Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // Author: Luciano Pandola 27 // Author: Luciano Pandola 28 // 28 // 29 // History: 29 // History: 30 // -------- 30 // -------- 31 // 03 Dec 2009 L Pandola First implementa 31 // 03 Dec 2009 L Pandola First implementation 32 // 25 May 2011 L.Pandola Renamed (make v2 32 // 25 May 2011 L.Pandola Renamed (make v2008 as default Penelope) 33 // 19 Sep 2013 L.Pandola Migration to MT 33 // 19 Sep 2013 L.Pandola Migration to MT 34 // 34 // 35 35 36 #include "G4PenelopeRayleighModel.hh" 36 #include "G4PenelopeRayleighModel.hh" 37 #include "G4PhysicalConstants.hh" 37 #include "G4PhysicalConstants.hh" 38 #include "G4SystemOfUnits.hh" 38 #include "G4SystemOfUnits.hh" 39 #include "G4PenelopeSamplingData.hh" 39 #include "G4PenelopeSamplingData.hh" 40 #include "G4ParticleDefinition.hh" 40 #include "G4ParticleDefinition.hh" 41 #include "G4MaterialCutsCouple.hh" 41 #include "G4MaterialCutsCouple.hh" 42 #include "G4ProductionCutsTable.hh" 42 #include "G4ProductionCutsTable.hh" 43 #include "G4DynamicParticle.hh" 43 #include "G4DynamicParticle.hh" 44 #include "G4PhysicsTable.hh" 44 #include "G4PhysicsTable.hh" 45 #include "G4ElementTable.hh" 45 #include "G4ElementTable.hh" 46 #include "G4Element.hh" 46 #include "G4Element.hh" 47 #include "G4PhysicsFreeVector.hh" 47 #include "G4PhysicsFreeVector.hh" 48 #include "G4AutoLock.hh" 48 #include "G4AutoLock.hh" 49 #include "G4Exp.hh" 49 #include "G4Exp.hh" 50 50 51 //....oooOO0OOooo........oooOO0OOooo........oo 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 52 52 53 const G4int G4PenelopeRayleighModel::fMaxZ; << 54 G4PhysicsFreeVector* G4PenelopeRayleighModel:: << 55 G4PhysicsFreeVector* G4PenelopeRayleighModel:: << 56 << 57 //....oooOO0OOooo........oooOO0OOooo........oo << 58 << 59 G4PenelopeRayleighModel::G4PenelopeRayleighMod 53 G4PenelopeRayleighModel::G4PenelopeRayleighModel(const G4ParticleDefinition* part, 60 const G4String& nam) 54 const G4String& nam) 61 :G4VEmModel(nam),fParticleChange(nullptr),fP << 55 :G4VEmModel(nam),fParticleChange(0),fParticle(0),isInitialised(false), 62 fLogFormFactorTable(nullptr),fPMaxTable(nul << 56 logAtomicCrossSection(0),atomicFormFactor(0),logFormFactorTable(0), 63 fIsInitialised(false),fLocalTable(false) << 57 pMaxTable(0),samplingTable(0),fLocalTable(false) 64 { 58 { 65 fIntrinsicLowEnergyLimit = 100.0*eV; 59 fIntrinsicLowEnergyLimit = 100.0*eV; 66 fIntrinsicHighEnergyLimit = 100.0*GeV; 60 fIntrinsicHighEnergyLimit = 100.0*GeV; 67 // SetLowEnergyLimit(fIntrinsicLowEnergyLim 61 // SetLowEnergyLimit(fIntrinsicLowEnergyLimit); 68 SetHighEnergyLimit(fIntrinsicHighEnergyLimit 62 SetHighEnergyLimit(fIntrinsicHighEnergyLimit); 69 63 70 if (part) 64 if (part) 71 SetParticle(part); 65 SetParticle(part); 72 66 73 // 67 // 74 fVerboseLevel= 0; << 68 verboseLevel= 0; 75 // Verbosity scale: 69 // Verbosity scale: 76 // 0 = nothing 70 // 0 = nothing 77 // 1 = warning for energy non-conservation 71 // 1 = warning for energy non-conservation 78 // 2 = details of energy budget 72 // 2 = details of energy budget 79 // 3 = calculation of cross sections, file o 73 // 3 = calculation of cross sections, file openings, sampling of atoms 80 // 4 = entering in methods 74 // 4 = entering in methods 81 75 82 //build the energy grid. It is the same for 76 //build the energy grid. It is the same for all materials 83 G4double logenergy = G4Log(fIntrinsicLowEner 77 G4double logenergy = G4Log(fIntrinsicLowEnergyLimit/2.); 84 G4double logmaxenergy = G4Log(1.5*fIntrinsic 78 G4double logmaxenergy = G4Log(1.5*fIntrinsicHighEnergyLimit); 85 //finer grid below 160 keV 79 //finer grid below 160 keV 86 G4double logtransitionenergy = G4Log(160*keV 80 G4double logtransitionenergy = G4Log(160*keV); 87 G4double logfactor1 = G4Log(10.)/250.; 81 G4double logfactor1 = G4Log(10.)/250.; 88 G4double logfactor2 = logfactor1*10; 82 G4double logfactor2 = logfactor1*10; 89 fLogEnergyGridPMax.push_back(logenergy); << 83 logEnergyGridPMax.push_back(logenergy); 90 do{ 84 do{ 91 if (logenergy < logtransitionenergy) 85 if (logenergy < logtransitionenergy) 92 logenergy += logfactor1; 86 logenergy += logfactor1; 93 else 87 else 94 logenergy += logfactor2; 88 logenergy += logfactor2; 95 fLogEnergyGridPMax.push_back(logenergy); << 89 logEnergyGridPMax.push_back(logenergy); 96 }while (logenergy < logmaxenergy); 90 }while (logenergy < logmaxenergy); 97 } 91 } 98 92 99 //....oooOO0OOooo........oooOO0OOooo........oo 93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 100 94 101 G4PenelopeRayleighModel::~G4PenelopeRayleighMo 95 G4PenelopeRayleighModel::~G4PenelopeRayleighModel() 102 { 96 { 103 if (IsMaster() || fLocalTable) 97 if (IsMaster() || fLocalTable) 104 { 98 { 105 << 99 if (logAtomicCrossSection) 106 for(G4int i=0; i<=fMaxZ; ++i) << 107 { 100 { 108 if(fLogAtomicCrossSection[i]) << 101 for (auto& item : (*logAtomicCrossSection)) 109 { << 102 if (item.second) delete item.second; 110 delete fLogAtomicCrossSection[i]; << 103 delete logAtomicCrossSection; 111 fLogAtomicCrossSection[i] = nullptr; << 104 logAtomicCrossSection = nullptr; 112 } << 105 } 113 if(fAtomicFormFactor[i]) << 106 if (atomicFormFactor) 114 { << 107 { 115 delete fAtomicFormFactor[i]; << 108 for (auto& item : (*atomicFormFactor)) 116 fAtomicFormFactor[i] = nullptr; << 109 if (item.second) delete item.second; 117 } << 110 delete atomicFormFactor; >> 111 atomicFormFactor = nullptr; 118 } 112 } 119 ClearTables(); 113 ClearTables(); 120 } 114 } 121 } 115 } 122 116 123 //....oooOO0OOooo........oooOO0OOooo........oo 117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 void G4PenelopeRayleighModel::ClearTables() 118 void G4PenelopeRayleighModel::ClearTables() 125 { 119 { 126 if (fLogFormFactorTable) << 120 /* >> 121 if (!IsMaster()) >> 122 //Should not be here! >> 123 G4Exception("G4PenelopeRayleighModel::ClearTables()", >> 124 "em0100",FatalException,"Worker thread in this method"); >> 125 */ >> 126 >> 127 if (logFormFactorTable) 127 { 128 { 128 for (auto& item : (*fLogFormFactorTable << 129 for (auto& item : (*logFormFactorTable)) 129 if (item.second) delete item.second; 130 if (item.second) delete item.second; 130 delete fLogFormFactorTable; << 131 delete logFormFactorTable; 131 fLogFormFactorTable = nullptr; //zero e << 132 logFormFactorTable = nullptr; //zero explicitly 132 } 133 } 133 if (fPMaxTable) << 134 >> 135 if (pMaxTable) 134 { 136 { 135 for (auto& item : (*fPMaxTable)) << 137 for (auto& item : (*pMaxTable)) 136 if (item.second) delete item.second; 138 if (item.second) delete item.second; 137 delete fPMaxTable; << 139 delete pMaxTable; 138 fPMaxTable = nullptr; //zero explicitly << 140 pMaxTable = nullptr; //zero explicitly 139 } 141 } 140 if (fSamplingTable) << 142 >> 143 if (samplingTable) 141 { 144 { 142 for (auto& item : (*fSamplingTable)) << 145 for (auto& item : (*samplingTable)) 143 if (item.second) delete item.second; 146 if (item.second) delete item.second; 144 delete fSamplingTable; << 147 delete samplingTable; 145 fSamplingTable = nullptr; //zero explic << 148 samplingTable = nullptr; //zero explicitly 146 } 149 } >> 150 147 return; 151 return; 148 } 152 } 149 153 150 //....oooOO0OOooo........oooOO0OOooo........oo 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 151 155 152 void G4PenelopeRayleighModel::Initialise(const 156 void G4PenelopeRayleighModel::Initialise(const G4ParticleDefinition* part, 153 const G4DataVector& ) 157 const G4DataVector& ) 154 { 158 { 155 if (fVerboseLevel > 3) << 159 if (verboseLevel > 3) 156 G4cout << "Calling G4PenelopeRayleighModel 160 G4cout << "Calling G4PenelopeRayleighModel::Initialise()" << G4endl; 157 161 158 SetParticle(part); 162 SetParticle(part); 159 163 160 //Only the master model creates/fills/destro 164 //Only the master model creates/fills/destroys the tables 161 if (IsMaster() && part == fParticle) 165 if (IsMaster() && part == fParticle) 162 { 166 { 163 //clear tables depending on materials, n 167 //clear tables depending on materials, not the atomic ones 164 ClearTables(); 168 ClearTables(); 165 169 166 if (fVerboseLevel > 3) << 170 if (verboseLevel > 3) 167 G4cout << "Calling G4PenelopeRayleighModel:: 171 G4cout << "Calling G4PenelopeRayleighModel::Initialise() [master]" << G4endl; 168 172 169 //create new tables << 173 //create new tables 170 if (!fLogFormFactorTable) << 174 // 171 fLogFormFactorTable = new std::map<const G4M << 175 // logAtomicCrossSection and atomicFormFactor are created only once, 172 if (!fPMaxTable) << 176 // since they are never cleared 173 fPMaxTable = new std::map<const G4Material*, << 177 if (!logAtomicCrossSection) 174 if (!fSamplingTable) << 178 logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>; 175 fSamplingTable = new std::map<const G4Materi << 179 if (!atomicFormFactor) >> 180 atomicFormFactor = new std::map<G4int,G4PhysicsFreeVector*>; >> 181 >> 182 if (!logFormFactorTable) >> 183 logFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; >> 184 if (!pMaxTable) >> 185 pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; >> 186 if (!samplingTable) >> 187 samplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>; >> 188 176 189 177 G4ProductionCutsTable* theCoupleTable = 190 G4ProductionCutsTable* theCoupleTable = 178 G4ProductionCutsTable::GetProductionCutsTabl 191 G4ProductionCutsTable::GetProductionCutsTable(); 179 192 180 for (G4int i=0;i<(G4int)theCoupleTable-> << 193 for (size_t i=0;i<theCoupleTable->GetTableSize();i++) 181 { 194 { 182 const G4Material* material = 195 const G4Material* material = 183 theCoupleTable->GetMaterialCutsCouple(i) 196 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial(); 184 const G4ElementVector* theElementVector = 197 const G4ElementVector* theElementVector = material->GetElementVector(); 185 198 186 for (std::size_t j=0;j<material->GetNumber << 199 for (size_t j=0;j<material->GetNumberOfElements();j++) 187 { 200 { 188 G4int iZ = theElementVector->at(j)->Ge 201 G4int iZ = theElementVector->at(j)->GetZasInt(); 189 //read data files only in the master 202 //read data files only in the master 190 if (!fLogAtomicCrossSection[iZ]) << 203 if (!logAtomicCrossSection->count(iZ)) 191 ReadDataFile(iZ); 204 ReadDataFile(iZ); 192 } 205 } 193 206 194 //1) If the table has not been built for t 207 //1) If the table has not been built for the material, do it! 195 if (!fLogFormFactorTable->count(material)) << 208 if (!logFormFactorTable->count(material)) 196 BuildFormFactorTable(material); 209 BuildFormFactorTable(material); 197 210 198 //2) retrieve or build the sampling table 211 //2) retrieve or build the sampling table 199 if (!(fSamplingTable->count(material))) << 212 if (!(samplingTable->count(material))) 200 InitializeSamplingAlgorithm(material); 213 InitializeSamplingAlgorithm(material); 201 214 202 //3) retrieve or build the pMax data 215 //3) retrieve or build the pMax data 203 if (!fPMaxTable->count(material)) << 216 if (!pMaxTable->count(material)) 204 GetPMaxTable(material); 217 GetPMaxTable(material); >> 218 205 } 219 } 206 220 207 if (fVerboseLevel > 1) { << 221 if (verboseLevel > 1) { 208 G4cout << "Penelope Rayleigh model v2008 is 222 G4cout << "Penelope Rayleigh model v2008 is initialized " << G4endl 209 << "Energy range: " 223 << "Energy range: " 210 << LowEnergyLimit() / keV << " keV - 224 << LowEnergyLimit() / keV << " keV - " 211 << HighEnergyLimit() / GeV << " GeV" 225 << HighEnergyLimit() / GeV << " GeV" 212 << G4endl; 226 << G4endl; 213 } 227 } 214 } 228 } 215 229 216 if(fIsInitialised) return; << 230 if(isInitialised) return; 217 fParticleChange = GetParticleChangeForGamma( 231 fParticleChange = GetParticleChangeForGamma(); 218 fIsInitialised = true; << 232 isInitialised = true; 219 } 233 } 220 234 221 //....oooOO0OOooo........oooOO0OOooo........oo 235 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 222 236 223 void G4PenelopeRayleighModel::InitialiseLocal( 237 void G4PenelopeRayleighModel::InitialiseLocal(const G4ParticleDefinition* part, 224 G4VEmModel *masterModel) 238 G4VEmModel *masterModel) 225 { 239 { 226 if (fVerboseLevel > 3) << 240 if (verboseLevel > 3) 227 G4cout << "Calling G4PenelopeRayleighMode 241 G4cout << "Calling G4PenelopeRayleighModel::InitialiseLocal()" << G4endl; >> 242 228 // 243 // 229 //Check that particle matches: one might hav 244 //Check that particle matches: one might have multiple master models (e.g. 230 //for e+ and e-). 245 //for e+ and e-). 231 // 246 // 232 if (part == fParticle) 247 if (part == fParticle) 233 { 248 { 234 //Get the const table pointers from the 249 //Get the const table pointers from the master to the workers 235 const G4PenelopeRayleighModel* theModel 250 const G4PenelopeRayleighModel* theModel = 236 static_cast<G4PenelopeRayleighModel*> (maste 251 static_cast<G4PenelopeRayleighModel*> (masterModel); 237 252 238 //Copy pointers to the data tables 253 //Copy pointers to the data tables 239 for(G4int i=0; i<=fMaxZ; ++i) << 254 logAtomicCrossSection = theModel->logAtomicCrossSection; 240 { << 255 atomicFormFactor = theModel->atomicFormFactor; 241 fLogAtomicCrossSection[i] = theModel->fLog << 256 logFormFactorTable = theModel->logFormFactorTable; 242 fAtomicFormFactor[i] = theModel->fAtomicFo << 257 pMaxTable = theModel->pMaxTable; 243 } << 258 samplingTable = theModel->samplingTable; 244 fLogFormFactorTable = theModel->fLogForm << 245 fPMaxTable = theModel->fPMaxTable; << 246 fSamplingTable = theModel->fSamplingTabl << 247 259 248 //copy the G4DataVector with the grid 260 //copy the G4DataVector with the grid 249 fLogQSquareGrid = theModel->fLogQSquareG << 261 logQSquareGrid = theModel->logQSquareGrid; 250 262 251 //Same verbosity for all workers, as the 263 //Same verbosity for all workers, as the master 252 fVerboseLevel = theModel->fVerboseLevel; << 264 verboseLevel = theModel->verboseLevel; 253 } 265 } 254 266 255 return; 267 return; 256 } 268 } 257 269 258 270 259 //....oooOO0OOooo........oooOO0OOooo........oo 271 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 260 namespace { G4Mutex PenelopeRayleighModelMute 272 namespace { G4Mutex PenelopeRayleighModelMutex = G4MUTEX_INITIALIZER; } 261 G4double G4PenelopeRayleighModel::ComputeCross 273 G4double G4PenelopeRayleighModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 262 G4double energy, 274 G4double energy, 263 G4double Z, 275 G4double Z, 264 G4double, 276 G4double, 265 G4double, 277 G4double, 266 G4double) 278 G4double) 267 { 279 { 268 // Cross section of Rayleigh scattering in P 280 // Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97 269 // tabulation, Cuellen et al. (1997), with n 281 // tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel 270 // et al. J. Phys. Chem. Ref. Data 4 (1975) 282 // et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615. 271 283 272 if (fVerboseLevel > 3) << 284 if (verboseLevel > 3) 273 G4cout << "Calling CrossSectionPerAtom() o 285 G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModel" << G4endl; 274 286 275 G4int iZ = G4int(Z); << 287 G4int iZ = (G4int) Z; 276 288 277 if (!fLogAtomicCrossSection[iZ]) << 289 //Either Initialize() was not called, or we are in a slave and InitializeLocal() was >> 290 //not invoked >> 291 if (!logAtomicCrossSection) >> 292 { >> 293 //create a **thread-local** version of the table. Used only for G4EmCalculator and >> 294 //Unit Tests >> 295 fLocalTable = true; >> 296 logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>; >> 297 } >> 298 //now it should be ok >> 299 if (!logAtomicCrossSection->count(iZ)) 278 { 300 { 279 //If we are here, it means that Initial 301 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was 280 //not filled up. This can happen in a U 302 //not filled up. This can happen in a UnitTest or via G4EmCalculator 281 if (fVerboseLevel > 0) << 303 if (verboseLevel > 0) 282 { 304 { 283 //Issue a G4Exception (warning) only in ve 305 //Issue a G4Exception (warning) only in verbose mode 284 G4ExceptionDescription ed; 306 G4ExceptionDescription ed; 285 ed << "Unable to retrieve the cross sectio 307 ed << "Unable to retrieve the cross section table for Z=" << iZ << G4endl; 286 ed << "This can happen only in Unit Tests 308 ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl; 287 G4Exception("G4PenelopeRayleighModel::Comp 309 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()", 288 "em2040",JustWarning,ed); 310 "em2040",JustWarning,ed); 289 } 311 } 290 //protect file reading via autolock 312 //protect file reading via autolock 291 G4AutoLock lock(&PenelopeRayleighModelM 313 G4AutoLock lock(&PenelopeRayleighModelMutex); 292 ReadDataFile(iZ); 314 ReadDataFile(iZ); 293 lock.unlock(); 315 lock.unlock(); 294 } 316 } 295 317 296 G4double cross = 0; 318 G4double cross = 0; 297 G4PhysicsFreeVector* atom = fLogAtomicCross << 319 >> 320 G4PhysicsFreeVector* atom = logAtomicCrossSection->find(iZ)->second; 298 if (!atom) 321 if (!atom) 299 { 322 { 300 G4ExceptionDescription ed; 323 G4ExceptionDescription ed; 301 ed << "Unable to find Z=" << iZ << " in 324 ed << "Unable to find Z=" << iZ << " in the atomic cross section table" << G4endl; 302 G4Exception("G4PenelopeRayleighModel::C 325 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()", 303 "em2041",FatalException,ed); 326 "em2041",FatalException,ed); 304 return 0; 327 return 0; 305 } 328 } 306 G4double logene = G4Log(energy); 329 G4double logene = G4Log(energy); 307 G4double logXS = atom->Value(logene); 330 G4double logXS = atom->Value(logene); 308 cross = G4Exp(logXS); 331 cross = G4Exp(logXS); 309 332 310 if (fVerboseLevel > 2) << 333 if (verboseLevel > 2) 311 { 334 { 312 G4cout << "Rayleigh cross section at " 335 G4cout << "Rayleigh cross section at " << energy/keV << " keV for Z=" << Z << 313 " = " << cross/barn << " barn" << G4endl; 336 " = " << cross/barn << " barn" << G4endl; 314 } 337 } >> 338 315 return cross; 339 return cross; 316 } 340 } 317 341 318 342 319 //....oooOO0OOooo........oooOO0OOooo........oo 343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 320 void G4PenelopeRayleighModel::BuildFormFactorT 344 void G4PenelopeRayleighModel::BuildFormFactorTable(const G4Material* material) 321 { 345 { 322 /* << 346 323 1) get composition and equivalent molecula << 347 /* 324 */ << 348 1) get composition and equivalent molecular density 325 std::size_t nElements = material->GetNumberO << 349 */ >> 350 >> 351 G4int nElements = material->GetNumberOfElements(); 326 const G4ElementVector* elementVector = mater 352 const G4ElementVector* elementVector = material->GetElementVector(); 327 const G4double* fractionVector = material->G 353 const G4double* fractionVector = material->GetFractionVector(); 328 354 329 std::vector<G4double> *StechiometricFactors 355 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>; 330 for (std::size_t i=0;i<nElements;++i) << 356 for (G4int i=0;i<nElements;i++) 331 { 357 { 332 G4double fraction = fractionVector[i]; 358 G4double fraction = fractionVector[i]; 333 G4double atomicWeigth = (*elementVector) 359 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); 334 StechiometricFactors->push_back(fraction 360 StechiometricFactors->push_back(fraction/atomicWeigth); 335 } 361 } 336 //Find max 362 //Find max 337 G4double MaxStechiometricFactor = 0.; 363 G4double MaxStechiometricFactor = 0.; 338 for (std::size_t i=0;i<nElements;++i) << 364 for (G4int i=0;i<nElements;i++) 339 { 365 { 340 if ((*StechiometricFactors)[i] > MaxStec 366 if ((*StechiometricFactors)[i] > MaxStechiometricFactor) 341 MaxStechiometricFactor = (*Stechiometr 367 MaxStechiometricFactor = (*StechiometricFactors)[i]; 342 } 368 } 343 if (MaxStechiometricFactor<1e-16) 369 if (MaxStechiometricFactor<1e-16) 344 { 370 { 345 G4ExceptionDescription ed; 371 G4ExceptionDescription ed; 346 ed << "Inconsistent data of atomic compo 372 ed << "Inconsistent data of atomic composition for " << 347 material->GetName() << G4endl; 373 material->GetName() << G4endl; 348 G4Exception("G4PenelopeRayleighModel::Bu 374 G4Exception("G4PenelopeRayleighModel::BuildFormFactorTable()", 349 "em2042",FatalException,ed); 375 "em2042",FatalException,ed); 350 } 376 } 351 //Normalize 377 //Normalize 352 for (std::size_t i=0;i<nElements;++i) << 378 for (G4int i=0;i<nElements;i++) 353 (*StechiometricFactors)[i] /= MaxStechiom 379 (*StechiometricFactors)[i] /= MaxStechiometricFactor; 354 380 >> 381 // Equivalent atoms per molecule >> 382 G4double atomsPerMolecule = 0; >> 383 for (G4int i=0;i<nElements;i++) >> 384 atomsPerMolecule += (*StechiometricFactors)[i]; >> 385 355 /* 386 /* 356 CREATE THE FORM FACTOR TABLE 387 CREATE THE FORM FACTOR TABLE 357 */ 388 */ 358 G4PhysicsFreeVector* theFFVec = new G4Physic << 389 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector(logQSquareGrid.size()); >> 390 theFFVec->SetSpline(true); 359 391 360 for (std::size_t k=0;k<fLogQSquareGrid.size( << 392 for (size_t k=0;k<logQSquareGrid.size();k++) 361 { 393 { 362 G4double ff2 = 0; //squared form factor 394 G4double ff2 = 0; //squared form factor 363 for (std::size_t i=0;i<nElements;++i) << 395 for (G4int i=0;i<nElements;i++) 364 { 396 { 365 G4int iZ = (*elementVector)[i]->GetZasInt( 397 G4int iZ = (*elementVector)[i]->GetZasInt(); 366 G4PhysicsFreeVector* theAtomVec = fAtomicF << 398 G4PhysicsFreeVector* theAtomVec = atomicFormFactor->find(iZ)->second; 367 G4double f = (*theAtomVec)[k]; //the q-gri 399 G4double f = (*theAtomVec)[k]; //the q-grid is always the same 368 ff2 += f*f*(*StechiometricFactors)[i]; 400 ff2 += f*f*(*StechiometricFactors)[i]; 369 } 401 } 370 if (ff2) 402 if (ff2) 371 theFFVec->PutValue(k,fLogQSquareGrid[k],G4Lo << 403 theFFVec->PutValue(k,logQSquareGrid[k],G4Log(ff2)); //NOTICE: THIS IS log(Q^2) vs. log(F^2) 372 } 404 } 373 theFFVec->FillSecondDerivatives(); //vector << 405 logFormFactorTable->insert(std::make_pair(material,theFFVec)); 374 fLogFormFactorTable->insert(std::make_pair(m << 375 406 376 delete StechiometricFactors; 407 delete StechiometricFactors; >> 408 377 return; 409 return; 378 } 410 } 379 411 >> 412 380 //....oooOO0OOooo........oooOO0OOooo........oo 413 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 381 414 382 void G4PenelopeRayleighModel::SampleSecondarie 415 void G4PenelopeRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* , 383 const G4MaterialCutsCouple* couple 416 const G4MaterialCutsCouple* couple, 384 const G4DynamicParticle* aDynamicG 417 const G4DynamicParticle* aDynamicGamma, 385 G4double, 418 G4double, 386 G4double) 419 G4double) 387 { 420 { 388 // Sampling of the Rayleigh final state (nam 421 // Sampling of the Rayleigh final state (namely, scattering angle of the photon) 389 // from the Penelope2008 model. The scatteri 422 // from the Penelope2008 model. The scattering angle is sampled from the atomic 390 // cross section dOmega/d(cosTheta) from Bor 423 // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding 391 // anomalous scattering effects. The Form Fa 424 // anomalous scattering effects. The Form Factor F(Q) function which appears in the 392 // analytical cross section is retrieved via 425 // analytical cross section is retrieved via the method GetFSquared(); atomic data 393 // are tabulated for F(Q). Form factor for c 426 // are tabulated for F(Q). Form factor for compounds is calculated according to 394 // the additivity rule. The sampling from th 427 // the additivity rule. The sampling from the F(Q) is made via a Rational Inverse 395 // Transform with Aliasing (RITA) algorithm; 428 // Transform with Aliasing (RITA) algorithm; RITA parameters are calculated once 396 // for each material and managed by G4Penelo 429 // for each material and managed by G4PenelopeSamplingData objects. 397 // The sampling algorithm (rejection method) 430 // The sampling algorithm (rejection method) has efficiency 67% at low energy, and 398 // increases with energy. For E=100 keV the 431 // increases with energy. For E=100 keV the efficiency is 100% and 86% for 399 // hydrogen and uranium, respectively. 432 // hydrogen and uranium, respectively. 400 433 401 if (fVerboseLevel > 3) << 434 if (verboseLevel > 3) 402 G4cout << "Calling SamplingSecondaries() o 435 G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModel" << G4endl; 403 436 404 G4double photonEnergy0 = aDynamicGamma->GetK 437 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 405 438 406 if (photonEnergy0 <= fIntrinsicLowEnergyLimi 439 if (photonEnergy0 <= fIntrinsicLowEnergyLimit) 407 { 440 { 408 fParticleChange->ProposeTrackStatus(fSto 441 fParticleChange->ProposeTrackStatus(fStopAndKill); 409 fParticleChange->SetProposedKineticEnerg 442 fParticleChange->SetProposedKineticEnergy(0.); 410 fParticleChange->ProposeLocalEnergyDepos 443 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 411 return ; 444 return ; 412 } 445 } 413 446 414 G4ParticleMomentum photonDirection0 = aDynam 447 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 415 448 416 const G4Material* theMat = couple->GetMateri 449 const G4Material* theMat = couple->GetMaterial(); 417 450 >> 451 418 //1) Verify if tables are ready 452 //1) Verify if tables are ready 419 //Either Initialize() was not called, or we 453 //Either Initialize() was not called, or we are in a slave and InitializeLocal() was 420 //not invoked 454 //not invoked 421 if (!fPMaxTable || !fSamplingTable || !fLogF << 455 if (!pMaxTable || !samplingTable || !logAtomicCrossSection || !atomicFormFactor || >> 456 !logFormFactorTable) 422 { 457 { 423 //create a **thread-local** version of t 458 //create a **thread-local** version of the table. Used only for G4EmCalculator and 424 //Unit Tests 459 //Unit Tests 425 fLocalTable = true; 460 fLocalTable = true; 426 if (!fLogFormFactorTable) << 461 if (!logAtomicCrossSection) 427 fLogFormFactorTable = new std::map<const G4M << 462 logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>; 428 if (!fPMaxTable) << 463 if (!atomicFormFactor) 429 fPMaxTable = new std::map<const G4Material*, << 464 atomicFormFactor = new std::map<G4int,G4PhysicsFreeVector*>; 430 if (!fSamplingTable) << 465 if (!logFormFactorTable) 431 fSamplingTable = new std::map<const G4Materi << 466 logFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; >> 467 if (!pMaxTable) >> 468 pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; >> 469 if (!samplingTable) >> 470 samplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>; 432 } 471 } 433 472 434 if (!fSamplingTable->count(theMat)) << 473 if (!samplingTable->count(theMat)) 435 { 474 { 436 //If we are here, it means that Initiali 475 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was 437 //not filled up. This can happen in a Un 476 //not filled up. This can happen in a UnitTest 438 if (fVerboseLevel > 0) << 477 if (verboseLevel > 0) 439 { 478 { 440 //Issue a G4Exception (warning) only in ve 479 //Issue a G4Exception (warning) only in verbose mode 441 G4ExceptionDescription ed; 480 G4ExceptionDescription ed; 442 ed << "Unable to find the fSamplingTable d << 481 ed << "Unable to find the samplingTable data for " << 443 theMat->GetName() << G4endl; 482 theMat->GetName() << G4endl; 444 ed << "This can happen only in Unit Tests" 483 ed << "This can happen only in Unit Tests" << G4endl; 445 G4Exception("G4PenelopeRayleighModel::Samp 484 G4Exception("G4PenelopeRayleighModel::SampleSecondaries()", 446 "em2019",JustWarning,ed); 485 "em2019",JustWarning,ed); 447 } 486 } 448 const G4ElementVector* theElementVector 487 const G4ElementVector* theElementVector = theMat->GetElementVector(); 449 //protect file reading via autolock 488 //protect file reading via autolock 450 G4AutoLock lock(&PenelopeRayleighModelMu 489 G4AutoLock lock(&PenelopeRayleighModelMutex); 451 for (std::size_t j=0;j<theMat->GetNumber << 490 for (size_t j=0;j<theMat->GetNumberOfElements();j++) 452 { 491 { 453 G4int iZ = theElementVector->at(j)->GetZas 492 G4int iZ = theElementVector->at(j)->GetZasInt(); 454 if (!fLogAtomicCrossSection[iZ]) << 493 if (!logAtomicCrossSection->count(iZ)) 455 { 494 { 456 lock.lock(); 495 lock.lock(); 457 ReadDataFile(iZ); 496 ReadDataFile(iZ); 458 lock.unlock(); 497 lock.unlock(); 459 } 498 } 460 } 499 } 461 lock.lock(); 500 lock.lock(); 462 //1) If the table has not been built for 501 //1) If the table has not been built for the material, do it! 463 if (!fLogFormFactorTable->count(theMat)) << 502 if (!logFormFactorTable->count(theMat)) 464 BuildFormFactorTable(theMat); 503 BuildFormFactorTable(theMat); 465 504 466 //2) retrieve or build the sampling tabl 505 //2) retrieve or build the sampling table 467 if (!(fSamplingTable->count(theMat))) << 506 if (!(samplingTable->count(theMat))) 468 InitializeSamplingAlgorithm(theMat); 507 InitializeSamplingAlgorithm(theMat); 469 508 470 //3) retrieve or build the pMax data 509 //3) retrieve or build the pMax data 471 if (!fPMaxTable->count(theMat)) << 510 if (!pMaxTable->count(theMat)) 472 GetPMaxTable(theMat); 511 GetPMaxTable(theMat); 473 lock.unlock(); 512 lock.unlock(); 474 } 513 } 475 514 476 //Ok, restart the job 515 //Ok, restart the job 477 G4PenelopeSamplingData* theDataTable = fSamp << 516 478 G4PhysicsFreeVector* thePMax = fPMaxTable->f << 517 G4PenelopeSamplingData* theDataTable = samplingTable->find(theMat)->second; >> 518 G4PhysicsFreeVector* thePMax = pMaxTable->find(theMat)->second; 479 519 480 G4double cosTheta = 1.0; 520 G4double cosTheta = 1.0; 481 521 482 //OK, ready to go! 522 //OK, ready to go! 483 G4double qmax = 2.0*photonEnergy0/electron_m 523 G4double qmax = 2.0*photonEnergy0/electron_mass_c2; //this is non-dimensional now 484 524 485 if (qmax < 1e-10) //very low momentum transf 525 if (qmax < 1e-10) //very low momentum transfer 486 { 526 { 487 G4bool loopAgain=false; 527 G4bool loopAgain=false; 488 do 528 do 489 { 529 { 490 loopAgain = false; 530 loopAgain = false; 491 cosTheta = 1.0-2.0*G4UniformRand(); 531 cosTheta = 1.0-2.0*G4UniformRand(); 492 G4double G = 0.5*(1+cosTheta*cosTheta); 532 G4double G = 0.5*(1+cosTheta*cosTheta); 493 if (G4UniformRand()>G) 533 if (G4UniformRand()>G) 494 loopAgain = true; 534 loopAgain = true; 495 }while(loopAgain); 535 }while(loopAgain); 496 } 536 } 497 else //larger momentum transfer 537 else //larger momentum transfer 498 { 538 { 499 std::size_t nData = theDataTable->GetNum << 539 size_t nData = theDataTable->GetNumberOfStoredPoints(); 500 G4double LastQ2inTheTable = theDataTable 540 G4double LastQ2inTheTable = theDataTable->GetX(nData-1); 501 G4double q2max = std::min(qmax*qmax,Last 541 G4double q2max = std::min(qmax*qmax,LastQ2inTheTable); 502 542 503 G4bool loopAgain = false; 543 G4bool loopAgain = false; 504 G4double MaxPValue = thePMax->Value(phot 544 G4double MaxPValue = thePMax->Value(photonEnergy0); 505 G4double xx=0; 545 G4double xx=0; 506 546 507 //Sampling by rejection method. The reje 547 //Sampling by rejection method. The rejection function is 508 //G = 0.5*(1+cos^2(theta)) 548 //G = 0.5*(1+cos^2(theta)) 509 // 549 // 510 do{ 550 do{ 511 loopAgain = false; 551 loopAgain = false; 512 G4double RandomMax = G4UniformRand()*MaxPVal 552 G4double RandomMax = G4UniformRand()*MaxPValue; 513 xx = theDataTable->SampleValue(RandomMax); 553 xx = theDataTable->SampleValue(RandomMax); 514 //xx is a random value of q^2 in (0,q2max),s 554 //xx is a random value of q^2 in (0,q2max),sampled according to 515 //F(Q^2) via the RITA algorithm 555 //F(Q^2) via the RITA algorithm 516 if (xx > q2max) 556 if (xx > q2max) 517 loopAgain = true; 557 loopAgain = true; 518 cosTheta = 1.0-2.0*xx/q2max; 558 cosTheta = 1.0-2.0*xx/q2max; 519 G4double G = 0.5*(1+cosTheta*cosTheta); 559 G4double G = 0.5*(1+cosTheta*cosTheta); 520 if (G4UniformRand()>G) 560 if (G4UniformRand()>G) 521 loopAgain = true; 561 loopAgain = true; 522 }while(loopAgain); 562 }while(loopAgain); 523 } 563 } 524 564 525 G4double sinTheta = std::sqrt(1-cosTheta*cos 565 G4double sinTheta = std::sqrt(1-cosTheta*cosTheta); 526 566 527 // Scattered photon angles. ( Z - axis along 567 // Scattered photon angles. ( Z - axis along the parent photon) 528 G4double phi = twopi * G4UniformRand() ; 568 G4double phi = twopi * G4UniformRand() ; 529 G4double dirX = sinTheta*std::cos(phi); 569 G4double dirX = sinTheta*std::cos(phi); 530 G4double dirY = sinTheta*std::sin(phi); 570 G4double dirY = sinTheta*std::sin(phi); 531 G4double dirZ = cosTheta; 571 G4double dirZ = cosTheta; 532 572 533 // Update G4VParticleChange for the scattere 573 // Update G4VParticleChange for the scattered photon 534 G4ThreeVector photonDirection1(dirX, dirY, d 574 G4ThreeVector photonDirection1(dirX, dirY, dirZ); 535 575 536 photonDirection1.rotateUz(photonDirection0); 576 photonDirection1.rotateUz(photonDirection0); 537 fParticleChange->ProposeMomentumDirection(ph 577 fParticleChange->ProposeMomentumDirection(photonDirection1) ; 538 fParticleChange->SetProposedKineticEnergy(ph 578 fParticleChange->SetProposedKineticEnergy(photonEnergy0) ; 539 579 540 return; 580 return; 541 } 581 } 542 582 543 583 544 //....oooOO0OOooo........oooOO0OOooo........oo 584 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 585 546 void G4PenelopeRayleighModel::ReadDataFile(con 586 void G4PenelopeRayleighModel::ReadDataFile(const G4int Z) 547 { 587 { 548 if (fVerboseLevel > 2) << 588 >> 589 if (verboseLevel > 2) 549 { 590 { 550 G4cout << "G4PenelopeRayleighModel::Read 591 G4cout << "G4PenelopeRayleighModel::ReadDataFile()" << G4endl; 551 G4cout << "Going to read Rayleigh data f 592 G4cout << "Going to read Rayleigh data files for Z=" << Z << G4endl; 552 } 593 } 553 const char* path = G4FindDataDir("G4LEDATA << 594 554 if(!path) << 595 char* path = std::getenv("G4LEDATA"); >> 596 if (!path) 555 { 597 { 556 G4String excep = "G4LEDATA environment v 598 G4String excep = "G4LEDATA environment variable not set!"; 557 G4Exception("G4PenelopeRayleighModel::Re 599 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 558 "em0006",FatalException,excep); 600 "em0006",FatalException,excep); 559 return; 601 return; 560 } 602 } 561 603 562 /* 604 /* 563 Read first the cross section file 605 Read first the cross section file 564 */ 606 */ 565 std::ostringstream ost; 607 std::ostringstream ost; 566 if (Z>9) 608 if (Z>9) 567 ost << path << "/penelope/rayleigh/pdgra" 609 ost << path << "/penelope/rayleigh/pdgra" << Z << ".p08"; 568 else 610 else 569 ost << path << "/penelope/rayleigh/pdgra0" 611 ost << path << "/penelope/rayleigh/pdgra0" << Z << ".p08"; 570 std::ifstream file(ost.str().c_str()); 612 std::ifstream file(ost.str().c_str()); 571 if (!file.is_open()) 613 if (!file.is_open()) 572 { 614 { 573 G4String excep = "Data file " + G4String 615 G4String excep = "Data file " + G4String(ost.str()) + " not found!"; 574 G4Exception("G4PenelopeRayleighModel::Re 616 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 575 "em0003",FatalException,excep); 617 "em0003",FatalException,excep); 576 } 618 } 577 G4int readZ =0; 619 G4int readZ =0; 578 std::size_t nPoints= 0; << 620 size_t nPoints= 0; 579 file >> readZ >> nPoints; 621 file >> readZ >> nPoints; 580 //check the right file is opened. 622 //check the right file is opened. 581 if (readZ != Z || nPoints <= 0 || nPoints >= 623 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) 582 { 624 { 583 G4ExceptionDescription ed; 625 G4ExceptionDescription ed; 584 ed << "Corrupted data file for Z=" << Z 626 ed << "Corrupted data file for Z=" << Z << G4endl; 585 G4Exception("G4PenelopeRayleighModel::Re 627 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 586 "em0005",FatalException,ed); 628 "em0005",FatalException,ed); 587 return; 629 return; 588 } 630 } 589 << 631 G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector((size_t)nPoints); 590 fLogAtomicCrossSection[Z] = new G4PhysicsFre << 591 G4double ene=0,f1=0,f2=0,xs=0; 632 G4double ene=0,f1=0,f2=0,xs=0; 592 for (std::size_t i=0;i<nPoints;++i) << 633 for (size_t i=0;i<nPoints;i++) 593 { 634 { 594 file >> ene >> f1 >> f2 >> xs; 635 file >> ene >> f1 >> f2 >> xs; 595 //dimensional quantities 636 //dimensional quantities 596 ene *= eV; 637 ene *= eV; 597 xs *= cm2; 638 xs *= cm2; 598 fLogAtomicCrossSection[Z]->PutValue(i,G4 << 639 theVec->PutValue(i,G4Log(ene),G4Log(xs)); 599 if (file.eof() && i != (nPoints-1)) //fi 640 if (file.eof() && i != (nPoints-1)) //file ended too early 600 { 641 { 601 G4ExceptionDescription ed ; 642 G4ExceptionDescription ed ; 602 ed << "Corrupted data file for Z=" << Z << 643 ed << "Corrupted data file for Z=" << Z << G4endl; 603 ed << "Found less than " << nPoints << "en 644 ed << "Found less than " << nPoints << "entries " <<G4endl; 604 G4Exception("G4PenelopeRayleighModel::Read 645 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 605 "em0005",FatalException,ed); 646 "em0005",FatalException,ed); 606 } 647 } 607 } 648 } >> 649 if (!logAtomicCrossSection) >> 650 { >> 651 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", >> 652 "em2044",FatalException,"Unable to allocate the atomic cross section table"); >> 653 delete theVec; >> 654 return; >> 655 } >> 656 logAtomicCrossSection->insert(std::make_pair(Z,theVec)); 608 file.close(); 657 file.close(); 609 658 610 /* 659 /* 611 Then read the form factor file 660 Then read the form factor file 612 */ 661 */ 613 std::ostringstream ost2; 662 std::ostringstream ost2; 614 if (Z>9) 663 if (Z>9) 615 ost2 << path << "/penelope/rayleigh/pdaff" 664 ost2 << path << "/penelope/rayleigh/pdaff" << Z << ".p08"; 616 else 665 else 617 ost2 << path << "/penelope/rayleigh/pdaff0 666 ost2 << path << "/penelope/rayleigh/pdaff0" << Z << ".p08"; 618 file.open(ost2.str().c_str()); 667 file.open(ost2.str().c_str()); 619 if (!file.is_open()) 668 if (!file.is_open()) 620 { 669 { 621 G4String excep = "Data file " + G4String 670 G4String excep = "Data file " + G4String(ost2.str()) + " not found!"; 622 G4Exception("G4PenelopeRayleighModel::Re 671 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 623 "em0003",FatalException,excep); 672 "em0003",FatalException,excep); 624 } 673 } 625 file >> readZ >> nPoints; 674 file >> readZ >> nPoints; 626 //check the right file is opened. 675 //check the right file is opened. 627 if (readZ != Z || nPoints <= 0 || nPoints >= 676 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) 628 { 677 { 629 G4ExceptionDescription ed; 678 G4ExceptionDescription ed; 630 ed << "Corrupted data file for Z=" << Z 679 ed << "Corrupted data file for Z=" << Z << G4endl; 631 G4Exception("G4PenelopeRayleighModel::Re 680 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 632 "em0005",FatalException,ed); 681 "em0005",FatalException,ed); 633 return; 682 return; 634 } 683 } 635 fAtomicFormFactor[Z] = new G4PhysicsFreeVect << 684 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector((size_t)nPoints); 636 G4double q=0,ff=0,incoh=0; 685 G4double q=0,ff=0,incoh=0; 637 G4bool fillQGrid = false; 686 G4bool fillQGrid = false; 638 //fill this vector only the first time. 687 //fill this vector only the first time. 639 if (!fLogQSquareGrid.size()) << 688 if (!logQSquareGrid.size()) 640 fillQGrid = true; 689 fillQGrid = true; 641 for (std::size_t i=0;i<nPoints;++i) << 690 for (size_t i=0;i<nPoints;i++) 642 { 691 { 643 file >> q >> ff >> incoh; 692 file >> q >> ff >> incoh; 644 //q and ff are dimensionless (q is in un 693 //q and ff are dimensionless (q is in units of (m_e*c) 645 fAtomicFormFactor[Z]->PutValue(i,q,ff); << 694 theFFVec->PutValue(i,q,ff); 646 if (fillQGrid) 695 if (fillQGrid) 647 { 696 { 648 fLogQSquareGrid.push_back(2.0*G4Log(q)); << 697 logQSquareGrid.push_back(2.0*G4Log(q)); 649 } 698 } 650 if (file.eof() && i != (nPoints-1)) //fi 699 if (file.eof() && i != (nPoints-1)) //file ended too early 651 { 700 { 652 G4ExceptionDescription ed; 701 G4ExceptionDescription ed; 653 ed << "Corrupted data file for Z=" << Z << 702 ed << "Corrupted data file for Z=" << Z << G4endl; 654 ed << "Found less than " << nPoints << "en 703 ed << "Found less than " << nPoints << "entries " <<G4endl; 655 G4Exception("G4PenelopeRayleighModel::Read 704 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 656 "em0005",FatalException,ed); 705 "em0005",FatalException,ed); 657 } 706 } 658 } 707 } >> 708 if (!atomicFormFactor) >> 709 { >> 710 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", >> 711 "em2045",FatalException, >> 712 "Unable to allocate the atomicFormFactor data table"); >> 713 delete theFFVec; >> 714 return; >> 715 } >> 716 atomicFormFactor->insert(std::make_pair(Z,theFFVec)); 659 file.close(); 717 file.close(); 660 return; 718 return; 661 } 719 } 662 720 663 //....oooOO0OOooo........oooOO0OOooo........oo 721 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 664 722 665 G4double G4PenelopeRayleighModel::GetFSquared( 723 G4double G4PenelopeRayleighModel::GetFSquared(const G4Material* mat, const G4double QSquared) 666 { 724 { 667 G4double f2 = 0; 725 G4double f2 = 0; 668 //Input value QSquared could be zero: protec 726 //Input value QSquared could be zero: protect the log() below against 669 //the FPE exception 727 //the FPE exception 670 //If Q<1e-10, set Q to 1e-10 728 //If Q<1e-10, set Q to 1e-10 671 G4double logQSquared = (QSquared>1e-10) ? G4 729 G4double logQSquared = (QSquared>1e-10) ? G4Log(QSquared) : -23.; 672 //last value of the table 730 //last value of the table 673 G4double maxlogQ2 = fLogQSquareGrid[fLogQSqu << 731 G4double maxlogQ2 = logQSquareGrid[logQSquareGrid.size()-1]; >> 732 674 733 675 //now it should be all right 734 //now it should be all right 676 G4PhysicsFreeVector* theVec = fLogFormFactor << 735 G4PhysicsFreeVector* theVec = logFormFactorTable->find(mat)->second; 677 736 678 if (!theVec) 737 if (!theVec) 679 { 738 { 680 G4ExceptionDescription ed; 739 G4ExceptionDescription ed; 681 ed << "Unable to retrieve F squared tabl 740 ed << "Unable to retrieve F squared table for " << mat->GetName() << G4endl; 682 G4Exception("G4PenelopeRayleighModel::Ge 741 G4Exception("G4PenelopeRayleighModel::GetFSquared()", 683 "em2046",FatalException,ed); 742 "em2046",FatalException,ed); 684 return 0; 743 return 0; 685 } 744 } 686 if (logQSquared < -20) // Q < 1e-9 745 if (logQSquared < -20) // Q < 1e-9 687 { 746 { 688 G4double logf2 = (*theVec)[0]; //first v 747 G4double logf2 = (*theVec)[0]; //first value of the table 689 f2 = G4Exp(logf2); 748 f2 = G4Exp(logf2); 690 } 749 } 691 else if (logQSquared > maxlogQ2) 750 else if (logQSquared > maxlogQ2) 692 f2 =0; 751 f2 =0; 693 else 752 else 694 { 753 { 695 //log(Q^2) vs. log(F^2) 754 //log(Q^2) vs. log(F^2) 696 G4double logf2 = theVec->Value(logQSquar 755 G4double logf2 = theVec->Value(logQSquared); 697 f2 = G4Exp(logf2); 756 f2 = G4Exp(logf2); 698 757 699 } 758 } 700 if (fVerboseLevel > 3) << 759 if (verboseLevel > 3) 701 { 760 { 702 G4cout << "G4PenelopeRayleighModel::GetF 761 G4cout << "G4PenelopeRayleighModel::GetFSquared() in " << mat->GetName() << G4endl; 703 G4cout << "Q^2 = " << QSquared << " (un 762 G4cout << "Q^2 = " << QSquared << " (units of 1/(m_e*c); F^2 = " << f2 << G4endl; 704 } 763 } 705 return f2; 764 return f2; 706 } 765 } 707 766 708 //....oooOO0OOooo........oooOO0OOooo........oo 767 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 709 768 710 void G4PenelopeRayleighModel::InitializeSampli 769 void G4PenelopeRayleighModel::InitializeSamplingAlgorithm(const G4Material* mat) 711 { 770 { >> 771 712 G4double q2min = 0; 772 G4double q2min = 0; 713 G4double q2max = 0; 773 G4double q2max = 0; 714 const std::size_t np = 150; //hard-coded in << 774 const size_t np = 150; //hard-coded in Penelope 715 //G4cout << "Init N= " << fLogQSquareGrid.si << 775 //G4cout << "Init N= " << logQSquareGrid.size() << G4endl; 716 for (std::size_t i=1;i<fLogQSquareGrid.size( << 776 for (size_t i=1;i<logQSquareGrid.size();i++) 717 { 777 { 718 G4double Q2 = G4Exp(fLogQSquareGrid[i]); << 778 G4double Q2 = G4Exp(logQSquareGrid[i]); 719 if (GetFSquared(mat,Q2) > 1e-35) 779 if (GetFSquared(mat,Q2) > 1e-35) 720 { 780 { 721 q2max = G4Exp(fLogQSquareGrid[i-1]); << 781 q2max = G4Exp(logQSquareGrid[i-1]); 722 } 782 } 723 //G4cout << "Q2= " << Q2 << " q2max= " < 783 //G4cout << "Q2= " << Q2 << " q2max= " << q2max << G4endl; 724 } 784 } 725 785 726 std::size_t nReducedPoints = np/4; << 786 size_t nReducedPoints = np/4; 727 787 728 //check for errors 788 //check for errors 729 if (np < 16) 789 if (np < 16) 730 { 790 { 731 G4Exception("G4PenelopeRayleighModel::In 791 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 732 "em2047",FatalException, 792 "em2047",FatalException, 733 "Too few points to initialize the sampli 793 "Too few points to initialize the sampling algorithm"); 734 } 794 } 735 if (q2min > (q2max-1e-10)) 795 if (q2min > (q2max-1e-10)) 736 { 796 { 737 G4cout << "q2min= " << q2min << " q2max= 797 G4cout << "q2min= " << q2min << " q2max= " << q2max << G4endl; 738 G4Exception("G4PenelopeRayleighModel::In 798 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 739 "em2048",FatalException, 799 "em2048",FatalException, 740 "Too narrow grid to initialize the sampl 800 "Too narrow grid to initialize the sampling algorithm"); 741 } 801 } 742 802 743 //This is subroutine RITAI0 of Penelope 803 //This is subroutine RITAI0 of Penelope 744 //Create an object of type G4PenelopeRayleig 804 //Create an object of type G4PenelopeRayleighSamplingData --> store in a map::Material* 745 805 746 //temporary vectors --> Then everything is s 806 //temporary vectors --> Then everything is stored in G4PenelopeSamplingData 747 G4DataVector* x = new G4DataVector(); 807 G4DataVector* x = new G4DataVector(); 748 808 749 /******************************************* 809 /******************************************************************************* 750 Start with a grid of NUNIF points uniforml 810 Start with a grid of NUNIF points uniformly spaced in the interval q2min,q2max 751 ******************************************** 811 ********************************************************************************/ 752 std::size_t NUNIF = std::min(std::max(((std: << 812 size_t NUNIF = std::min(std::max(((size_t)8),nReducedPoints),np/2); 753 const G4int nip = 51; //hard-coded in Penelo 813 const G4int nip = 51; //hard-coded in Penelope 754 814 755 G4double dx = (q2max-q2min)/((G4double) NUNI 815 G4double dx = (q2max-q2min)/((G4double) NUNIF-1); 756 x->push_back(q2min); 816 x->push_back(q2min); 757 for (std::size_t i=1;i<NUNIF-1;++i) << 817 for (size_t i=1;i<NUNIF-1;i++) 758 { 818 { 759 G4double app = q2min + i*dx; 819 G4double app = q2min + i*dx; 760 x->push_back(app); //increase 820 x->push_back(app); //increase 761 } 821 } 762 x->push_back(q2max); 822 x->push_back(q2max); 763 823 764 if (fVerboseLevel> 3) << 824 if (verboseLevel> 3) 765 G4cout << "Vector x has " << x->size() << 825 G4cout << "Vector x has " << x->size() << " points, while NUNIF = " << NUNIF << G4endl; 766 826 767 //Allocate temporary storage vectors 827 //Allocate temporary storage vectors 768 G4DataVector* area = new G4DataVector(); 828 G4DataVector* area = new G4DataVector(); 769 G4DataVector* a = new G4DataVector(); 829 G4DataVector* a = new G4DataVector(); 770 G4DataVector* b = new G4DataVector(); 830 G4DataVector* b = new G4DataVector(); 771 G4DataVector* c = new G4DataVector(); 831 G4DataVector* c = new G4DataVector(); 772 G4DataVector* err = new G4DataVector(); 832 G4DataVector* err = new G4DataVector(); 773 833 774 for (std::size_t i=0;i<NUNIF-1;++i) //build << 834 for (size_t i=0;i<NUNIF-1;i++) //build all points but the last 775 { 835 { 776 //Temporary vectors for this loop 836 //Temporary vectors for this loop 777 G4DataVector* pdfi = new G4DataVector(); 837 G4DataVector* pdfi = new G4DataVector(); 778 G4DataVector* pdfih = new G4DataVector() 838 G4DataVector* pdfih = new G4DataVector(); 779 G4DataVector* sumi = new G4DataVector(); 839 G4DataVector* sumi = new G4DataVector(); 780 840 781 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4do 841 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 782 G4double pdfmax = 0; 842 G4double pdfmax = 0; 783 for (G4int k=0;k<nip;k++) 843 for (G4int k=0;k<nip;k++) 784 { 844 { 785 G4double xik = (*x)[i]+k*dxi; 845 G4double xik = (*x)[i]+k*dxi; 786 G4double pdfk = std::max(GetFSquared(mat,x 846 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 787 pdfi->push_back(pdfk); 847 pdfi->push_back(pdfk); 788 pdfmax = std::max(pdfmax,pdfk); 848 pdfmax = std::max(pdfmax,pdfk); 789 if (k < (nip-1)) 849 if (k < (nip-1)) 790 { 850 { 791 G4double xih = xik + 0.5*dxi; 851 G4double xih = xik + 0.5*dxi; 792 G4double pdfIK = std::max(GetFSquared( 852 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 793 pdfih->push_back(pdfIK); 853 pdfih->push_back(pdfIK); 794 pdfmax = std::max(pdfmax,pdfIK); 854 pdfmax = std::max(pdfmax,pdfIK); 795 } 855 } 796 } 856 } 797 857 798 //Simpson's integration 858 //Simpson's integration 799 G4double cons = dxi*0.5*(1./3.); 859 G4double cons = dxi*0.5*(1./3.); 800 sumi->push_back(0.); 860 sumi->push_back(0.); 801 for (G4int k=1;k<nip;k++) 861 for (G4int k=1;k<nip;k++) 802 { 862 { 803 G4double previous = (*sumi)[k-1]; 863 G4double previous = (*sumi)[k-1]; 804 G4double next = previous + cons*((*pdfi)[k 864 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 805 sumi->push_back(next); 865 sumi->push_back(next); 806 } 866 } 807 867 808 G4double lastIntegral = (*sumi)[sumi->si 868 G4double lastIntegral = (*sumi)[sumi->size()-1]; 809 area->push_back(lastIntegral); 869 area->push_back(lastIntegral); 810 //Normalize cumulative function 870 //Normalize cumulative function 811 G4double factor = 1.0/lastIntegral; 871 G4double factor = 1.0/lastIntegral; 812 for (std::size_t k=0;k<sumi->size();++k) << 872 for (size_t k=0;k<sumi->size();k++) 813 (*sumi)[k] *= factor; 873 (*sumi)[k] *= factor; 814 874 815 //When the PDF vanishes at one of the in 875 //When the PDF vanishes at one of the interval end points, its value is modified 816 if ((*pdfi)[0] < 1e-35) 876 if ((*pdfi)[0] < 1e-35) 817 (*pdfi)[0] = 1e-5*pdfmax; 877 (*pdfi)[0] = 1e-5*pdfmax; 818 if ((*pdfi)[pdfi->size()-1] < 1e-35) 878 if ((*pdfi)[pdfi->size()-1] < 1e-35) 819 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 879 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 820 880 821 G4double pli = (*pdfi)[0]*factor; 881 G4double pli = (*pdfi)[0]*factor; 822 G4double pui = (*pdfi)[pdfi->size()-1]*f 882 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 823 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx 883 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx); 824 G4double A_temp = (1.0/(pli*dx))-1.0-B_t 884 G4double A_temp = (1.0/(pli*dx))-1.0-B_temp; 825 G4double C_temp = 1.0+A_temp+B_temp; 885 G4double C_temp = 1.0+A_temp+B_temp; 826 if (C_temp < 1e-35) 886 if (C_temp < 1e-35) 827 { 887 { 828 a->push_back(0.); 888 a->push_back(0.); 829 b->push_back(0.); 889 b->push_back(0.); 830 c->push_back(1.); 890 c->push_back(1.); 831 } 891 } 832 else 892 else 833 { 893 { 834 a->push_back(A_temp); 894 a->push_back(A_temp); 835 b->push_back(B_temp); 895 b->push_back(B_temp); 836 c->push_back(C_temp); 896 c->push_back(C_temp); 837 } 897 } 838 898 839 //OK, now get ERR(I), the integral of th 899 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 840 //and the true pdf, extended over the in 900 //and the true pdf, extended over the interval (X(I),X(I+1)) 841 G4int icase = 1; //loop code 901 G4int icase = 1; //loop code 842 G4bool reLoop = false; 902 G4bool reLoop = false; 843 err->push_back(0.); 903 err->push_back(0.); 844 do 904 do 845 { 905 { 846 reLoop = false; 906 reLoop = false; 847 (*err)[i] = 0.; //zero variable 907 (*err)[i] = 0.; //zero variable 848 for (G4int k=0;k<nip;k++) 908 for (G4int k=0;k<nip;k++) 849 { 909 { 850 G4double rr = (*sumi)[k]; 910 G4double rr = (*sumi)[k]; 851 G4double pap = (*area)[i]*(1.0+((*a)[i 911 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 852 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(* 912 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 853 if (k == 0 || k == nip-1) 913 if (k == 0 || k == nip-1) 854 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]) 914 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 855 else 915 else 856 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 916 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 857 } 917 } 858 (*err)[i] *= dxi; 918 (*err)[i] *= dxi; 859 919 860 //If err(I) is too large, the pdf is appro 920 //If err(I) is too large, the pdf is approximated by a uniform distribution 861 if ((*err)[i] > 0.1*(*area)[i] && icase == 921 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 862 { 922 { 863 (*b)[i] = 0; 923 (*b)[i] = 0; 864 (*a)[i] = 0; 924 (*a)[i] = 0; 865 (*c)[i] = 1.; 925 (*c)[i] = 1.; 866 icase = 2; 926 icase = 2; 867 reLoop = true; 927 reLoop = true; 868 } 928 } 869 }while(reLoop); 929 }while(reLoop); >> 930 870 delete pdfi; 931 delete pdfi; 871 delete pdfih; 932 delete pdfih; 872 delete sumi; 933 delete sumi; 873 } //end of first loop over i 934 } //end of first loop over i 874 935 875 //Now assign last point 936 //Now assign last point 876 (*x)[x->size()-1] = q2max; 937 (*x)[x->size()-1] = q2max; 877 a->push_back(0.); 938 a->push_back(0.); 878 b->push_back(0.); 939 b->push_back(0.); 879 c->push_back(0.); 940 c->push_back(0.); 880 err->push_back(0.); 941 err->push_back(0.); 881 area->push_back(0.); 942 area->push_back(0.); 882 943 883 if (x->size() != NUNIF || a->size() != NUNIF 944 if (x->size() != NUNIF || a->size() != NUNIF || 884 err->size() != NUNIF || area->size() != 945 err->size() != NUNIF || area->size() != NUNIF) 885 { 946 { 886 G4ExceptionDescription ed; 947 G4ExceptionDescription ed; 887 ed << "Problem in building the Table for 948 ed << "Problem in building the Table for Sampling: array dimensions do not match" << G4endl; 888 G4Exception("G4PenelopeRayleighModel::In 949 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 889 "em2049",FatalException,ed); 950 "em2049",FatalException,ed); 890 } 951 } 891 952 892 /******************************************* 953 /******************************************************************************* 893 New grid points are added by halving the su 954 New grid points are added by halving the sub-intervals with the largest absolute error 894 This is done up to np=150 points in the grid 955 This is done up to np=150 points in the grid 895 ******************************************** 956 ********************************************************************************/ 896 do 957 do 897 { 958 { 898 G4double maxError = 0.0; 959 G4double maxError = 0.0; 899 std::size_t iErrMax = 0; << 960 size_t iErrMax = 0; 900 for (std::size_t i=0;i<err->size()-2;++i << 961 for (size_t i=0;i<err->size()-2;i++) 901 { 962 { 902 //maxError is the lagest of the interval e 963 //maxError is the lagest of the interval errors err[i] 903 if ((*err)[i] > maxError) 964 if ((*err)[i] > maxError) 904 { 965 { 905 maxError = (*err)[i]; 966 maxError = (*err)[i]; 906 iErrMax = i; 967 iErrMax = i; 907 } 968 } 908 } 969 } 909 970 910 //OK, now I have to insert one new point 971 //OK, now I have to insert one new point in the position iErrMax 911 G4double newx = 0.5*((*x)[iErrMax]+(*x)[ 972 G4double newx = 0.5*((*x)[iErrMax]+(*x)[iErrMax+1]); 912 973 913 x->insert(x->begin()+iErrMax+1,newx); 974 x->insert(x->begin()+iErrMax+1,newx); 914 //Add place-holders in the other vectors 975 //Add place-holders in the other vectors 915 area->insert(area->begin()+iErrMax+1,0.) 976 area->insert(area->begin()+iErrMax+1,0.); 916 a->insert(a->begin()+iErrMax+1,0.); 977 a->insert(a->begin()+iErrMax+1,0.); 917 b->insert(b->begin()+iErrMax+1,0.); 978 b->insert(b->begin()+iErrMax+1,0.); 918 c->insert(c->begin()+iErrMax+1,0.); 979 c->insert(c->begin()+iErrMax+1,0.); 919 err->insert(err->begin()+iErrMax+1,0.); 980 err->insert(err->begin()+iErrMax+1,0.); 920 981 921 //Now calculate the other parameters 982 //Now calculate the other parameters 922 for (std::size_t i=iErrMax;i<=iErrMax+1; << 983 for (size_t i=iErrMax;i<=iErrMax+1;i++) 923 { 984 { 924 //Temporary vectors for this loop 985 //Temporary vectors for this loop 925 G4DataVector* pdfi = new G4DataVector(); 986 G4DataVector* pdfi = new G4DataVector(); 926 G4DataVector* pdfih = new G4DataVector(); 987 G4DataVector* pdfih = new G4DataVector(); 927 G4DataVector* sumi = new G4DataVector(); 988 G4DataVector* sumi = new G4DataVector(); 928 989 929 G4double dxLocal = (*x)[i+1]-(*x)[i]; 990 G4double dxLocal = (*x)[i+1]-(*x)[i]; 930 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4doub 991 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 931 G4double pdfmax = 0; 992 G4double pdfmax = 0; 932 for (G4int k=0;k<nip;k++) 993 for (G4int k=0;k<nip;k++) 933 { 994 { 934 G4double xik = (*x)[i]+k*dxi; 995 G4double xik = (*x)[i]+k*dxi; 935 G4double pdfk = std::max(GetFSquared(m 996 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 936 pdfi->push_back(pdfk); 997 pdfi->push_back(pdfk); 937 pdfmax = std::max(pdfmax,pdfk); 998 pdfmax = std::max(pdfmax,pdfk); 938 if (k < (nip-1)) 999 if (k < (nip-1)) 939 { 1000 { 940 G4double xih = xik + 0.5*dxi; 1001 G4double xih = xik + 0.5*dxi; 941 G4double pdfIK = std::max(GetFSquared(ma 1002 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 942 pdfih->push_back(pdfIK); 1003 pdfih->push_back(pdfIK); 943 pdfmax = std::max(pdfmax,pdfIK); 1004 pdfmax = std::max(pdfmax,pdfIK); 944 } 1005 } 945 } 1006 } 946 1007 947 //Simpson's integration 1008 //Simpson's integration 948 G4double cons = dxi*0.5*(1./3.); 1009 G4double cons = dxi*0.5*(1./3.); 949 sumi->push_back(0.); 1010 sumi->push_back(0.); 950 for (G4int k=1;k<nip;k++) 1011 for (G4int k=1;k<nip;k++) 951 { 1012 { 952 G4double previous = (*sumi)[k-1]; 1013 G4double previous = (*sumi)[k-1]; 953 G4double next = previous + cons*((*pdf 1014 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 954 sumi->push_back(next); 1015 sumi->push_back(next); 955 } 1016 } 956 G4double lastIntegral = (*sumi)[sumi->size 1017 G4double lastIntegral = (*sumi)[sumi->size()-1]; 957 (*area)[i] = lastIntegral; 1018 (*area)[i] = lastIntegral; 958 1019 959 //Normalize cumulative function 1020 //Normalize cumulative function 960 G4double factor = 1.0/lastIntegral; 1021 G4double factor = 1.0/lastIntegral; 961 for (std::size_t k=0;k<sumi->size();++k) << 1022 for (size_t k=0;k<sumi->size();k++) 962 (*sumi)[k] *= factor; 1023 (*sumi)[k] *= factor; 963 1024 964 //When the PDF vanishes at one of the inte 1025 //When the PDF vanishes at one of the interval end points, its value is modified 965 if ((*pdfi)[0] < 1e-35) 1026 if ((*pdfi)[0] < 1e-35) 966 (*pdfi)[0] = 1e-5*pdfmax; 1027 (*pdfi)[0] = 1e-5*pdfmax; 967 if ((*pdfi)[pdfi->size()-1] < 1e-35) 1028 if ((*pdfi)[pdfi->size()-1] < 1e-35) 968 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 1029 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 969 1030 970 G4double pli = (*pdfi)[0]*factor; 1031 G4double pli = (*pdfi)[0]*factor; 971 G4double pui = (*pdfi)[pdfi->size()-1]*fac 1032 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 972 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal 1033 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal*dxLocal); 973 G4double A_temp = (1.0/(pli*dxLocal))-1.0- 1034 G4double A_temp = (1.0/(pli*dxLocal))-1.0-B_temp; 974 G4double C_temp = 1.0+A_temp+B_temp; 1035 G4double C_temp = 1.0+A_temp+B_temp; 975 if (C_temp < 1e-35) 1036 if (C_temp < 1e-35) 976 { 1037 { 977 (*a)[i]= 0.; 1038 (*a)[i]= 0.; 978 (*b)[i] = 0.; 1039 (*b)[i] = 0.; 979 (*c)[i] = 1; 1040 (*c)[i] = 1; 980 } 1041 } 981 else 1042 else 982 { 1043 { 983 (*a)[i]= A_temp; 1044 (*a)[i]= A_temp; 984 (*b)[i] = B_temp; 1045 (*b)[i] = B_temp; 985 (*c)[i] = C_temp; 1046 (*c)[i] = C_temp; 986 } 1047 } 987 //OK, now get ERR(I), the integral of the 1048 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 988 //and the true pdf, extended over the inte 1049 //and the true pdf, extended over the interval (X(I),X(I+1)) 989 G4int icase = 1; //loop code 1050 G4int icase = 1; //loop code 990 G4bool reLoop = false; 1051 G4bool reLoop = false; 991 do 1052 do 992 { 1053 { 993 reLoop = false; 1054 reLoop = false; 994 (*err)[i] = 0.; //zero variable 1055 (*err)[i] = 0.; //zero variable 995 for (G4int k=0;k<nip;k++) 1056 for (G4int k=0;k<nip;k++) 996 { 1057 { 997 G4double rr = (*sumi)[k]; 1058 G4double rr = (*sumi)[k]; 998 G4double pap = (*area)[i]*(1.0+((*a)[i]+ 1059 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 999 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1 1060 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 1000 if (k == 0 || k == nip-1) 1061 if (k == 0 || k == nip-1) 1001 (*err)[i] += 0.5*std::fabs(pap-(*pdfi 1062 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 1002 else 1063 else 1003 (*err)[i] += std::fabs(pap-(*pdfi)[k] 1064 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 1004 } 1065 } 1005 (*err)[i] *= dxi; 1066 (*err)[i] *= dxi; 1006 1067 1007 //If err(I) is too large, the pdf is 1068 //If err(I) is too large, the pdf is approximated by a uniform distribution 1008 if ((*err)[i] > 0.1*(*area)[i] && ica 1069 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 1009 { 1070 { 1010 (*b)[i] = 0; 1071 (*b)[i] = 0; 1011 (*a)[i] = 0; 1072 (*a)[i] = 0; 1012 (*c)[i] = 1.; 1073 (*c)[i] = 1.; 1013 icase = 2; 1074 icase = 2; 1014 reLoop = true; 1075 reLoop = true; 1015 } 1076 } 1016 }while(reLoop); 1077 }while(reLoop); 1017 delete pdfi; 1078 delete pdfi; 1018 delete pdfih; 1079 delete pdfih; 1019 delete sumi; 1080 delete sumi; 1020 } 1081 } 1021 }while(x->size() < np); 1082 }while(x->size() < np); 1022 1083 1023 if (x->size() != np || a->size() != np || 1084 if (x->size() != np || a->size() != np || 1024 err->size() != np || area->size() != np 1085 err->size() != np || area->size() != np) 1025 { 1086 { 1026 G4Exception("G4PenelopeRayleighModel::I 1087 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 1027 "em2050",FatalException, 1088 "em2050",FatalException, 1028 "Problem in building the extended Table 1089 "Problem in building the extended Table for Sampling: array dimensions do not match "); 1029 } 1090 } 1030 1091 1031 /****************************************** 1092 /******************************************************************************* 1032 Renormalization 1093 Renormalization 1033 ******************************************* 1094 ********************************************************************************/ 1034 G4double ws = 0; 1095 G4double ws = 0; 1035 for (std::size_t i=0;i<np-1;++i) << 1096 for (size_t i=0;i<np-1;i++) 1036 ws += (*area)[i]; 1097 ws += (*area)[i]; 1037 ws = 1.0/ws; 1098 ws = 1.0/ws; 1038 G4double errMax = 0; 1099 G4double errMax = 0; 1039 for (std::size_t i=0;i<np-1;++i) << 1100 for (size_t i=0;i<np-1;i++) 1040 { 1101 { 1041 (*area)[i] *= ws; 1102 (*area)[i] *= ws; 1042 (*err)[i] *= ws; 1103 (*err)[i] *= ws; 1043 errMax = std::max(errMax,(*err)[i]); 1104 errMax = std::max(errMax,(*err)[i]); 1044 } 1105 } 1045 1106 1046 //Vector with the normalized cumulative dis 1107 //Vector with the normalized cumulative distribution 1047 G4DataVector* PAC = new G4DataVector(); 1108 G4DataVector* PAC = new G4DataVector(); 1048 PAC->push_back(0.); 1109 PAC->push_back(0.); 1049 for (std::size_t i=0;i<np-1;++i) << 1110 for (size_t i=0;i<np-1;i++) 1050 { 1111 { 1051 G4double previous = (*PAC)[i]; 1112 G4double previous = (*PAC)[i]; 1052 PAC->push_back(previous+(*area)[i]); 1113 PAC->push_back(previous+(*area)[i]); 1053 } 1114 } 1054 (*PAC)[PAC->size()-1] = 1.; 1115 (*PAC)[PAC->size()-1] = 1.; 1055 1116 1056 /****************************************** 1117 /******************************************************************************* 1057 Pre-calculated limits for the initial binar 1118 Pre-calculated limits for the initial binary search for subsequent sampling 1058 ******************************************* 1119 ********************************************************************************/ 1059 std::vector<std::size_t> *ITTL = new std::v << 1120 1060 std::vector<std::size_t> *ITTU = new std::v << 1121 //G4DataVector* ITTL = new G4DataVector(); >> 1122 std::vector<size_t> *ITTL = new std::vector<size_t>; >> 1123 std::vector<size_t> *ITTU = new std::vector<size_t>; 1061 1124 1062 //Just create place-holders 1125 //Just create place-holders 1063 for (std::size_t i=0;i<np;++i) << 1126 for (size_t i=0;i<np;i++) 1064 { 1127 { 1065 ITTL->push_back(0); 1128 ITTL->push_back(0); 1066 ITTU->push_back(0); 1129 ITTU->push_back(0); 1067 } 1130 } 1068 1131 1069 G4double bin = 1.0/(np-1); 1132 G4double bin = 1.0/(np-1); 1070 (*ITTL)[0]=0; 1133 (*ITTL)[0]=0; 1071 for (std::size_t i=1;i<(np-1);++i) << 1134 for (size_t i=1;i<(np-1);i++) 1072 { 1135 { 1073 G4double ptst = i*bin; 1136 G4double ptst = i*bin; 1074 G4bool found = false; 1137 G4bool found = false; 1075 for (std::size_t j=(*ITTL)[i-1];j<np && << 1138 for (size_t j=(*ITTL)[i-1];j<np && !found;j++) 1076 { 1139 { 1077 if ((*PAC)[j] > ptst) 1140 if ((*PAC)[j] > ptst) 1078 { 1141 { 1079 (*ITTL)[i] = j-1; 1142 (*ITTL)[i] = j-1; 1080 (*ITTU)[i-1] = j; 1143 (*ITTU)[i-1] = j; 1081 found = true; 1144 found = true; 1082 } 1145 } 1083 } 1146 } 1084 } 1147 } 1085 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1148 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1086 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1149 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1087 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1150 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1088 1151 1089 if (ITTU->size() != np || ITTU->size() != n 1152 if (ITTU->size() != np || ITTU->size() != np) 1090 { 1153 { 1091 G4Exception("G4PenelopeRayleighModel::I 1154 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 1092 "em2051",FatalException, 1155 "em2051",FatalException, 1093 "Problem in building the Limit Tables f 1156 "Problem in building the Limit Tables for Sampling: array dimensions do not match"); 1094 } 1157 } 1095 1158 >> 1159 1096 /****************************************** 1160 /******************************************************************************** 1097 Copy tables 1161 Copy tables 1098 ******************************************* 1162 ********************************************************************************/ 1099 G4PenelopeSamplingData* theTable = new G4Pe 1163 G4PenelopeSamplingData* theTable = new G4PenelopeSamplingData(np); 1100 for (std::size_t i=0;i<np;++i) << 1164 for (size_t i=0;i<np;i++) 1101 { 1165 { 1102 theTable->AddPoint((*x)[i],(*PAC)[i],(* 1166 theTable->AddPoint((*x)[i],(*PAC)[i],(*a)[i],(*b)[i],(*ITTL)[i],(*ITTU)[i]); 1103 } 1167 } 1104 1168 1105 if (fVerboseLevel > 2) << 1169 if (verboseLevel > 2) 1106 { 1170 { 1107 G4cout << "**************************** 1171 G4cout << "*************************************************************************" << 1108 G4endl; 1172 G4endl; 1109 G4cout << "Sampling table for Penelope 1173 G4cout << "Sampling table for Penelope Rayleigh scattering in " << mat->GetName() << G4endl; 1110 theTable->DumpTable(); 1174 theTable->DumpTable(); 1111 } 1175 } 1112 fSamplingTable->insert(std::make_pair(mat,t << 1176 samplingTable->insert(std::make_pair(mat,theTable)); >> 1177 1113 1178 1114 //Clean up temporary vectors 1179 //Clean up temporary vectors 1115 delete x; 1180 delete x; 1116 delete a; 1181 delete a; 1117 delete b; 1182 delete b; 1118 delete c; 1183 delete c; 1119 delete err; 1184 delete err; 1120 delete area; 1185 delete area; 1121 delete PAC; 1186 delete PAC; 1122 delete ITTL; 1187 delete ITTL; 1123 delete ITTU; 1188 delete ITTU; 1124 1189 1125 //DONE! 1190 //DONE! 1126 return; 1191 return; >> 1192 1127 } 1193 } 1128 1194 1129 //....oooOO0OOooo........oooOO0OOooo........o 1195 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1130 1196 1131 void G4PenelopeRayleighModel::GetPMaxTable(co 1197 void G4PenelopeRayleighModel::GetPMaxTable(const G4Material* mat) 1132 { 1198 { 1133 if (!fPMaxTable) << 1199 >> 1200 if (!pMaxTable) 1134 { 1201 { 1135 G4cout << "G4PenelopeRayleighModel::Bui 1202 G4cout << "G4PenelopeRayleighModel::BuildPMaxTable" << G4endl; 1136 G4cout << "Going to instanziate the fPM << 1203 G4cout << "Going to instanziate the pMaxTable !" << G4endl; 1137 G4cout << "That should _not_ be here! " 1204 G4cout << "That should _not_ be here! " << G4endl; 1138 fPMaxTable = new std::map<const G4Mater << 1205 pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 1139 } 1206 } 1140 //check if the table is already there 1207 //check if the table is already there 1141 if (fPMaxTable->count(mat)) << 1208 if (pMaxTable->count(mat)) 1142 return; 1209 return; 1143 1210 1144 //otherwise build it 1211 //otherwise build it 1145 if (!fSamplingTable) << 1212 if (!samplingTable) 1146 { 1213 { 1147 G4Exception("G4PenelopeRayleighModel::G 1214 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()", 1148 "em2052",FatalException, 1215 "em2052",FatalException, 1149 "SamplingTable is not properly instanti 1216 "SamplingTable is not properly instantiated"); 1150 return; 1217 return; 1151 } 1218 } 1152 1219 1153 //This should not be: the sampling table is 1220 //This should not be: the sampling table is built before the p-table 1154 if (!fSamplingTable->count(mat)) << 1221 if (!samplingTable->count(mat)) 1155 { 1222 { 1156 G4ExceptionDescription ed; 1223 G4ExceptionDescription ed; 1157 ed << "Sampling table for material " < 1224 ed << "Sampling table for material " << mat->GetName() << " not found"; 1158 G4Exception("G4PenelopeRayleighModel:: 1225 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()", 1159 "em2052",FatalException, 1226 "em2052",FatalException, 1160 ed); 1227 ed); 1161 return; 1228 return; 1162 } 1229 } 1163 1230 1164 G4PenelopeSamplingData *theTable = fSamplin << 1231 G4PenelopeSamplingData *theTable = samplingTable->find(mat)->second; 1165 std::size_t tablePoints = theTable->GetNumb << 1232 size_t tablePoints = theTable->GetNumberOfStoredPoints(); 1166 1233 1167 std::size_t nOfEnergyPoints = fLogEnergyGri << 1234 size_t nOfEnergyPoints = logEnergyGridPMax.size(); 1168 G4PhysicsFreeVector* theVec = new G4Physics 1235 G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector(nOfEnergyPoints); 1169 1236 1170 const std::size_t nip = 51; //hard-coded in << 1237 const size_t nip = 51; //hard-coded in Penelope 1171 1238 1172 for (std::size_t ie=0;ie<fLogEnergyGridPMax << 1239 for (size_t ie=0;ie<logEnergyGridPMax.size();ie++) 1173 { 1240 { 1174 G4double energy = G4Exp(fLogEnergyGridP << 1241 G4double energy = G4Exp(logEnergyGridPMax[ie]); 1175 G4double Qm = 2.0*energy/electron_mass_ 1242 G4double Qm = 2.0*energy/electron_mass_c2; //this is non-dimensional now 1176 G4double Qm2 = Qm*Qm; 1243 G4double Qm2 = Qm*Qm; 1177 G4double firstQ2 = theTable->GetX(0); 1244 G4double firstQ2 = theTable->GetX(0); 1178 G4double lastQ2 = theTable->GetX(tableP 1245 G4double lastQ2 = theTable->GetX(tablePoints-1); 1179 G4double thePMax = 0; 1246 G4double thePMax = 0; 1180 1247 1181 if (Qm2 > firstQ2) 1248 if (Qm2 > firstQ2) 1182 { 1249 { 1183 if (Qm2 < lastQ2) 1250 if (Qm2 < lastQ2) 1184 { 1251 { 1185 //bisection to look for the index of 1252 //bisection to look for the index of Qm 1186 std::size_t lowerBound = 0; << 1253 size_t lowerBound = 0; 1187 std::size_t upperBound = tablePoints- << 1254 size_t upperBound = tablePoints-1; 1188 while (lowerBound <= upperBound) 1255 while (lowerBound <= upperBound) 1189 { 1256 { 1190 std::size_t midBin = (lowerBound + uppe << 1257 size_t midBin = (lowerBound + upperBound)/2; 1191 if( Qm2 < theTable->GetX(midBin)) 1258 if( Qm2 < theTable->GetX(midBin)) 1192 { upperBound = midBin-1; } 1259 { upperBound = midBin-1; } 1193 else 1260 else 1194 { lowerBound = midBin+1; } 1261 { lowerBound = midBin+1; } 1195 } 1262 } 1196 //upperBound is the output (but also 1263 //upperBound is the output (but also lowerBounf --> should be the same!) 1197 G4double Q1 = theTable->GetX(upperBou 1264 G4double Q1 = theTable->GetX(upperBound); 1198 G4double Q2 = Qm2; 1265 G4double Q2 = Qm2; 1199 G4double DQ = (Q2-Q1)/((G4double)(nip 1266 G4double DQ = (Q2-Q1)/((G4double)(nip-1)); 1200 G4double theA = theTable->GetA(upperB 1267 G4double theA = theTable->GetA(upperBound); 1201 G4double theB = theTable->GetB(upperB 1268 G4double theB = theTable->GetB(upperBound); 1202 G4double thePAC = theTable->GetPAC(up 1269 G4double thePAC = theTable->GetPAC(upperBound); 1203 G4DataVector* fun = new G4DataVector( 1270 G4DataVector* fun = new G4DataVector(); 1204 for (std::size_t k=0;k<nip;++k) << 1271 for (size_t k=0;k<nip;k++) 1205 { 1272 { 1206 G4double qi = Q1 + k*DQ; 1273 G4double qi = Q1 + k*DQ; 1207 G4double tau = (qi-Q1)/ 1274 G4double tau = (qi-Q1)/ 1208 (theTable->GetX(upperBound+1)-Q1); 1275 (theTable->GetX(upperBound+1)-Q1); 1209 G4double con1 = 2.0*theB*tau; 1276 G4double con1 = 2.0*theB*tau; 1210 G4double ci = 1.0+theA+theB; 1277 G4double ci = 1.0+theA+theB; 1211 G4double con2 = ci-theA*tau; 1278 G4double con2 = ci-theA*tau; 1212 G4double etap = 0; 1279 G4double etap = 0; 1213 if (std::fabs(con1) > 1.0e-16*std::fabs 1280 if (std::fabs(con1) > 1.0e-16*std::fabs(con2)) 1214 etap = con2*(1.0-std::sqrt(1.0-2.0*ta 1281 etap = con2*(1.0-std::sqrt(1.0-2.0*tau*con1/(con2*con2)))/con1; 1215 else 1282 else 1216 etap = tau/con2; 1283 etap = tau/con2; 1217 G4double theFun = (theTable->GetPAC(upp 1284 G4double theFun = (theTable->GetPAC(upperBound+1)-thePAC)* 1218 (1.0+(theA+theB*etap)*etap)*(1.0+(the 1285 (1.0+(theA+theB*etap)*etap)*(1.0+(theA+theB*etap)*etap)/ 1219 ((1.0-theB*etap*etap)*ci*(theTable->G 1286 ((1.0-theB*etap*etap)*ci*(theTable->GetX(upperBound+1)-Q1)); 1220 fun->push_back(theFun); 1287 fun->push_back(theFun); 1221 } 1288 } 1222 //Now intergrate numerically the fun 1289 //Now intergrate numerically the fun Cavalieri-Simpson's method 1223 G4DataVector* sum = new G4DataVector; 1290 G4DataVector* sum = new G4DataVector; 1224 G4double CONS = DQ*(1./12.); 1291 G4double CONS = DQ*(1./12.); 1225 G4double HCONS = 0.5*CONS; 1292 G4double HCONS = 0.5*CONS; 1226 sum->push_back(0.); 1293 sum->push_back(0.); 1227 G4double secondPoint = (*sum)[0] + 1294 G4double secondPoint = (*sum)[0] + 1228 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*C 1295 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*CONS; 1229 sum->push_back(secondPoint); 1296 sum->push_back(secondPoint); 1230 for (std::size_t hh=2;hh<nip-1;++hh) << 1297 for (size_t hh=2;hh<nip-1;hh++) 1231 { 1298 { 1232 G4double previous = (*sum)[hh-1]; 1299 G4double previous = (*sum)[hh-1]; 1233 G4double next = previous+(13.0*((*fun)[ 1300 G4double next = previous+(13.0*((*fun)[hh-1]+(*fun)[hh])- 1234 (*fun)[hh+1]-(*fun)[hh-2])*HCON 1301 (*fun)[hh+1]-(*fun)[hh-2])*HCONS; 1235 sum->push_back(next); 1302 sum->push_back(next); 1236 } 1303 } 1237 G4double last = (*sum)[nip-2]+(5.0*(* 1304 G4double last = (*sum)[nip-2]+(5.0*(*fun)[nip-1]+8.0*(*fun)[nip-2]- 1238 (*fun)[nip-3])*CONS; 1305 (*fun)[nip-3])*CONS; 1239 sum->push_back(last); 1306 sum->push_back(last); 1240 thePMax = thePAC + (*sum)[sum->size() 1307 thePMax = thePAC + (*sum)[sum->size()-1]; //last point 1241 delete fun; 1308 delete fun; 1242 delete sum; 1309 delete sum; 1243 } 1310 } 1244 else 1311 else 1245 { 1312 { 1246 thePMax = 1.0; 1313 thePMax = 1.0; 1247 } 1314 } 1248 } 1315 } 1249 else 1316 else 1250 { 1317 { 1251 thePMax = theTable->GetPAC(0); 1318 thePMax = theTable->GetPAC(0); 1252 } 1319 } 1253 1320 1254 //Write number in the table 1321 //Write number in the table 1255 theVec->PutValue(ie,energy,thePMax); 1322 theVec->PutValue(ie,energy,thePMax); 1256 } 1323 } 1257 1324 1258 fPMaxTable->insert(std::make_pair(mat,theVe << 1325 pMaxTable->insert(std::make_pair(mat,theVec)); 1259 return; 1326 return; >> 1327 1260 } 1328 } 1261 1329 1262 //....oooOO0OOooo........oooOO0OOooo........o 1330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1263 1331 1264 void G4PenelopeRayleighModel::DumpFormFactorT 1332 void G4PenelopeRayleighModel::DumpFormFactorTable(const G4Material* mat) 1265 { 1333 { 1266 G4cout << "******************************** 1334 G4cout << "*****************************************************************" << G4endl; 1267 G4cout << "G4PenelopeRayleighModel: Form Fa 1335 G4cout << "G4PenelopeRayleighModel: Form Factor Table for " << mat->GetName() << G4endl; 1268 //try to use the same format as Penelope-Fo 1336 //try to use the same format as Penelope-Fortran, namely Q (/m_e*c) and F 1269 G4cout << "Q/(m_e*c) F(Q) 1337 G4cout << "Q/(m_e*c) F(Q) " << G4endl; 1270 G4cout << "******************************** 1338 G4cout << "*****************************************************************" << G4endl; 1271 if (!fLogFormFactorTable->count(mat)) << 1339 if (!logFormFactorTable->count(mat)) 1272 BuildFormFactorTable(mat); 1340 BuildFormFactorTable(mat); 1273 1341 1274 G4PhysicsFreeVector* theVec = fLogFormFacto << 1342 G4PhysicsFreeVector* theVec = logFormFactorTable->find(mat)->second; 1275 for (std::size_t i=0;i<theVec->GetVectorLen << 1343 for (size_t i=0;i<theVec->GetVectorLength();i++) 1276 { 1344 { 1277 G4double logQ2 = theVec->GetLowEdgeEner 1345 G4double logQ2 = theVec->GetLowEdgeEnergy(i); 1278 G4double Q = G4Exp(0.5*logQ2); 1346 G4double Q = G4Exp(0.5*logQ2); 1279 G4double logF2 = (*theVec)[i]; 1347 G4double logF2 = (*theVec)[i]; 1280 G4double F = G4Exp(0.5*logF2); 1348 G4double F = G4Exp(0.5*logF2); 1281 G4cout << Q << " " << F << 1349 G4cout << Q << " " << F << G4endl; 1282 } 1350 } 1283 //DONE 1351 //DONE 1284 return; 1352 return; 1285 } 1353 } 1286 1354 1287 //....oooOO0OOooo........oooOO0OOooo........o 1355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo... 1288 1356 1289 void G4PenelopeRayleighModel::SetParticle(con 1357 void G4PenelopeRayleighModel::SetParticle(const G4ParticleDefinition* p) 1290 { 1358 { 1291 if(!fParticle) { 1359 if(!fParticle) { 1292 fParticle = p; 1360 fParticle = p; 1293 } 1361 } 1294 } 1362 } 1295 1363