("G4PenelopeRayleighModel::Comp    309     G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()",
288           "em2040",JustWarning,ed);               310           "em2040",JustWarning,ed);
289   }                                               311   }
290        //protect file reading via autolock        312        //protect file reading via autolock
291        G4AutoLock lock(&PenelopeRayleighModelM    313        G4AutoLock lock(&PenelopeRayleighModelMutex);
292        ReadDataFile(iZ);                          314        ReadDataFile(iZ);
293        lock.unlock();                             315        lock.unlock();
294      }                                            316      }
295                                                   317 
296    G4double cross = 0;                            318    G4double cross = 0;
297    G4PhysicsFreeVector* atom = fLogAtomicCross << 319 
                                                   >> 320    G4PhysicsFreeVector* atom = logAtomicCrossSection->find(iZ)->second;
298    if (!atom)                                     321    if (!atom)
299      {                                            322      {
300        G4ExceptionDescription ed;                 323        G4ExceptionDescription ed;
301        ed << "Unable to find Z=" << iZ << " in    324        ed << "Unable to find Z=" << iZ << " in the atomic cross section table" << G4endl;
302        G4Exception("G4PenelopeRayleighModel::C    325        G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()",
303        "em2041",FatalException,ed);               326        "em2041",FatalException,ed);
304        return 0;                                  327        return 0;
305      }                                            328      }
306    G4double logene = G4Log(energy);               329    G4double logene = G4Log(energy);
307    G4double logXS = atom->Value(logene);          330    G4double logXS = atom->Value(logene);
308    cross = G4Exp(logXS);                          331    cross = G4Exp(logXS);
309                                                   332 
310    if (fVerboseLevel > 2)                      << 333    if (verboseLevel > 2)
311      {                                            334      {
312        G4cout << "Rayleigh cross section at "     335        G4cout << "Rayleigh cross section at " << energy/keV << " keV for Z=" << Z <<
313    " = " << cross/barn << " barn" << G4endl;      336    " = " << cross/barn << " barn" << G4endl;
314      }                                            337      }
                                                   >> 338 
315    return cross;                                  339    return cross;
316 }                                                 340 }
317                                                   341 
318                                                   342 
319 //....oooOO0OOooo........oooOO0OOooo........oo    343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
320 void G4PenelopeRayleighModel::BuildFormFactorT    344 void G4PenelopeRayleighModel::BuildFormFactorTable(const G4Material* material)
321 {                                                 345 {
322   /*                                           << 346 
323     1) get composition and equivalent molecula << 347    /*
324   */                                           << 348      1) get composition and equivalent molecular density
325   std::size_t nElements = material->GetNumberO << 349    */
                                                   >> 350 
                                                   >> 351   G4int nElements = material->GetNumberOfElements();
326   const G4ElementVector* elementVector = mater    352   const G4ElementVector* elementVector = material->GetElementVector();
327   const G4double* fractionVector = material->G    353   const G4double* fractionVector = material->GetFractionVector();
328                                                   354 
329   std::vector<G4double> *StechiometricFactors     355   std::vector<G4double> *StechiometricFactors = new std::vector<G4double>;
330   for (std::size_t i=0;i<nElements;++i)        << 356   for (G4int i=0;i<nElements;i++)
331     {                                             357     {
332       G4double fraction = fractionVector[i];      358       G4double fraction = fractionVector[i];
333       G4double atomicWeigth = (*elementVector)    359       G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole);
334       StechiometricFactors->push_back(fraction    360       StechiometricFactors->push_back(fraction/atomicWeigth);
335     }                                             361     }
336   //Find max                                      362   //Find max
337   G4double MaxStechiometricFactor = 0.;           363   G4double MaxStechiometricFactor = 0.;
338   for (std::size_t i=0;i<nElements;++i)        << 364   for (G4int i=0;i<nElements;i++)
339     {                                             365     {
340       if ((*StechiometricFactors)[i] > MaxStec    366       if ((*StechiometricFactors)[i] > MaxStechiometricFactor)
341         MaxStechiometricFactor = (*Stechiometr    367         MaxStechiometricFactor = (*StechiometricFactors)[i];
342     }                                             368     }
343   if (MaxStechiometricFactor<1e-16)               369   if (MaxStechiometricFactor<1e-16)
344     {                                             370     {
345       G4ExceptionDescription ed;                  371       G4ExceptionDescription ed;
346       ed << "Inconsistent data of atomic compo    372       ed << "Inconsistent data of atomic composition for " <<
347   material->GetName() << G4endl;                  373   material->GetName() << G4endl;
348       G4Exception("G4PenelopeRayleighModel::Bu    374       G4Exception("G4PenelopeRayleighModel::BuildFormFactorTable()",
349       "em2042",FatalException,ed);                375       "em2042",FatalException,ed);
350     }                                             376     }
351   //Normalize                                     377   //Normalize
352   for (std::size_t i=0;i<nElements;++i)        << 378   for (G4int i=0;i<nElements;i++)
353     (*StechiometricFactors)[i] /=  MaxStechiom    379     (*StechiometricFactors)[i] /=  MaxStechiometricFactor;
354                                                   380 
                                                   >> 381   // Equivalent atoms per molecule
                                                   >> 382   G4double atomsPerMolecule = 0;
                                                   >> 383   for (G4int i=0;i<nElements;i++)
                                                   >> 384     atomsPerMolecule += (*StechiometricFactors)[i];
                                                   >> 385 
355   /*                                              386   /*
356     CREATE THE FORM FACTOR TABLE                  387     CREATE THE FORM FACTOR TABLE
357   */                                              388   */
358   G4PhysicsFreeVector* theFFVec = new G4Physic << 389   G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector(logQSquareGrid.size());
                                                   >> 390   theFFVec->SetSpline(true);
359                                                   391 
360   for (std::size_t k=0;k<fLogQSquareGrid.size( << 392   for (size_t k=0;k<logQSquareGrid.size();k++)
361     {                                             393     {
362       G4double ff2 = 0; //squared form factor     394       G4double ff2 = 0; //squared form factor
363       for (std::size_t i=0;i<nElements;++i)    << 395       for (G4int i=0;i<nElements;i++)
364   {                                               396   {
365     G4int iZ = (*elementVector)[i]->GetZasInt(    397     G4int iZ = (*elementVector)[i]->GetZasInt();
366     G4PhysicsFreeVector* theAtomVec = fAtomicF << 398     G4PhysicsFreeVector* theAtomVec = atomicFormFactor->find(iZ)->second;
367     G4double f = (*theAtomVec)[k]; //the q-gri    399     G4double f = (*theAtomVec)[k]; //the q-grid is always the same
368     ff2 += f*f*(*StechiometricFactors)[i];        400     ff2 += f*f*(*StechiometricFactors)[i];
369   }                                               401   }
370       if (ff2)                                    402       if (ff2)
371   theFFVec->PutValue(k,fLogQSquareGrid[k],G4Lo << 403   theFFVec->PutValue(k,logQSquareGrid[k],G4Log(ff2)); //NOTICE: THIS IS log(Q^2) vs. log(F^2)
372     }                                             404     }
373   theFFVec->FillSecondDerivatives(); //vector  << 405   logFormFactorTable->insert(std::make_pair(material,theFFVec));
374   fLogFormFactorTable->insert(std::make_pair(m << 
375                                                   406 
376   delete StechiometricFactors;                    407   delete StechiometricFactors;
                                                   >> 408 
377   return;                                         409   return;
378 }                                                 410 }
379                                                   411 
                                                   >> 412 
380 //....oooOO0OOooo........oooOO0OOooo........oo    413 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
381                                                   414 
382 void G4PenelopeRayleighModel::SampleSecondarie    415 void G4PenelopeRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* ,
383             const G4MaterialCutsCouple* couple    416             const G4MaterialCutsCouple* couple,
384             const G4DynamicParticle* aDynamicG    417             const G4DynamicParticle* aDynamicGamma,
385             G4double,                             418             G4double,
386             G4double)                             419             G4double)
387 {                                                 420 {
388   // Sampling of the Rayleigh final state (nam    421   // Sampling of the Rayleigh final state (namely, scattering angle of the photon)
389   // from the Penelope2008 model. The scatteri    422   // from the Penelope2008 model. The scattering angle is sampled from the atomic
390   // cross section dOmega/d(cosTheta) from Bor    423   // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding
391   // anomalous scattering effects. The Form Fa    424   // anomalous scattering effects. The Form Factor F(Q) function which appears in the
392   // analytical cross section is retrieved via    425   // analytical cross section is retrieved via the method GetFSquared(); atomic data
393   // are tabulated for F(Q). Form factor for c    426   // are tabulated for F(Q). Form factor for compounds is calculated according to
394   // the additivity rule. The sampling from th    427   // the additivity rule. The sampling from the F(Q) is made via a Rational Inverse
395   // Transform with Aliasing (RITA) algorithm;    428   // Transform with Aliasing (RITA) algorithm; RITA parameters are calculated once
396   // for each material and managed by G4Penelo    429   // for each material and managed by G4PenelopeSamplingData objects.
397   // The sampling algorithm (rejection method)    430   // The sampling algorithm (rejection method) has efficiency 67% at low energy, and
398   // increases with energy. For E=100 keV the     431   // increases with energy. For E=100 keV the efficiency is 100% and 86% for
399   // hydrogen and uranium, respectively.          432   // hydrogen and uranium, respectively.
400                                                   433 
401   if (fVerboseLevel > 3)                       << 434   if (verboseLevel > 3)
402     G4cout << "Calling SamplingSecondaries() o    435     G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModel" << G4endl;
403                                                   436 
404   G4double photonEnergy0 = aDynamicGamma->GetK    437   G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
405                                                   438 
406   if (photonEnergy0 <= fIntrinsicLowEnergyLimi    439   if (photonEnergy0 <= fIntrinsicLowEnergyLimit)
407     {                                             440     {
408       fParticleChange->ProposeTrackStatus(fSto    441       fParticleChange->ProposeTrackStatus(fStopAndKill);
409       fParticleChange->SetProposedKineticEnerg    442       fParticleChange->SetProposedKineticEnergy(0.);
410       fParticleChange->ProposeLocalEnergyDepos    443       fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
411       return ;                                    444       return ;
412     }                                             445     }
413                                                   446 
414   G4ParticleMomentum photonDirection0 = aDynam    447   G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
415                                                   448 
416   const G4Material* theMat = couple->GetMateri    449   const G4Material* theMat = couple->GetMaterial();
417                                                   450 
                                                   >> 451 
418   //1) Verify if tables are ready                 452   //1) Verify if tables are ready
419   //Either Initialize() was not called, or we     453   //Either Initialize() was not called, or we are in a slave and InitializeLocal() was
420   //not invoked                                   454   //not invoked
421   if (!fPMaxTable || !fSamplingTable || !fLogF << 455   if (!pMaxTable || !samplingTable || !logAtomicCrossSection || !atomicFormFactor ||
                                                   >> 456       !logFormFactorTable)
422     {                                             457     {
423       //create a **thread-local** version of t    458       //create a **thread-local** version of the table. Used only for G4EmCalculator and
424       //Unit Tests                                459       //Unit Tests
425       fLocalTable = true;                         460       fLocalTable = true;
426       if (!fLogFormFactorTable)                << 461       if (!logAtomicCrossSection)
427   fLogFormFactorTable = new std::map<const G4M << 462   logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>;
428       if (!fPMaxTable)                         << 463       if (!atomicFormFactor)
429   fPMaxTable = new std::map<const G4Material*, << 464   atomicFormFactor = new std::map<G4int,G4PhysicsFreeVector*>;
430       if (!fSamplingTable)                     << 465       if (!logFormFactorTable)
431   fSamplingTable = new std::map<const G4Materi << 466   logFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
                                                   >> 467       if (!pMaxTable)
                                                   >> 468   pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
                                                   >> 469       if (!samplingTable)
                                                   >> 470   samplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>;
432     }                                             471     }
433                                                   472 
434   if (!fSamplingTable->count(theMat))          << 473   if (!samplingTable->count(theMat))
435     {                                             474     {
436       //If we are here, it means that Initiali    475       //If we are here, it means that Initialize() was inkoved, but the MaterialTable was
437       //not filled up. This can happen in a Un    476       //not filled up. This can happen in a UnitTest
438       if (fVerboseLevel > 0)                   << 477       if (verboseLevel > 0)
439   {                                               478   {
440     //Issue a G4Exception (warning) only in ve    479     //Issue a G4Exception (warning) only in verbose mode
441     G4ExceptionDescription ed;                    480     G4ExceptionDescription ed;
442     ed << "Unable to find the fSamplingTable d << 481     ed << "Unable to find the samplingTable data for " <<
443       theMat->GetName() << G4endl;                482       theMat->GetName() << G4endl;
444     ed << "This can happen only in Unit Tests"    483     ed << "This can happen only in Unit Tests" << G4endl;
445     G4Exception("G4PenelopeRayleighModel::Samp    484     G4Exception("G4PenelopeRayleighModel::SampleSecondaries()",
446           "em2019",JustWarning,ed);               485           "em2019",JustWarning,ed);
447   }                                               486   }
448       const G4ElementVector* theElementVector     487       const G4ElementVector* theElementVector = theMat->GetElementVector();
449       //protect file reading via autolock         488       //protect file reading via autolock
450       G4AutoLock lock(&PenelopeRayleighModelMu    489       G4AutoLock lock(&PenelopeRayleighModelMutex);
451       for (std::size_t j=0;j<theMat->GetNumber << 490       for (size_t j=0;j<theMat->GetNumberOfElements();j++)
452   {                                               491   {
453     G4int iZ = theElementVector->at(j)->GetZas    492     G4int iZ = theElementVector->at(j)->GetZasInt();
454     if (!fLogAtomicCrossSection[iZ])           << 493     if (!logAtomicCrossSection->count(iZ))
455       {                                           494       {
456         lock.lock();                              495         lock.lock();
457         ReadDataFile(iZ);                         496         ReadDataFile(iZ);
458         lock.unlock();                            497         lock.unlock();
459       }                                           498       }
460   }                                               499   }
461       lock.lock();                                500       lock.lock();
462       //1) If the table has not been built for    501       //1) If the table has not been built for the material, do it!
463       if (!fLogFormFactorTable->count(theMat)) << 502       if (!logFormFactorTable->count(theMat))
464   BuildFormFactorTable(theMat);                   503   BuildFormFactorTable(theMat);
465                                                   504 
466       //2) retrieve or build the sampling tabl    505       //2) retrieve or build the sampling table
467       if (!(fSamplingTable->count(theMat)))    << 506       if (!(samplingTable->count(theMat)))
468   InitializeSamplingAlgorithm(theMat);            507   InitializeSamplingAlgorithm(theMat);
469                                                   508 
470       //3) retrieve or build the pMax data        509       //3) retrieve or build the pMax data
471       if (!fPMaxTable->count(theMat))          << 510       if (!pMaxTable->count(theMat))
472   GetPMaxTable(theMat);                           511   GetPMaxTable(theMat);
473       lock.unlock();                              512       lock.unlock();
474     }                                             513     }
475                                                   514 
476   //Ok, restart the job                           515   //Ok, restart the job
477   G4PenelopeSamplingData* theDataTable = fSamp << 516 
478   G4PhysicsFreeVector* thePMax = fPMaxTable->f << 517   G4PenelopeSamplingData* theDataTable = samplingTable->find(theMat)->second;
                                                   >> 518   G4PhysicsFreeVector* thePMax = pMaxTable->find(theMat)->second;
479                                                   519 
480   G4double cosTheta = 1.0;                        520   G4double cosTheta = 1.0;
481                                                   521 
482   //OK, ready to go!                              522   //OK, ready to go!
483   G4double qmax = 2.0*photonEnergy0/electron_m    523   G4double qmax = 2.0*photonEnergy0/electron_mass_c2; //this is non-dimensional now
484                                                   524 
485   if (qmax < 1e-10) //very low momentum transf    525   if (qmax < 1e-10) //very low momentum transfer
486     {                                             526     {
487       G4bool loopAgain=false;                     527       G4bool loopAgain=false;
488       do                                          528       do
489   {                                               529   {
490     loopAgain = false;                            530     loopAgain = false;
491     cosTheta = 1.0-2.0*G4UniformRand();           531     cosTheta = 1.0-2.0*G4UniformRand();
492     G4double G = 0.5*(1+cosTheta*cosTheta);       532     G4double G = 0.5*(1+cosTheta*cosTheta);
493     if (G4UniformRand()>G)                        533     if (G4UniformRand()>G)
494       loopAgain = true;                           534       loopAgain = true;
495   }while(loopAgain);                              535   }while(loopAgain);
496     }                                             536     }
497   else //larger momentum transfer                 537   else //larger momentum transfer
498     {                                             538     {
499       std::size_t nData = theDataTable->GetNum << 539       size_t nData = theDataTable->GetNumberOfStoredPoints();
500       G4double LastQ2inTheTable = theDataTable    540       G4double LastQ2inTheTable = theDataTable->GetX(nData-1);
501       G4double q2max = std::min(qmax*qmax,Last    541       G4double q2max = std::min(qmax*qmax,LastQ2inTheTable);
502                                                   542 
503       G4bool loopAgain = false;                   543       G4bool loopAgain = false;
504       G4double MaxPValue = thePMax->Value(phot    544       G4double MaxPValue = thePMax->Value(photonEnergy0);
505       G4double xx=0;                              545       G4double xx=0;
506                                                   546 
507       //Sampling by rejection method. The reje    547       //Sampling by rejection method. The rejection function is
508       //G = 0.5*(1+cos^2(theta))                  548       //G = 0.5*(1+cos^2(theta))
509       //                                          549       //
510       do{                                         550       do{
511   loopAgain = false;                              551   loopAgain = false;
512   G4double RandomMax = G4UniformRand()*MaxPVal    552   G4double RandomMax = G4UniformRand()*MaxPValue;
513   xx = theDataTable->SampleValue(RandomMax);      553   xx = theDataTable->SampleValue(RandomMax);
514   //xx is a random value of q^2 in (0,q2max),s    554   //xx is a random value of q^2 in (0,q2max),sampled according to
515   //F(Q^2) via the RITA algorithm                 555   //F(Q^2) via the RITA algorithm
516   if (xx > q2max)                                 556   if (xx > q2max)
517     loopAgain = true;                             557     loopAgain = true;
518   cosTheta = 1.0-2.0*xx/q2max;                    558   cosTheta = 1.0-2.0*xx/q2max;
519   G4double G = 0.5*(1+cosTheta*cosTheta);         559   G4double G = 0.5*(1+cosTheta*cosTheta);
520   if (G4UniformRand()>G)                          560   if (G4UniformRand()>G)
521     loopAgain = true;                             561     loopAgain = true;
522       }while(loopAgain);                          562       }while(loopAgain);
523     }                                             563     }
524                                                   564 
525   G4double sinTheta = std::sqrt(1-cosTheta*cos    565   G4double sinTheta = std::sqrt(1-cosTheta*cosTheta);
526                                                   566 
527   // Scattered photon angles. ( Z - axis along    567   // Scattered photon angles. ( Z - axis along the parent photon)
528   G4double phi = twopi * G4UniformRand() ;        568   G4double phi = twopi * G4UniformRand() ;
529   G4double dirX = sinTheta*std::cos(phi);         569   G4double dirX = sinTheta*std::cos(phi);
530   G4double dirY = sinTheta*std::sin(phi);         570   G4double dirY = sinTheta*std::sin(phi);
531   G4double dirZ = cosTheta;                       571   G4double dirZ = cosTheta;
532                                                   572 
533   // Update G4VParticleChange for the scattere    573   // Update G4VParticleChange for the scattered photon
534   G4ThreeVector photonDirection1(dirX, dirY, d    574   G4ThreeVector photonDirection1(dirX, dirY, dirZ);
535                                                   575 
536   photonDirection1.rotateUz(photonDirection0);    576   photonDirection1.rotateUz(photonDirection0);
537   fParticleChange->ProposeMomentumDirection(ph    577   fParticleChange->ProposeMomentumDirection(photonDirection1) ;
538   fParticleChange->SetProposedKineticEnergy(ph    578   fParticleChange->SetProposedKineticEnergy(photonEnergy0) ;
539                                                   579 
540   return;                                         580   return;
541 }                                                 581 }
542                                                   582 
543                                                   583 
544 //....oooOO0OOooo........oooOO0OOooo........oo    584 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
545                                                   585 
546 void G4PenelopeRayleighModel::ReadDataFile(con    586 void G4PenelopeRayleighModel::ReadDataFile(const G4int Z)
547 {                                                 587 {
548   if (fVerboseLevel > 2)                       << 588 
                                                   >> 589   if (verboseLevel > 2)
549     {                                             590     {
550       G4cout << "G4PenelopeRayleighModel::Read    591       G4cout << "G4PenelopeRayleighModel::ReadDataFile()" << G4endl;
551       G4cout << "Going to read Rayleigh data f    592       G4cout << "Going to read Rayleigh data files for Z=" << Z << G4endl;
552     }                                             593     }
553     const char* path = G4FindDataDir("G4LEDATA << 594 
554     if(!path)                                  << 595   char* path = std::getenv("G4LEDATA");
                                                   >> 596   if (!path)
555     {                                             597     {
556       G4String excep = "G4LEDATA environment v    598       G4String excep = "G4LEDATA environment variable not set!";
557       G4Exception("G4PenelopeRayleighModel::Re    599       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
558       "em0006",FatalException,excep);             600       "em0006",FatalException,excep);
559       return;                                     601       return;
560     }                                             602     }
561                                                   603 
562   /*                                              604   /*
563     Read first the cross section file             605     Read first the cross section file
564   */                                              606   */
565   std::ostringstream ost;                         607   std::ostringstream ost;
566   if (Z>9)                                        608   if (Z>9)
567     ost << path << "/penelope/rayleigh/pdgra"     609     ost << path << "/penelope/rayleigh/pdgra" << Z << ".p08";
568   else                                            610   else
569     ost << path << "/penelope/rayleigh/pdgra0"    611     ost << path << "/penelope/rayleigh/pdgra0" << Z << ".p08";
570   std::ifstream file(ost.str().c_str());          612   std::ifstream file(ost.str().c_str());
571   if (!file.is_open())                            613   if (!file.is_open())
572     {                                             614     {
573       G4String excep = "Data file " + G4String    615       G4String excep = "Data file " + G4String(ost.str()) + " not found!";
574       G4Exception("G4PenelopeRayleighModel::Re    616       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
575       "em0003",FatalException,excep);             617       "em0003",FatalException,excep);
576     }                                             618     }
577   G4int readZ =0;                                 619   G4int readZ =0;
578   std::size_t nPoints= 0;                      << 620   size_t nPoints= 0;
579   file >> readZ >> nPoints;                       621   file >> readZ >> nPoints;
580   //check the right file is opened.               622   //check the right file is opened.
581   if (readZ != Z || nPoints <= 0 || nPoints >=    623   if (readZ != Z || nPoints <= 0 || nPoints >= 5000)
582     {                                             624     {
583       G4ExceptionDescription ed;                  625       G4ExceptionDescription ed;
584       ed << "Corrupted data file for Z=" << Z     626       ed << "Corrupted data file for Z=" << Z << G4endl;
585       G4Exception("G4PenelopeRayleighModel::Re    627       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
586       "em0005",FatalException,ed);                628       "em0005",FatalException,ed);
587       return;                                     629       return;
588     }                                             630     }
589                                                << 631   G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector((size_t)nPoints);
590   fLogAtomicCrossSection[Z] = new G4PhysicsFre << 
591   G4double ene=0,f1=0,f2=0,xs=0;                  632   G4double ene=0,f1=0,f2=0,xs=0;
592   for (std::size_t i=0;i<nPoints;++i)          << 633   for (size_t i=0;i<nPoints;i++)
593     {                                             634     {
594       file >> ene >> f1 >> f2 >> xs;              635       file >> ene >> f1 >> f2 >> xs;
595       //dimensional quantities                    636       //dimensional quantities
596       ene *= eV;                                  637       ene *= eV;
597       xs *= cm2;                                  638       xs *= cm2;
598       fLogAtomicCrossSection[Z]->PutValue(i,G4 << 639       theVec->PutValue(i,G4Log(ene),G4Log(xs));
599       if (file.eof() && i != (nPoints-1)) //fi    640       if (file.eof() && i != (nPoints-1)) //file ended too early
600   {                                               641   {
601     G4ExceptionDescription ed ;                   642     G4ExceptionDescription ed ;
602     ed << "Corrupted data file for Z=" << Z <<    643     ed << "Corrupted data file for Z=" << Z << G4endl;
603     ed << "Found less than " << nPoints << "en    644     ed << "Found less than " << nPoints << "entries " <<G4endl;
604     G4Exception("G4PenelopeRayleighModel::Read    645     G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
605           "em0005",FatalException,ed);            646           "em0005",FatalException,ed);
606   }                                               647   }
607     }                                             648     }
                                                   >> 649   if (!logAtomicCrossSection)
                                                   >> 650     {
                                                   >> 651       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
                                                   >> 652       "em2044",FatalException,"Unable to allocate the atomic cross section table");
                                                   >> 653       delete theVec;
                                                   >> 654       return;
                                                   >> 655     }
                                                   >> 656   logAtomicCrossSection->insert(std::make_pair(Z,theVec));
608   file.close();                                   657   file.close();
609                                                   658 
610   /*                                              659   /*
611     Then read the form factor file                660     Then read the form factor file
612   */                                              661   */
613   std::ostringstream ost2;                        662   std::ostringstream ost2;
614   if (Z>9)                                        663   if (Z>9)
615     ost2 << path << "/penelope/rayleigh/pdaff"    664     ost2 << path << "/penelope/rayleigh/pdaff" << Z << ".p08";
616   else                                            665   else
617     ost2 << path << "/penelope/rayleigh/pdaff0    666     ost2 << path << "/penelope/rayleigh/pdaff0" << Z << ".p08";
618   file.open(ost2.str().c_str());                  667   file.open(ost2.str().c_str());
619   if (!file.is_open())                            668   if (!file.is_open())
620     {                                             669     {
621       G4String excep = "Data file " + G4String    670       G4String excep = "Data file " + G4String(ost2.str()) + " not found!";
622       G4Exception("G4PenelopeRayleighModel::Re    671       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
623       "em0003",FatalException,excep);             672       "em0003",FatalException,excep);
624     }                                             673     }
625   file >> readZ >> nPoints;                       674   file >> readZ >> nPoints;
626   //check the right file is opened.               675   //check the right file is opened.
627   if (readZ != Z || nPoints <= 0 || nPoints >=    676   if (readZ != Z || nPoints <= 0 || nPoints >= 5000)
628     {                                             677     {
629       G4ExceptionDescription ed;                  678       G4ExceptionDescription ed;
630       ed << "Corrupted data file for Z=" << Z     679       ed << "Corrupted data file for Z=" << Z << G4endl;
631       G4Exception("G4PenelopeRayleighModel::Re    680       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
632       "em0005",FatalException,ed);                681       "em0005",FatalException,ed);
633       return;                                     682       return;
634     }                                             683     }
635   fAtomicFormFactor[Z] = new G4PhysicsFreeVect << 684   G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector((size_t)nPoints);
636   G4double q=0,ff=0,incoh=0;                      685   G4double q=0,ff=0,incoh=0;
637   G4bool fillQGrid = false;                       686   G4bool fillQGrid = false;
638   //fill this vector only the first time.         687   //fill this vector only the first time.
639   if (!fLogQSquareGrid.size())                 << 688   if (!logQSquareGrid.size())
640     fillQGrid = true;                             689     fillQGrid = true;
641   for (std::size_t i=0;i<nPoints;++i)          << 690   for (size_t i=0;i<nPoints;i++)
642     {                                             691     {
643       file >> q >> ff >> incoh;                   692       file >> q >> ff >> incoh;
644       //q and ff are dimensionless (q is in un    693       //q and ff are dimensionless (q is in units of (m_e*c)
645       fAtomicFormFactor[Z]->PutValue(i,q,ff);  << 694       theFFVec->PutValue(i,q,ff);
646       if (fillQGrid)                              695       if (fillQGrid)
647   {                                               696   {
648     fLogQSquareGrid.push_back(2.0*G4Log(q));   << 697     logQSquareGrid.push_back(2.0*G4Log(q));
649   }                                               698   }
650       if (file.eof() && i != (nPoints-1)) //fi    699       if (file.eof() && i != (nPoints-1)) //file ended too early
651   {                                               700   {
652     G4ExceptionDescription ed;                    701     G4ExceptionDescription ed;
653     ed << "Corrupted data file for Z=" << Z <<    702     ed << "Corrupted data file for Z=" << Z << G4endl;
654     ed << "Found less than " << nPoints << "en    703     ed << "Found less than " << nPoints << "entries " <<G4endl;
655     G4Exception("G4PenelopeRayleighModel::Read    704     G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
656           "em0005",FatalException,ed);            705           "em0005",FatalException,ed);
657   }                                               706   }
658     }                                             707     }
                                                   >> 708   if (!atomicFormFactor)
                                                   >> 709     {
                                                   >> 710       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
                                                   >> 711       "em2045",FatalException,
                                                   >> 712       "Unable to allocate the atomicFormFactor data table");
                                                   >> 713       delete theFFVec;
                                                   >> 714       return;
                                                   >> 715     }
                                                   >> 716   atomicFormFactor->insert(std::make_pair(Z,theFFVec));
659   file.close();                                   717   file.close();
660   return;                                         718   return;
661 }                                                 719 }
662                                                   720 
663 //....oooOO0OOooo........oooOO0OOooo........oo    721 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
664                                                   722 
665 G4double G4PenelopeRayleighModel::GetFSquared(    723 G4double G4PenelopeRayleighModel::GetFSquared(const G4Material* mat, const G4double QSquared)
666 {                                                 724 {
667   G4double f2 = 0;                                725   G4double f2 = 0;
668   //Input value QSquared could be zero: protec    726   //Input value QSquared could be zero: protect the log() below against
669   //the FPE exception                             727   //the FPE exception
670   //If Q<1e-10, set Q to 1e-10                    728   //If Q<1e-10, set Q to 1e-10
671   G4double logQSquared = (QSquared>1e-10) ? G4    729   G4double logQSquared = (QSquared>1e-10) ? G4Log(QSquared) : -23.;
672   //last value of the table                       730   //last value of the table
673   G4double maxlogQ2 = fLogQSquareGrid[fLogQSqu << 731   G4double maxlogQ2 = logQSquareGrid[logQSquareGrid.size()-1];
                                                   >> 732 
674                                                   733 
675   //now it should  be all right                   734   //now it should  be all right
676   G4PhysicsFreeVector* theVec = fLogFormFactor << 735   G4PhysicsFreeVector* theVec = logFormFactorTable->find(mat)->second;
677                                                   736 
678   if (!theVec)                                    737   if (!theVec)
679     {                                             738     {
680       G4ExceptionDescription ed;                  739       G4ExceptionDescription ed;
681       ed << "Unable to retrieve F squared tabl    740       ed << "Unable to retrieve F squared table for " << mat->GetName() << G4endl;
682       G4Exception("G4PenelopeRayleighModel::Ge    741       G4Exception("G4PenelopeRayleighModel::GetFSquared()",
683       "em2046",FatalException,ed);                742       "em2046",FatalException,ed);
684       return 0;                                   743       return 0;
685     }                                             744     }
686   if (logQSquared < -20) // Q < 1e-9              745   if (logQSquared < -20) // Q < 1e-9
687     {                                             746     {
688       G4double logf2 = (*theVec)[0]; //first v    747       G4double logf2 = (*theVec)[0]; //first value of the table
689       f2 = G4Exp(logf2);                          748       f2 = G4Exp(logf2);
690     }                                             749     }
691   else if (logQSquared > maxlogQ2)                750   else if (logQSquared > maxlogQ2)
692     f2 =0;                                        751     f2 =0;
693   else                                            752   else
694     {                                             753     {
695       //log(Q^2) vs. log(F^2)                     754       //log(Q^2) vs. log(F^2)
696       G4double logf2 = theVec->Value(logQSquar    755       G4double logf2 = theVec->Value(logQSquared);
697       f2 = G4Exp(logf2);                          756       f2 = G4Exp(logf2);
698                                                   757 
699     }                                             758     }
700   if (fVerboseLevel > 3)                       << 759   if (verboseLevel > 3)
701     {                                             760     {
702       G4cout << "G4PenelopeRayleighModel::GetF    761       G4cout << "G4PenelopeRayleighModel::GetFSquared() in " << mat->GetName() << G4endl;
703       G4cout << "Q^2 = " <<  QSquared << " (un    762       G4cout << "Q^2 = " <<  QSquared << " (units of 1/(m_e*c); F^2 = " << f2 << G4endl;
704     }                                             763     }
705   return f2;                                      764   return f2;
706 }                                                 765 }
707                                                   766 
708 //....oooOO0OOooo........oooOO0OOooo........oo    767 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
709                                                   768 
710 void G4PenelopeRayleighModel::InitializeSampli    769 void G4PenelopeRayleighModel::InitializeSamplingAlgorithm(const G4Material* mat)
711 {                                                 770 {
                                                   >> 771 
712   G4double q2min = 0;                             772   G4double q2min = 0;
713   G4double q2max = 0;                             773   G4double q2max = 0;
714   const std::size_t np = 150; //hard-coded in  << 774   const size_t np = 150; //hard-coded in Penelope
715   //G4cout << "Init N= " << fLogQSquareGrid.si << 775   //G4cout << "Init N= " << logQSquareGrid.size() << G4endl;
716   for (std::size_t i=1;i<fLogQSquareGrid.size( << 776   for (size_t i=1;i<logQSquareGrid.size();i++)
717     {                                             777     {
718       G4double Q2 = G4Exp(fLogQSquareGrid[i]); << 778       G4double Q2 = G4Exp(logQSquareGrid[i]);
719       if (GetFSquared(mat,Q2) >  1e-35)           779       if (GetFSquared(mat,Q2) >  1e-35)
720   {                                               780   {
721     q2max = G4Exp(fLogQSquareGrid[i-1]);       << 781     q2max = G4Exp(logQSquareGrid[i-1]);
722   }                                               782   }
723       //G4cout << "Q2= " << Q2 << " q2max= " <    783       //G4cout << "Q2= " << Q2 << " q2max= " << q2max << G4endl;
724     }                                             784     }
725                                                   785 
726   std::size_t nReducedPoints = np/4;           << 786   size_t nReducedPoints = np/4;
727                                                   787 
728   //check for errors                              788   //check for errors
729   if (np < 16)                                    789   if (np < 16)
730     {                                             790     {
731       G4Exception("G4PenelopeRayleighModel::In    791       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
732       "em2047",FatalException,                    792       "em2047",FatalException,
733       "Too few points to initialize the sampli    793       "Too few points to initialize the sampling algorithm");
734     }                                             794     }
735   if (q2min > (q2max-1e-10))                      795   if (q2min > (q2max-1e-10))
736     {                                             796     {
737       G4cout << "q2min= " << q2min << " q2max=    797       G4cout << "q2min= " << q2min << " q2max= " << q2max << G4endl;
738       G4Exception("G4PenelopeRayleighModel::In    798       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
739       "em2048",FatalException,                    799       "em2048",FatalException,
740       "Too narrow grid to initialize the sampl    800       "Too narrow grid to initialize the sampling algorithm");
741     }                                             801     }
742                                                   802 
743   //This is subroutine RITAI0 of Penelope         803   //This is subroutine RITAI0 of Penelope
744   //Create an object of type G4PenelopeRayleig    804   //Create an object of type G4PenelopeRayleighSamplingData --> store in a map::Material*
745                                                   805 
746   //temporary vectors --> Then everything is s    806   //temporary vectors --> Then everything is stored in G4PenelopeSamplingData
747   G4DataVector* x = new G4DataVector();           807   G4DataVector* x = new G4DataVector();
748                                                   808 
749   /*******************************************    809   /*******************************************************************************
750     Start with a grid of NUNIF points uniforml    810     Start with a grid of NUNIF points uniformly spaced in the interval q2min,q2max
751   ********************************************    811   ********************************************************************************/
752   std::size_t NUNIF = std::min(std::max(((std: << 812   size_t NUNIF = std::min(std::max(((size_t)8),nReducedPoints),np/2);
753   const G4int nip = 51; //hard-coded in Penelo    813   const G4int nip = 51; //hard-coded in Penelope
754                                                   814 
755   G4double dx = (q2max-q2min)/((G4double) NUNI    815   G4double dx = (q2max-q2min)/((G4double) NUNIF-1);
756   x->push_back(q2min);                            816   x->push_back(q2min);
757   for (std::size_t i=1;i<NUNIF-1;++i)          << 817   for (size_t i=1;i<NUNIF-1;i++)
758     {                                             818     {
759       G4double app = q2min + i*dx;                819       G4double app = q2min + i*dx;
760       x->push_back(app); //increase               820       x->push_back(app); //increase
761     }                                             821     }
762   x->push_back(q2max);                            822   x->push_back(q2max);
763                                                   823 
764   if (fVerboseLevel> 3)                        << 824   if (verboseLevel> 3)
765     G4cout << "Vector x has " << x->size() <<     825     G4cout << "Vector x has " << x->size() << " points, while NUNIF = " << NUNIF << G4endl;
766                                                   826 
767   //Allocate temporary storage vectors            827   //Allocate temporary storage vectors
768   G4DataVector* area = new G4DataVector();        828   G4DataVector* area = new G4DataVector();
769   G4DataVector* a = new G4DataVector();           829   G4DataVector* a = new G4DataVector();
770   G4DataVector* b = new G4DataVector();           830   G4DataVector* b = new G4DataVector();
771   G4DataVector* c = new G4DataVector();           831   G4DataVector* c = new G4DataVector();
772   G4DataVector* err = new G4DataVector();         832   G4DataVector* err = new G4DataVector();
773                                                   833 
774   for (std::size_t i=0;i<NUNIF-1;++i) //build  << 834   for (size_t i=0;i<NUNIF-1;i++) //build all points but the last
775     {                                             835     {
776       //Temporary vectors for this loop           836       //Temporary vectors for this loop
777       G4DataVector* pdfi = new G4DataVector();    837       G4DataVector* pdfi = new G4DataVector();
778       G4DataVector* pdfih = new G4DataVector()    838       G4DataVector* pdfih = new G4DataVector();
779       G4DataVector* sumi = new G4DataVector();    839       G4DataVector* sumi = new G4DataVector();
780                                                   840 
781       G4double dxi = ((*x)[i+1]-(*x)[i])/(G4do    841       G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1));
782       G4double pdfmax = 0;                        842       G4double pdfmax = 0;
783       for (G4int k=0;k<nip;k++)                   843       for (G4int k=0;k<nip;k++)
784   {                                               844   {
785     G4double xik = (*x)[i]+k*dxi;                 845     G4double xik = (*x)[i]+k*dxi;
786     G4double pdfk = std::max(GetFSquared(mat,x    846     G4double pdfk = std::max(GetFSquared(mat,xik),0.);
787     pdfi->push_back(pdfk);                        847     pdfi->push_back(pdfk);
788     pdfmax = std::max(pdfmax,pdfk);               848     pdfmax = std::max(pdfmax,pdfk);
789     if (k < (nip-1))                              849     if (k < (nip-1))
790       {                                           850       {
791         G4double xih = xik + 0.5*dxi;             851         G4double xih = xik + 0.5*dxi;
792         G4double pdfIK = std::max(GetFSquared(    852         G4double pdfIK = std::max(GetFSquared(mat,xih),0.);
793         pdfih->push_back(pdfIK);                  853         pdfih->push_back(pdfIK);
794         pdfmax = std::max(pdfmax,pdfIK);          854         pdfmax = std::max(pdfmax,pdfIK);
795       }                                           855       }
796   }                                               856   }
797                                                   857 
798       //Simpson's integration                     858       //Simpson's integration
799       G4double cons = dxi*0.5*(1./3.);            859       G4double cons = dxi*0.5*(1./3.);
800       sumi->push_back(0.);                        860       sumi->push_back(0.);
801       for (G4int k=1;k<nip;k++)                   861       for (G4int k=1;k<nip;k++)
802   {                                               862   {
803     G4double previous = (*sumi)[k-1];             863     G4double previous = (*sumi)[k-1];
804     G4double next = previous + cons*((*pdfi)[k    864     G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]);
805     sumi->push_back(next);                        865     sumi->push_back(next);
806   }                                               866   }
807                                                   867 
808       G4double lastIntegral = (*sumi)[sumi->si    868       G4double lastIntegral = (*sumi)[sumi->size()-1];
809       area->push_back(lastIntegral);              869       area->push_back(lastIntegral);
810       //Normalize cumulative function             870       //Normalize cumulative function
811       G4double factor = 1.0/lastIntegral;         871       G4double factor = 1.0/lastIntegral;
812       for (std::size_t k=0;k<sumi->size();++k) << 872       for (size_t k=0;k<sumi->size();k++)
813   (*sumi)[k] *= factor;                           873   (*sumi)[k] *= factor;
814                                                   874 
815       //When the PDF vanishes at one of the in    875       //When the PDF vanishes at one of the interval end points, its value is modified
816       if ((*pdfi)[0] < 1e-35)                     876       if ((*pdfi)[0] < 1e-35)
817   (*pdfi)[0] = 1e-5*pdfmax;                       877   (*pdfi)[0] = 1e-5*pdfmax;
818       if ((*pdfi)[pdfi->size()-1] < 1e-35)        878       if ((*pdfi)[pdfi->size()-1] < 1e-35)
819   (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;          879   (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;
820                                                   880 
821       G4double pli = (*pdfi)[0]*factor;           881       G4double pli = (*pdfi)[0]*factor;
822       G4double pui = (*pdfi)[pdfi->size()-1]*f    882       G4double pui = (*pdfi)[pdfi->size()-1]*factor;
823       G4double B_temp = 1.0-1.0/(pli*pui*dx*dx    883       G4double B_temp = 1.0-1.0/(pli*pui*dx*dx);
824       G4double A_temp = (1.0/(pli*dx))-1.0-B_t    884       G4double A_temp = (1.0/(pli*dx))-1.0-B_temp;
825       G4double C_temp = 1.0+A_temp+B_temp;        885       G4double C_temp = 1.0+A_temp+B_temp;
826       if (C_temp < 1e-35)                         886       if (C_temp < 1e-35)
827   {                                               887   {
828     a->push_back(0.);                             888     a->push_back(0.);
829     b->push_back(0.);                             889     b->push_back(0.);
830     c->push_back(1.);                             890     c->push_back(1.);
831   }                                               891   }
832       else                                        892       else
833   {                                               893   {
834     a->push_back(A_temp);                         894     a->push_back(A_temp);
835     b->push_back(B_temp);                         895     b->push_back(B_temp);
836     c->push_back(C_temp);                         896     c->push_back(C_temp);
837   }                                               897   }
838                                                   898 
839       //OK, now get ERR(I), the integral of th    899       //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation
840       //and the true pdf, extended over the in    900       //and the true pdf, extended over the interval (X(I),X(I+1))
841       G4int icase = 1; //loop code                901       G4int icase = 1; //loop code
842       G4bool reLoop = false;                      902       G4bool reLoop = false;
843       err->push_back(0.);                         903       err->push_back(0.);
844       do                                          904       do
845   {                                               905   {
846     reLoop = false;                               906     reLoop = false;
847     (*err)[i] = 0.; //zero variable               907     (*err)[i] = 0.; //zero variable
848     for (G4int k=0;k<nip;k++)                     908     for (G4int k=0;k<nip;k++)
849       {                                           909       {
850         G4double rr = (*sumi)[k];                 910         G4double rr = (*sumi)[k];
851         G4double pap = (*area)[i]*(1.0+((*a)[i    911         G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/
852     ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*    912     ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i]));
853         if (k == 0 || k == nip-1)                 913         if (k == 0 || k == nip-1)
854     (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k])    914     (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]);
855         else                                      915         else
856     (*err)[i] += std::fabs(pap-(*pdfi)[k]);       916     (*err)[i] += std::fabs(pap-(*pdfi)[k]);
857       }                                           917       }
858     (*err)[i] *= dxi;                             918     (*err)[i] *= dxi;
859                                                   919 
860     //If err(I) is too large, the pdf is appro    920     //If err(I) is too large, the pdf is approximated by a uniform distribution
861     if ((*err)[i] > 0.1*(*area)[i] && icase ==    921     if ((*err)[i] > 0.1*(*area)[i] && icase == 1)
862       {                                           922       {
863         (*b)[i] = 0;                              923         (*b)[i] = 0;
864         (*a)[i] = 0;                              924         (*a)[i] = 0;
865         (*c)[i] = 1.;                             925         (*c)[i] = 1.;
866         icase = 2;                                926         icase = 2;
867         reLoop = true;                            927         reLoop = true;
868       }                                           928       }
869   }while(reLoop);                                 929   }while(reLoop);
                                                   >> 930 
870       delete pdfi;                                931       delete pdfi;
871       delete pdfih;                               932       delete pdfih;
872       delete sumi;                                933       delete sumi;
873     } //end of first loop over i                  934     } //end of first loop over i
874                                                   935 
875   //Now assign last point                         936   //Now assign last point
876   (*x)[x->size()-1] = q2max;                      937   (*x)[x->size()-1] = q2max;
877   a->push_back(0.);                               938   a->push_back(0.);
878   b->push_back(0.);                               939   b->push_back(0.);
879   c->push_back(0.);                               940   c->push_back(0.);
880   err->push_back(0.);                             941   err->push_back(0.);
881   area->push_back(0.);                            942   area->push_back(0.);
882                                                   943 
883   if (x->size() != NUNIF || a->size() != NUNIF    944   if (x->size() != NUNIF || a->size() != NUNIF ||
884       err->size() != NUNIF || area->size() !=     945       err->size() != NUNIF || area->size() != NUNIF)
885     {                                             946     {
886       G4ExceptionDescription ed;                  947       G4ExceptionDescription ed;
887       ed << "Problem in building the Table for    948       ed << "Problem in building the Table for Sampling: array dimensions do not match" << G4endl;
888       G4Exception("G4PenelopeRayleighModel::In    949       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
889       "em2049",FatalException,ed);                950       "em2049",FatalException,ed);
890     }                                             951     }
891                                                   952 
892   /*******************************************    953   /*******************************************************************************
893    New grid points are added by halving the su    954    New grid points are added by halving the sub-intervals with the largest absolute error
894   This is done up to np=150 points in the grid    955   This is done up to np=150 points in the grid
895   ********************************************    956   ********************************************************************************/
896   do                                              957   do
897     {                                             958     {
898       G4double maxError = 0.0;                    959       G4double maxError = 0.0;
899       std::size_t iErrMax = 0;                 << 960       size_t iErrMax = 0;
900       for (std::size_t i=0;i<err->size()-2;++i << 961       for (size_t i=0;i<err->size()-2;i++)
901   {                                               962   {
902     //maxError is the lagest of the interval e    963     //maxError is the lagest of the interval errors err[i]
903     if ((*err)[i] > maxError)                     964     if ((*err)[i] > maxError)
904       {                                           965       {
905         maxError = (*err)[i];                     966         maxError = (*err)[i];
906         iErrMax = i;                              967         iErrMax = i;
907       }                                           968       }
908   }                                               969   }
909                                                   970 
910       //OK, now I have to insert one new point    971       //OK, now I have to insert one new point in the position iErrMax
911       G4double newx = 0.5*((*x)[iErrMax]+(*x)[    972       G4double newx = 0.5*((*x)[iErrMax]+(*x)[iErrMax+1]);
912                                                   973 
913       x->insert(x->begin()+iErrMax+1,newx);       974       x->insert(x->begin()+iErrMax+1,newx);
914       //Add place-holders in the other vectors    975       //Add place-holders in the other vectors
915       area->insert(area->begin()+iErrMax+1,0.)    976       area->insert(area->begin()+iErrMax+1,0.);
916       a->insert(a->begin()+iErrMax+1,0.);         977       a->insert(a->begin()+iErrMax+1,0.);
917       b->insert(b->begin()+iErrMax+1,0.);         978       b->insert(b->begin()+iErrMax+1,0.);
918       c->insert(c->begin()+iErrMax+1,0.);         979       c->insert(c->begin()+iErrMax+1,0.);
919       err->insert(err->begin()+iErrMax+1,0.);     980       err->insert(err->begin()+iErrMax+1,0.);
920                                                   981 
921       //Now calculate the other parameters        982       //Now calculate the other parameters
922       for (std::size_t i=iErrMax;i<=iErrMax+1; << 983       for (size_t i=iErrMax;i<=iErrMax+1;i++)
923   {                                               984   {
924     //Temporary vectors for this loop             985     //Temporary vectors for this loop
925     G4DataVector* pdfi = new G4DataVector();      986     G4DataVector* pdfi = new G4DataVector();
926     G4DataVector* pdfih = new G4DataVector();     987     G4DataVector* pdfih = new G4DataVector();
927     G4DataVector* sumi = new G4DataVector();      988     G4DataVector* sumi = new G4DataVector();
928                                                   989 
929     G4double dxLocal = (*x)[i+1]-(*x)[i];         990     G4double dxLocal = (*x)[i+1]-(*x)[i];
930     G4double dxi = ((*x)[i+1]-(*x)[i])/(G4doub    991     G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1));
931     G4double pdfmax = 0;                          992     G4double pdfmax = 0;
932     for (G4int k=0;k<nip;k++)                     993     for (G4int k=0;k<nip;k++)
933       {                                           994       {
934         G4double xik = (*x)[i]+k*dxi;             995         G4double xik = (*x)[i]+k*dxi;
935         G4double pdfk = std::max(GetFSquared(m    996         G4double pdfk = std::max(GetFSquared(mat,xik),0.);
936         pdfi->push_back(pdfk);                    997         pdfi->push_back(pdfk);
937         pdfmax = std::max(pdfmax,pdfk);           998         pdfmax = std::max(pdfmax,pdfk);
938         if (k < (nip-1))                          999         if (k < (nip-1))
939     {                                             1000     {
940       G4double xih = xik + 0.5*dxi;               1001       G4double xih = xik + 0.5*dxi;
941       G4double pdfIK = std::max(GetFSquared(ma    1002       G4double pdfIK = std::max(GetFSquared(mat,xih),0.);
942       pdfih->push_back(pdfIK);                    1003       pdfih->push_back(pdfIK);
943       pdfmax = std::max(pdfmax,pdfIK);            1004       pdfmax = std::max(pdfmax,pdfIK);
944     }                                             1005     }
945       }                                           1006       }
946                                                   1007 
947     //Simpson's integration                       1008     //Simpson's integration
948     G4double cons = dxi*0.5*(1./3.);              1009     G4double cons = dxi*0.5*(1./3.);
949     sumi->push_back(0.);                          1010     sumi->push_back(0.);
950     for (G4int k=1;k<nip;k++)                     1011     for (G4int k=1;k<nip;k++)
951       {                                           1012       {
952         G4double previous = (*sumi)[k-1];         1013         G4double previous = (*sumi)[k-1];
953         G4double next = previous + cons*((*pdf    1014         G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]);
954         sumi->push_back(next);                    1015         sumi->push_back(next);
955       }                                           1016       }
956     G4double lastIntegral = (*sumi)[sumi->size    1017     G4double lastIntegral = (*sumi)[sumi->size()-1];
957     (*area)[i] = lastIntegral;                    1018     (*area)[i] = lastIntegral;
958                                                   1019 
959     //Normalize cumulative function               1020     //Normalize cumulative function
960     G4double factor = 1.0/lastIntegral;           1021     G4double factor = 1.0/lastIntegral;
961     for (std::size_t k=0;k<sumi->size();++k)   << 1022     for (size_t k=0;k<sumi->size();k++)
962       (*sumi)[k] *= factor;                       1023       (*sumi)[k] *= factor;
963                                                   1024 
964     //When the PDF vanishes at one of the inte    1025     //When the PDF vanishes at one of the interval end points, its value is modified
965     if ((*pdfi)[0] < 1e-35)                       1026     if ((*pdfi)[0] < 1e-35)
966       (*pdfi)[0] = 1e-5*pdfmax;                   1027       (*pdfi)[0] = 1e-5*pdfmax;
967     if ((*pdfi)[pdfi->size()-1] < 1e-35)          1028     if ((*pdfi)[pdfi->size()-1] < 1e-35)
968       (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;      1029       (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;
969                                                   1030 
970     G4double pli = (*pdfi)[0]*factor;             1031     G4double pli = (*pdfi)[0]*factor;
971     G4double pui = (*pdfi)[pdfi->size()-1]*fac    1032     G4double pui = (*pdfi)[pdfi->size()-1]*factor;
972     G4double B_temp = 1.0-1.0/(pli*pui*dxLocal    1033     G4double B_temp = 1.0-1.0/(pli*pui*dxLocal*dxLocal);
973     G4double A_temp = (1.0/(pli*dxLocal))-1.0-    1034     G4double A_temp = (1.0/(pli*dxLocal))-1.0-B_temp;
974     G4double C_temp = 1.0+A_temp+B_temp;          1035     G4double C_temp = 1.0+A_temp+B_temp;
975     if (C_temp < 1e-35)                           1036     if (C_temp < 1e-35)
976       {                                           1037       {
977         (*a)[i]= 0.;                              1038         (*a)[i]= 0.;
978         (*b)[i] = 0.;                             1039         (*b)[i] = 0.;
979         (*c)[i] = 1;                              1040         (*c)[i] = 1;
980       }                                           1041       }
981     else                                          1042     else
982       {                                           1043       {
983         (*a)[i]= A_temp;                          1044         (*a)[i]= A_temp;
984         (*b)[i] = B_temp;                         1045         (*b)[i] = B_temp;
985         (*c)[i] = C_temp;                         1046         (*c)[i] = C_temp;
986       }                                           1047       }
987     //OK, now get ERR(I), the integral of the     1048     //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation
988     //and the true pdf, extended over the inte    1049     //and the true pdf, extended over the interval (X(I),X(I+1))
989     G4int icase = 1; //loop code                  1050     G4int icase = 1; //loop code
990     G4bool reLoop = false;                        1051     G4bool reLoop = false;
991     do                                            1052     do
992       {                                           1053       {
993         reLoop = false;                           1054         reLoop = false;
994         (*err)[i] = 0.; //zero variable           1055         (*err)[i] = 0.; //zero variable
995         for (G4int k=0;k<nip;k++)                 1056         for (G4int k=0;k<nip;k++)
996     {                                             1057     {
997       G4double rr = (*sumi)[k];                   1058       G4double rr = (*sumi)[k];
998       G4double pap = (*area)[i]*(1.0+((*a)[i]+    1059       G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/
999         ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1    1060         ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i]));
1000       if (k == 0 || k == nip-1)                  1061       if (k == 0 || k == nip-1)
1001         (*err)[i] += 0.5*std::fabs(pap-(*pdfi    1062         (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]);
1002       else                                       1063       else
1003         (*err)[i] += std::fabs(pap-(*pdfi)[k]    1064         (*err)[i] += std::fabs(pap-(*pdfi)[k]);
1004     }                                            1065     }
1005         (*err)[i] *= dxi;                        1066         (*err)[i] *= dxi;
1006                                                  1067 
1007         //If err(I) is too large, the pdf is     1068         //If err(I) is too large, the pdf is approximated by a uniform distribution
1008         if ((*err)[i] > 0.1*(*area)[i] && ica    1069         if ((*err)[i] > 0.1*(*area)[i] && icase == 1)
1009     {                                            1070     {
1010       (*b)[i] = 0;                               1071       (*b)[i] = 0;
1011       (*a)[i] = 0;                               1072       (*a)[i] = 0;
1012       (*c)[i] = 1.;                              1073       (*c)[i] = 1.;
1013       icase = 2;                                 1074       icase = 2;
1014       reLoop = true;                             1075       reLoop = true;
1015     }                                            1076     }
1016       }while(reLoop);                            1077       }while(reLoop);
1017     delete pdfi;                                 1078     delete pdfi;
1018     delete pdfih;                                1079     delete pdfih;
1019     delete sumi;                                 1080     delete sumi;
1020   }                                              1081   }
1021     }while(x->size() < np);                      1082     }while(x->size() < np);
1022                                                  1083 
1023   if (x->size() != np || a->size() != np ||      1084   if (x->size() != np || a->size() != np ||
1024       err->size() != np || area->size() != np    1085       err->size() != np || area->size() != np)
1025     {                                            1086     {
1026       G4Exception("G4PenelopeRayleighModel::I    1087       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
1027       "em2050",FatalException,                   1088       "em2050",FatalException,
1028       "Problem in building the extended Table    1089       "Problem in building the extended Table for Sampling: array dimensions do not match ");
1029     }                                            1090     }
1030                                                  1091 
1031   /******************************************    1092   /*******************************************************************************
1032    Renormalization                               1093    Renormalization
1033   *******************************************    1094   ********************************************************************************/
1034   G4double ws = 0;                               1095   G4double ws = 0;
1035   for (std::size_t i=0;i<np-1;++i)            << 1096   for (size_t i=0;i<np-1;i++)
1036     ws += (*area)[i];                            1097     ws += (*area)[i];
1037   ws = 1.0/ws;                                   1098   ws = 1.0/ws;
1038   G4double errMax = 0;                           1099   G4double errMax = 0;
1039   for (std::size_t i=0;i<np-1;++i)            << 1100   for (size_t i=0;i<np-1;i++)
1040     {                                            1101     {
1041       (*area)[i] *= ws;                          1102       (*area)[i] *= ws;
1042       (*err)[i] *= ws;                           1103       (*err)[i] *= ws;
1043       errMax = std::max(errMax,(*err)[i]);       1104       errMax = std::max(errMax,(*err)[i]);
1044     }                                            1105     }
1045                                                  1106 
1046   //Vector with the normalized cumulative dis    1107   //Vector with the normalized cumulative distribution
1047   G4DataVector* PAC = new G4DataVector();        1108   G4DataVector* PAC = new G4DataVector();
1048   PAC->push_back(0.);                            1109   PAC->push_back(0.);
1049   for (std::size_t i=0;i<np-1;++i)            << 1110   for (size_t i=0;i<np-1;i++)
1050     {                                            1111     {
1051       G4double previous = (*PAC)[i];             1112       G4double previous = (*PAC)[i];
1052       PAC->push_back(previous+(*area)[i]);       1113       PAC->push_back(previous+(*area)[i]);
1053     }                                            1114     }
1054   (*PAC)[PAC->size()-1] = 1.;                    1115   (*PAC)[PAC->size()-1] = 1.;
1055                                                  1116 
1056   /******************************************    1117   /*******************************************************************************
1057   Pre-calculated limits for the initial binar    1118   Pre-calculated limits for the initial binary search for subsequent sampling
1058   *******************************************    1119   ********************************************************************************/
1059   std::vector<std::size_t> *ITTL = new std::v << 1120 
1060   std::vector<std::size_t> *ITTU = new std::v << 1121   //G4DataVector* ITTL = new G4DataVector();
                                                   >> 1122   std::vector<size_t> *ITTL = new std::vector<size_t>;
                                                   >> 1123   std::vector<size_t> *ITTU = new std::vector<size_t>;
1061                                                  1124 
1062   //Just create place-holders                    1125   //Just create place-holders
1063   for (std::size_t i=0;i<np;++i)              << 1126   for (size_t i=0;i<np;i++)
1064     {                                            1127     {
1065       ITTL->push_back(0);                        1128       ITTL->push_back(0);
1066       ITTU->push_back(0);                        1129       ITTU->push_back(0);
1067     }                                            1130     }
1068                                                  1131 
1069   G4double bin = 1.0/(np-1);                     1132   G4double bin = 1.0/(np-1);
1070   (*ITTL)[0]=0;                                  1133   (*ITTL)[0]=0;
1071   for (std::size_t i=1;i<(np-1);++i)          << 1134   for (size_t i=1;i<(np-1);i++)
1072     {                                            1135     {
1073       G4double ptst = i*bin;                     1136       G4double ptst = i*bin;
1074       G4bool found = false;                      1137       G4bool found = false;
1075       for (std::size_t j=(*ITTL)[i-1];j<np && << 1138       for (size_t j=(*ITTL)[i-1];j<np && !found;j++)
1076   {                                              1139   {
1077     if ((*PAC)[j] > ptst)                        1140     if ((*PAC)[j] > ptst)
1078       {                                          1141       {
1079         (*ITTL)[i] = j-1;                        1142         (*ITTL)[i] = j-1;
1080         (*ITTU)[i-1] = j;                        1143         (*ITTU)[i-1] = j;
1081         found = true;                            1144         found = true;
1082       }                                          1145       }
1083   }                                              1146   }
1084     }                                            1147     }
1085   (*ITTU)[ITTU->size()-2] = ITTU->size()-1;      1148   (*ITTU)[ITTU->size()-2] = ITTU->size()-1;
1086   (*ITTU)[ITTU->size()-1] = ITTU->size()-1;      1149   (*ITTU)[ITTU->size()-1] = ITTU->size()-1;
1087   (*ITTL)[ITTL->size()-1] = ITTU->size()-2;      1150   (*ITTL)[ITTL->size()-1] = ITTU->size()-2;
1088                                                  1151 
1089   if (ITTU->size() != np || ITTU->size() != n    1152   if (ITTU->size() != np || ITTU->size() != np)
1090     {                                            1153     {
1091       G4Exception("G4PenelopeRayleighModel::I    1154       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
1092       "em2051",FatalException,                   1155       "em2051",FatalException,
1093       "Problem in building the Limit Tables f    1156       "Problem in building the Limit Tables for Sampling: array dimensions do not match");
1094     }                                            1157     }
1095                                                  1158 
                                                   >> 1159 
1096   /******************************************    1160   /********************************************************************************
1097     Copy tables                                  1161     Copy tables
1098   *******************************************    1162   ********************************************************************************/
1099   G4PenelopeSamplingData* theTable = new G4Pe    1163   G4PenelopeSamplingData* theTable = new G4PenelopeSamplingData(np);
1100   for (std::size_t i=0;i<np;++i)              << 1164   for (size_t i=0;i<np;i++)
1101     {                                            1165     {
1102       theTable->AddPoint((*x)[i],(*PAC)[i],(*    1166       theTable->AddPoint((*x)[i],(*PAC)[i],(*a)[i],(*b)[i],(*ITTL)[i],(*ITTU)[i]);
1103     }                                            1167     }
1104                                                  1168 
1105   if (fVerboseLevel > 2)                      << 1169   if (verboseLevel > 2)
1106     {                                            1170     {
1107       G4cout << "****************************    1171       G4cout << "*************************************************************************" <<
1108   G4endl;                                        1172   G4endl;
1109       G4cout << "Sampling table for Penelope     1173       G4cout << "Sampling table for Penelope Rayleigh scattering in " << mat->GetName() << G4endl;
1110       theTable->DumpTable();                     1174       theTable->DumpTable();
1111     }                                            1175     }
1112   fSamplingTable->insert(std::make_pair(mat,t << 1176   samplingTable->insert(std::make_pair(mat,theTable));
                                                   >> 1177 
1113                                                  1178 
1114   //Clean up temporary vectors                   1179   //Clean up temporary vectors
1115   delete x;                                      1180   delete x;
1116   delete a;                                      1181   delete a;
1117   delete b;                                      1182   delete b;
1118   delete c;                                      1183   delete c;
1119   delete err;                                    1184   delete err;
1120   delete area;                                   1185   delete area;
1121   delete PAC;                                    1186   delete PAC;
1122   delete ITTL;                                   1187   delete ITTL;
1123   delete ITTU;                                   1188   delete ITTU;
1124                                                  1189 
1125   //DONE!                                        1190   //DONE!
1126   return;                                        1191   return;
                                                   >> 1192 
1127 }                                                1193 }
1128                                                  1194 
1129 //....oooOO0OOooo........oooOO0OOooo........o    1195 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1130                                                  1196 
1131 void G4PenelopeRayleighModel::GetPMaxTable(co    1197 void G4PenelopeRayleighModel::GetPMaxTable(const G4Material* mat)
1132 {                                                1198 {
1133   if (!fPMaxTable)                            << 1199 
                                                   >> 1200   if (!pMaxTable)
1134     {                                            1201     {
1135       G4cout << "G4PenelopeRayleighModel::Bui    1202       G4cout << "G4PenelopeRayleighModel::BuildPMaxTable" << G4endl;
1136       G4cout << "Going to instanziate the fPM << 1203       G4cout << "Going to instanziate the pMaxTable !" << G4endl;
1137       G4cout << "That should _not_ be here! "    1204       G4cout << "That should _not_ be here! " << G4endl;
1138       fPMaxTable = new std::map<const G4Mater << 1205       pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
1139     }                                            1206     }
1140   //check if the table is already there          1207   //check if the table is already there
1141   if (fPMaxTable->count(mat))                 << 1208   if (pMaxTable->count(mat))
1142     return;                                      1209     return;
1143                                                  1210 
1144   //otherwise build it                           1211   //otherwise build it
1145   if (!fSamplingTable)                        << 1212   if (!samplingTable)
1146     {                                            1213     {
1147       G4Exception("G4PenelopeRayleighModel::G    1214       G4Exception("G4PenelopeRayleighModel::GetPMaxTable()",
1148       "em2052",FatalException,                   1215       "em2052",FatalException,
1149       "SamplingTable is not properly instanti    1216       "SamplingTable is not properly instantiated");
1150       return;                                    1217       return;
1151     }                                            1218     }
1152                                                  1219 
1153   //This should not be: the sampling table is    1220   //This should not be: the sampling table is built before the p-table
1154   if (!fSamplingTable->count(mat))            << 1221   if (!samplingTable->count(mat))
1155     {                                            1222     {
1156        G4ExceptionDescription ed;                1223        G4ExceptionDescription ed;
1157        ed << "Sampling table for material " <    1224        ed << "Sampling table for material " << mat->GetName() << " not found";
1158        G4Exception("G4PenelopeRayleighModel::    1225        G4Exception("G4PenelopeRayleighModel::GetPMaxTable()",
1159                   "em2052",FatalException,       1226                   "em2052",FatalException,
1160                   ed);                           1227                   ed);
1161        return;                                   1228        return;
1162     }                                            1229     }
1163                                                  1230 
1164   G4PenelopeSamplingData *theTable = fSamplin << 1231   G4PenelopeSamplingData *theTable = samplingTable->find(mat)->second;
1165   std::size_t tablePoints = theTable->GetNumb << 1232   size_t tablePoints = theTable->GetNumberOfStoredPoints();
1166                                                  1233 
1167   std::size_t nOfEnergyPoints = fLogEnergyGri << 1234   size_t nOfEnergyPoints = logEnergyGridPMax.size();
1168   G4PhysicsFreeVector* theVec = new G4Physics    1235   G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector(nOfEnergyPoints);
1169                                                  1236 
1170   const std::size_t nip = 51; //hard-coded in << 1237   const size_t nip = 51; //hard-coded in Penelope
1171                                                  1238 
1172   for (std::size_t ie=0;ie<fLogEnergyGridPMax << 1239   for (size_t ie=0;ie<logEnergyGridPMax.size();ie++)
1173     {                                            1240     {
1174       G4double energy = G4Exp(fLogEnergyGridP << 1241       G4double energy = G4Exp(logEnergyGridPMax[ie]);
1175       G4double Qm = 2.0*energy/electron_mass_    1242       G4double Qm = 2.0*energy/electron_mass_c2; //this is non-dimensional now
1176       G4double Qm2 = Qm*Qm;                      1243       G4double Qm2 = Qm*Qm;
1177       G4double firstQ2 = theTable->GetX(0);      1244       G4double firstQ2 = theTable->GetX(0);
1178       G4double lastQ2 = theTable->GetX(tableP    1245       G4double lastQ2 = theTable->GetX(tablePoints-1);
1179       G4double thePMax = 0;                      1246       G4double thePMax = 0;
1180                                                  1247 
1181       if (Qm2 > firstQ2)                         1248       if (Qm2 > firstQ2)
1182   {                                              1249   {
1183     if (Qm2 < lastQ2)                            1250     if (Qm2 < lastQ2)
1184       {                                          1251       {
1185         //bisection to look for the index of     1252         //bisection to look for the index of Qm
1186         std::size_t lowerBound = 0;           << 1253         size_t lowerBound = 0;
1187         std::size_t upperBound = tablePoints- << 1254         size_t upperBound = tablePoints-1;
1188         while (lowerBound <= upperBound)         1255         while (lowerBound <= upperBound)
1189     {                                            1256     {
1190       std::size_t midBin = (lowerBound + uppe << 1257       size_t midBin = (lowerBound + upperBound)/2;
1191       if( Qm2 < theTable->GetX(midBin))          1258       if( Qm2 < theTable->GetX(midBin))
1192         { upperBound = midBin-1; }               1259         { upperBound = midBin-1; }
1193       else                                       1260       else
1194         { lowerBound = midBin+1; }               1261         { lowerBound = midBin+1; }
1195     }                                            1262     }
1196         //upperBound is the output (but also     1263         //upperBound is the output (but also lowerBounf --> should be the same!)
1197         G4double Q1 = theTable->GetX(upperBou    1264         G4double Q1 = theTable->GetX(upperBound);
1198         G4double Q2 = Qm2;                       1265         G4double Q2 = Qm2;
1199         G4double DQ = (Q2-Q1)/((G4double)(nip    1266         G4double DQ = (Q2-Q1)/((G4double)(nip-1));
1200         G4double theA = theTable->GetA(upperB    1267         G4double theA = theTable->GetA(upperBound);
1201         G4double theB = theTable->GetB(upperB    1268         G4double theB = theTable->GetB(upperBound);
1202         G4double thePAC = theTable->GetPAC(up    1269         G4double thePAC = theTable->GetPAC(upperBound);
1203         G4DataVector* fun = new G4DataVector(    1270         G4DataVector* fun = new G4DataVector();
1204         for (std::size_t k=0;k<nip;++k)       << 1271         for (size_t k=0;k<nip;k++)
1205     {                                            1272     {
1206       G4double qi = Q1 + k*DQ;                   1273       G4double qi = Q1 + k*DQ;
1207       G4double tau = (qi-Q1)/                    1274       G4double tau = (qi-Q1)/
1208         (theTable->GetX(upperBound+1)-Q1);       1275         (theTable->GetX(upperBound+1)-Q1);
1209       G4double con1 = 2.0*theB*tau;              1276       G4double con1 = 2.0*theB*tau;
1210       G4double ci = 1.0+theA+theB;               1277       G4double ci = 1.0+theA+theB;
1211       G4double con2 = ci-theA*tau;               1278       G4double con2 = ci-theA*tau;
1212       G4double etap = 0;                         1279       G4double etap = 0;
1213       if (std::fabs(con1) > 1.0e-16*std::fabs    1280       if (std::fabs(con1) > 1.0e-16*std::fabs(con2))
1214         etap = con2*(1.0-std::sqrt(1.0-2.0*ta    1281         etap = con2*(1.0-std::sqrt(1.0-2.0*tau*con1/(con2*con2)))/con1;
1215       else                                       1282       else
1216         etap = tau/con2;                         1283         etap = tau/con2;
1217       G4double theFun = (theTable->GetPAC(upp    1284       G4double theFun = (theTable->GetPAC(upperBound+1)-thePAC)*
1218         (1.0+(theA+theB*etap)*etap)*(1.0+(the    1285         (1.0+(theA+theB*etap)*etap)*(1.0+(theA+theB*etap)*etap)/
1219         ((1.0-theB*etap*etap)*ci*(theTable->G    1286         ((1.0-theB*etap*etap)*ci*(theTable->GetX(upperBound+1)-Q1));
1220       fun->push_back(theFun);                    1287       fun->push_back(theFun);
1221     }                                            1288     }
1222         //Now intergrate numerically the fun     1289         //Now intergrate numerically the fun Cavalieri-Simpson's method
1223         G4DataVector* sum = new G4DataVector;    1290         G4DataVector* sum = new G4DataVector;
1224         G4double CONS = DQ*(1./12.);             1291         G4double CONS = DQ*(1./12.);
1225         G4double HCONS = 0.5*CONS;               1292         G4double HCONS = 0.5*CONS;
1226         sum->push_back(0.);                      1293         sum->push_back(0.);
1227         G4double secondPoint = (*sum)[0] +       1294         G4double secondPoint = (*sum)[0] +
1228     (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*C    1295     (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*CONS;
1229         sum->push_back(secondPoint);             1296         sum->push_back(secondPoint);
1230         for (std::size_t hh=2;hh<nip-1;++hh)  << 1297         for (size_t hh=2;hh<nip-1;hh++)
1231     {                                            1298     {
1232       G4double previous = (*sum)[hh-1];          1299       G4double previous = (*sum)[hh-1];
1233       G4double next = previous+(13.0*((*fun)[    1300       G4double next = previous+(13.0*((*fun)[hh-1]+(*fun)[hh])-
1234               (*fun)[hh+1]-(*fun)[hh-2])*HCON    1301               (*fun)[hh+1]-(*fun)[hh-2])*HCONS;
1235       sum->push_back(next);                      1302       sum->push_back(next);
1236     }                                            1303     }
1237         G4double last = (*sum)[nip-2]+(5.0*(*    1304         G4double last = (*sum)[nip-2]+(5.0*(*fun)[nip-1]+8.0*(*fun)[nip-2]-
1238                (*fun)[nip-3])*CONS;              1305                (*fun)[nip-3])*CONS;
1239         sum->push_back(last);                    1306         sum->push_back(last);
1240         thePMax = thePAC + (*sum)[sum->size()    1307         thePMax = thePAC + (*sum)[sum->size()-1]; //last point
1241         delete fun;                              1308         delete fun;
1242         delete sum;                              1309         delete sum;
1243       }                                          1310       }
1244     else                                         1311     else
1245       {                                          1312       {
1246         thePMax = 1.0;                           1313         thePMax = 1.0;
1247       }                                          1314       }
1248   }                                              1315   }
1249       else                                       1316       else
1250   {                                              1317   {
1251     thePMax = theTable->GetPAC(0);               1318     thePMax = theTable->GetPAC(0);
1252   }                                              1319   }
1253                                                  1320 
1254       //Write number in the table                1321       //Write number in the table
1255       theVec->PutValue(ie,energy,thePMax);       1322       theVec->PutValue(ie,energy,thePMax);
1256   }                                              1323   }
1257                                                  1324 
1258   fPMaxTable->insert(std::make_pair(mat,theVe << 1325   pMaxTable->insert(std::make_pair(mat,theVec));
1259   return;                                        1326   return;
                                                   >> 1327 
1260 }                                                1328 }
1261                                                  1329 
1262 //....oooOO0OOooo........oooOO0OOooo........o    1330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1263                                                  1331 
1264 void G4PenelopeRayleighModel::DumpFormFactorT    1332 void G4PenelopeRayleighModel::DumpFormFactorTable(const G4Material* mat)
1265 {                                                1333 {
1266   G4cout << "********************************    1334   G4cout << "*****************************************************************" << G4endl;
1267   G4cout << "G4PenelopeRayleighModel: Form Fa    1335   G4cout << "G4PenelopeRayleighModel: Form Factor Table for " << mat->GetName() << G4endl;
1268   //try to use the same format as Penelope-Fo    1336   //try to use the same format as Penelope-Fortran, namely Q (/m_e*c) and F
1269   G4cout <<  "Q/(m_e*c)                 F(Q)     1337   G4cout <<  "Q/(m_e*c)                 F(Q)     " << G4endl;
1270   G4cout << "********************************    1338   G4cout << "*****************************************************************" << G4endl;
1271   if (!fLogFormFactorTable->count(mat))       << 1339   if (!logFormFactorTable->count(mat))
1272     BuildFormFactorTable(mat);                   1340     BuildFormFactorTable(mat);
1273                                                  1341 
1274   G4PhysicsFreeVector* theVec = fLogFormFacto << 1342   G4PhysicsFreeVector* theVec = logFormFactorTable->find(mat)->second;
1275   for (std::size_t i=0;i<theVec->GetVectorLen << 1343   for (size_t i=0;i<theVec->GetVectorLength();i++)
1276     {                                            1344     {
1277       G4double logQ2 = theVec->GetLowEdgeEner    1345       G4double logQ2 = theVec->GetLowEdgeEnergy(i);
1278       G4double Q = G4Exp(0.5*logQ2);             1346       G4double Q = G4Exp(0.5*logQ2);
1279       G4double logF2 = (*theVec)[i];             1347       G4double logF2 = (*theVec)[i];
1280       G4double F = G4Exp(0.5*logF2);             1348       G4double F = G4Exp(0.5*logF2);
1281       G4cout << Q << "              " << F <<    1349       G4cout << Q << "              " << F << G4endl;
1282     }                                            1350     }
1283   //DONE                                         1351   //DONE
1284   return;                                        1352   return;
1285 }                                                1353 }
1286                                                  1354 
1287 //....oooOO0OOooo........oooOO0OOooo........o    1355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...
1288                                                  1356 
1289 void G4PenelopeRayleighModel::SetParticle(con    1357 void G4PenelopeRayleighModel::SetParticle(const G4ParticleDefinition* p)
1290 {                                                1358 {
1291   if(!fParticle) {                               1359   if(!fParticle) {
1292     fParticle = p;                               1360     fParticle = p;
1293   }                                              1361   }
1294 }                                                1362 }
1295                                                  1363