Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PenelopeRayleighModel.cc 76220 2013-11-08 10:15:00Z gcosmo $ 26 // 27 // 27 // Author: Luciano Pandola 28 // Author: Luciano Pandola 28 // 29 // 29 // History: 30 // History: 30 // -------- 31 // -------- 31 // 03 Dec 2009 L Pandola First implementa 32 // 03 Dec 2009 L Pandola First implementation 32 // 25 May 2011 L.Pandola Renamed (make v2 33 // 25 May 2011 L.Pandola Renamed (make v2008 as default Penelope) 33 // 19 Sep 2013 L.Pandola Migration to MT 34 // 19 Sep 2013 L.Pandola Migration to MT 34 // 35 // 35 36 36 #include "G4PenelopeRayleighModel.hh" 37 #include "G4PenelopeRayleighModel.hh" 37 #include "G4PhysicalConstants.hh" 38 #include "G4PhysicalConstants.hh" 38 #include "G4SystemOfUnits.hh" 39 #include "G4SystemOfUnits.hh" 39 #include "G4PenelopeSamplingData.hh" 40 #include "G4PenelopeSamplingData.hh" 40 #include "G4ParticleDefinition.hh" 41 #include "G4ParticleDefinition.hh" 41 #include "G4MaterialCutsCouple.hh" 42 #include "G4MaterialCutsCouple.hh" 42 #include "G4ProductionCutsTable.hh" 43 #include "G4ProductionCutsTable.hh" 43 #include "G4DynamicParticle.hh" 44 #include "G4DynamicParticle.hh" 44 #include "G4PhysicsTable.hh" 45 #include "G4PhysicsTable.hh" 45 #include "G4ElementTable.hh" 46 #include "G4ElementTable.hh" 46 #include "G4Element.hh" 47 #include "G4Element.hh" 47 #include "G4PhysicsFreeVector.hh" 48 #include "G4PhysicsFreeVector.hh" 48 #include "G4AutoLock.hh" 49 #include "G4AutoLock.hh" 49 #include "G4Exp.hh" << 50 50 51 //....oooOO0OOooo........oooOO0OOooo........oo << 52 << 53 const G4int G4PenelopeRayleighModel::fMaxZ; << 54 G4PhysicsFreeVector* G4PenelopeRayleighModel:: << 55 G4PhysicsFreeVector* G4PenelopeRayleighModel:: << 56 51 57 //....oooOO0OOooo........oooOO0OOooo........oo 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 58 53 59 G4PenelopeRayleighModel::G4PenelopeRayleighMod 54 G4PenelopeRayleighModel::G4PenelopeRayleighModel(const G4ParticleDefinition* part, 60 const G4String& nam) 55 const G4String& nam) 61 :G4VEmModel(nam),fParticleChange(nullptr),fP << 56 :G4VEmModel(nam),fParticleChange(0),fParticle(0),isInitialised(false), 62 fLogFormFactorTable(nullptr),fPMaxTable(nul << 57 logAtomicCrossSection(0),atomicFormFactor(0),logFormFactorTable(0), 63 fIsInitialised(false),fLocalTable(false) << 58 pMaxTable(0),samplingTable(0),fLocalTable(false) 64 { 59 { 65 fIntrinsicLowEnergyLimit = 100.0*eV; 60 fIntrinsicLowEnergyLimit = 100.0*eV; 66 fIntrinsicHighEnergyLimit = 100.0*GeV; 61 fIntrinsicHighEnergyLimit = 100.0*GeV; 67 // SetLowEnergyLimit(fIntrinsicLowEnergyLim 62 // SetLowEnergyLimit(fIntrinsicLowEnergyLimit); 68 SetHighEnergyLimit(fIntrinsicHighEnergyLimit 63 SetHighEnergyLimit(fIntrinsicHighEnergyLimit); 69 64 70 if (part) 65 if (part) 71 SetParticle(part); 66 SetParticle(part); 72 67 73 // 68 // 74 fVerboseLevel= 0; << 69 verboseLevel= 0; 75 // Verbosity scale: 70 // Verbosity scale: 76 // 0 = nothing << 71 // 0 = nothing 77 // 1 = warning for energy non-conservation << 72 // 1 = warning for energy non-conservation 78 // 2 = details of energy budget 73 // 2 = details of energy budget 79 // 3 = calculation of cross sections, file o 74 // 3 = calculation of cross sections, file openings, sampling of atoms 80 // 4 = entering in methods << 75 // 4 = entering in methods 81 76 82 //build the energy grid. It is the same for 77 //build the energy grid. It is the same for all materials 83 G4double logenergy = G4Log(fIntrinsicLowEner << 78 G4double logenergy = std::log(fIntrinsicLowEnergyLimit/2.); 84 G4double logmaxenergy = G4Log(1.5*fIntrinsic << 79 G4double logmaxenergy = std::log(1.5*fIntrinsicHighEnergyLimit); 85 //finer grid below 160 keV 80 //finer grid below 160 keV 86 G4double logtransitionenergy = G4Log(160*keV << 81 G4double logtransitionenergy = std::log(160*keV); 87 G4double logfactor1 = G4Log(10.)/250.; << 82 G4double logfactor1 = std::log(10.)/250.; 88 G4double logfactor2 = logfactor1*10; 83 G4double logfactor2 = logfactor1*10; 89 fLogEnergyGridPMax.push_back(logenergy); << 84 logEnergyGridPMax.push_back(logenergy); 90 do{ 85 do{ 91 if (logenergy < logtransitionenergy) 86 if (logenergy < logtransitionenergy) 92 logenergy += logfactor1; 87 logenergy += logfactor1; 93 else 88 else 94 logenergy += logfactor2; 89 logenergy += logfactor2; 95 fLogEnergyGridPMax.push_back(logenergy); << 90 logEnergyGridPMax.push_back(logenergy); 96 }while (logenergy < logmaxenergy); 91 }while (logenergy < logmaxenergy); 97 } 92 } 98 93 99 //....oooOO0OOooo........oooOO0OOooo........oo 94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 100 95 101 G4PenelopeRayleighModel::~G4PenelopeRayleighMo 96 G4PenelopeRayleighModel::~G4PenelopeRayleighModel() 102 { 97 { 103 if (IsMaster() || fLocalTable) 98 if (IsMaster() || fLocalTable) 104 { 99 { 105 << 100 std::map <G4int,G4PhysicsFreeVector*>::iterator i; 106 for(G4int i=0; i<=fMaxZ; ++i) << 101 if (logAtomicCrossSection) 107 { 102 { 108 if(fLogAtomicCrossSection[i]) << 103 /* 109 { << 104 for (i=logAtomicCrossSection->begin();i != logAtomicCrossSection->end();i++) 110 delete fLogAtomicCrossSection[i]; << 105 if (i->second) delete i->second; 111 fLogAtomicCrossSection[i] = nullptr; << 106 */ 112 } << 107 delete logAtomicCrossSection; 113 if(fAtomicFormFactor[i]) << 114 { << 115 delete fAtomicFormFactor[i]; << 116 fAtomicFormFactor[i] = nullptr; << 117 } << 118 } 108 } >> 109 } >> 110 if (IsMaster()) >> 111 { >> 112 std::map <G4int,G4PhysicsFreeVector*>::iterator i; >> 113 if (atomicFormFactor) >> 114 { >> 115 /* >> 116 for (i=atomicFormFactor->begin();i != atomicFormFactor->end();i++) >> 117 if (i->second) delete i->second; >> 118 */ >> 119 delete atomicFormFactor; >> 120 } >> 121 119 ClearTables(); 122 ClearTables(); 120 } 123 } 121 } 124 } 122 125 123 //....oooOO0OOooo........oooOO0OOooo........oo 126 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 void G4PenelopeRayleighModel::ClearTables() 127 void G4PenelopeRayleighModel::ClearTables() 125 { 128 { 126 if (fLogFormFactorTable) << 129 if (!IsMaster()) >> 130 //Should not be here! >> 131 G4Exception("G4PenelopeRayleighModel::ClearTables()", >> 132 "em0100",FatalException,"Worker thread in this method"); >> 133 >> 134 std::map <const G4Material*,G4PhysicsFreeVector*>::iterator i; >> 135 >> 136 if (logFormFactorTable) 127 { 137 { 128 for (auto& item : (*fLogFormFactorTable << 138 /* 129 if (item.second) delete item.second; << 139 for (i=logFormFactorTable->begin(); i != logFormFactorTable->end(); i++) 130 delete fLogFormFactorTable; << 140 if (i->second) delete i->second; 131 fLogFormFactorTable = nullptr; //zero e << 141 */ >> 142 delete logFormFactorTable; >> 143 logFormFactorTable = 0; //zero explicitely 132 } 144 } 133 if (fPMaxTable) << 145 >> 146 if (pMaxTable) 134 { 147 { 135 for (auto& item : (*fPMaxTable)) << 148 /* 136 if (item.second) delete item.second; << 149 for (i=pMaxTable->begin(); i != pMaxTable->end(); i++) 137 delete fPMaxTable; << 150 if (i->second) delete i->second; 138 fPMaxTable = nullptr; //zero explicitly << 151 */ >> 152 delete pMaxTable; >> 153 pMaxTable = 0; //zero explicitely 139 } 154 } 140 if (fSamplingTable) << 155 >> 156 std::map<const G4Material*,G4PenelopeSamplingData*>::iterator ii; >> 157 if (samplingTable) 141 { 158 { 142 for (auto& item : (*fSamplingTable)) << 159 /* 143 if (item.second) delete item.second; << 160 for (ii=samplingTable->begin(); ii != samplingTable->end(); ii++) 144 delete fSamplingTable; << 161 if (ii->second) delete ii->second; 145 fSamplingTable = nullptr; //zero explic << 162 */ 146 } << 163 delete samplingTable; >> 164 samplingTable = 0; //zero explicitely >> 165 } >> 166 147 return; 167 return; 148 } 168 } 149 169 150 //....oooOO0OOooo........oooOO0OOooo........oo 170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 151 171 152 void G4PenelopeRayleighModel::Initialise(const 172 void G4PenelopeRayleighModel::Initialise(const G4ParticleDefinition* part, 153 const G4DataVector& ) 173 const G4DataVector& ) 154 { 174 { 155 if (fVerboseLevel > 3) << 175 if (verboseLevel > 3) 156 G4cout << "Calling G4PenelopeRayleighModel 176 G4cout << "Calling G4PenelopeRayleighModel::Initialise()" << G4endl; 157 177 158 SetParticle(part); 178 SetParticle(part); 159 179 160 //Only the master model creates/fills/destro 180 //Only the master model creates/fills/destroys the tables 161 if (IsMaster() && part == fParticle) << 181 if (IsMaster() && part == fParticle) 162 { 182 { 163 //clear tables depending on materials, n 183 //clear tables depending on materials, not the atomic ones 164 ClearTables(); 184 ClearTables(); >> 185 >> 186 //create new tables >> 187 // >> 188 // logAtomicCrossSection and atomicFormFactor are created only once, >> 189 // since they are never cleared >> 190 if (!logAtomicCrossSection) >> 191 logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>; >> 192 if (!atomicFormFactor) >> 193 atomicFormFactor = new std::map<G4int,G4PhysicsFreeVector*>; >> 194 >> 195 if (!logFormFactorTable) >> 196 logFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; >> 197 if (!pMaxTable) >> 198 pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; >> 199 if (!samplingTable) >> 200 samplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>; 165 201 166 if (fVerboseLevel > 3) << 167 G4cout << "Calling G4PenelopeRayleighModel:: << 168 << 169 //create new tables << 170 if (!fLogFormFactorTable) << 171 fLogFormFactorTable = new std::map<const G4M << 172 if (!fPMaxTable) << 173 fPMaxTable = new std::map<const G4Material*, << 174 if (!fSamplingTable) << 175 fSamplingTable = new std::map<const G4Materi << 176 202 177 G4ProductionCutsTable* theCoupleTable = << 203 G4ProductionCutsTable* theCoupleTable = 178 G4ProductionCutsTable::GetProductionCutsTabl 204 G4ProductionCutsTable::GetProductionCutsTable(); 179 << 205 180 for (G4int i=0;i<(G4int)theCoupleTable-> << 206 for (size_t i=0;i<theCoupleTable->GetTableSize();i++) 181 { 207 { 182 const G4Material* material = << 208 const G4Material* material = 183 theCoupleTable->GetMaterialCutsCouple(i) 209 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial(); 184 const G4ElementVector* theElementVector = 210 const G4ElementVector* theElementVector = material->GetElementVector(); 185 << 211 186 for (std::size_t j=0;j<material->GetNumber << 212 for (size_t j=0;j<material->GetNumberOfElements();j++) 187 { 213 { 188 G4int iZ = theElementVector->at(j)->Ge << 214 G4int iZ = (G4int) theElementVector->at(j)->GetZ(); 189 //read data files only in the master 215 //read data files only in the master 190 if (!fLogAtomicCrossSection[iZ]) << 216 if (!logAtomicCrossSection->count(iZ)) 191 ReadDataFile(iZ); << 217 ReadDataFile(iZ); 192 } 218 } 193 219 194 //1) If the table has not been built for t 220 //1) If the table has not been built for the material, do it! 195 if (!fLogFormFactorTable->count(material)) << 221 if (!logFormFactorTable->count(material)) 196 BuildFormFactorTable(material); 222 BuildFormFactorTable(material); 197 223 198 //2) retrieve or build the sampling table 224 //2) retrieve or build the sampling table 199 if (!(fSamplingTable->count(material))) << 225 if (!(samplingTable->count(material))) 200 InitializeSamplingAlgorithm(material); 226 InitializeSamplingAlgorithm(material); 201 227 202 //3) retrieve or build the pMax data 228 //3) retrieve or build the pMax data 203 if (!fPMaxTable->count(material)) << 229 if (!pMaxTable->count(material)) 204 GetPMaxTable(material); 230 GetPMaxTable(material); 205 } << 206 231 207 if (fVerboseLevel > 1) { << 232 } >> 233 >> 234 if (verboseLevel > 1) { 208 G4cout << "Penelope Rayleigh model v2008 is 235 G4cout << "Penelope Rayleigh model v2008 is initialized " << G4endl 209 << "Energy range: " 236 << "Energy range: " 210 << LowEnergyLimit() / keV << " keV - 237 << LowEnergyLimit() / keV << " keV - " 211 << HighEnergyLimit() / GeV << " GeV" 238 << HighEnergyLimit() / GeV << " GeV" 212 << G4endl; 239 << G4endl; 213 } 240 } 214 } 241 } 215 242 216 if(fIsInitialised) return; << 243 if(isInitialised) return; 217 fParticleChange = GetParticleChangeForGamma( 244 fParticleChange = GetParticleChangeForGamma(); 218 fIsInitialised = true; << 245 isInitialised = true; 219 } 246 } 220 247 221 //....oooOO0OOooo........oooOO0OOooo........oo 248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 222 249 223 void G4PenelopeRayleighModel::InitialiseLocal( 250 void G4PenelopeRayleighModel::InitialiseLocal(const G4ParticleDefinition* part, 224 G4VEmModel *masterModel) 251 G4VEmModel *masterModel) 225 { 252 { 226 if (fVerboseLevel > 3) << 253 if (verboseLevel > 3) 227 G4cout << "Calling G4PenelopeRayleighMode 254 G4cout << "Calling G4PenelopeRayleighModel::InitialiseLocal()" << G4endl; >> 255 228 // 256 // 229 //Check that particle matches: one might hav << 257 //Check that particle matches: one might have multiple master models (e.g. 230 //for e+ and e-). 258 //for e+ and e-). 231 // 259 // 232 if (part == fParticle) 260 if (part == fParticle) 233 { 261 { 234 //Get the const table pointers from the 262 //Get the const table pointers from the master to the workers 235 const G4PenelopeRayleighModel* theModel << 263 const G4PenelopeRayleighModel* theModel = 236 static_cast<G4PenelopeRayleighModel*> (maste 264 static_cast<G4PenelopeRayleighModel*> (masterModel); 237 << 265 238 //Copy pointers to the data tables 266 //Copy pointers to the data tables 239 for(G4int i=0; i<=fMaxZ; ++i) << 267 logAtomicCrossSection = theModel->logAtomicCrossSection; 240 { << 268 atomicFormFactor = theModel->atomicFormFactor; 241 fLogAtomicCrossSection[i] = theModel->fLog << 269 logFormFactorTable = theModel->logFormFactorTable; 242 fAtomicFormFactor[i] = theModel->fAtomicFo << 270 pMaxTable = theModel->pMaxTable; 243 } << 271 samplingTable = theModel->samplingTable; 244 fLogFormFactorTable = theModel->fLogForm << 272 245 fPMaxTable = theModel->fPMaxTable; << 246 fSamplingTable = theModel->fSamplingTabl << 247 << 248 //copy the G4DataVector with the grid 273 //copy the G4DataVector with the grid 249 fLogQSquareGrid = theModel->fLogQSquareG << 274 logQSquareGrid = theModel->logQSquareGrid; 250 << 275 251 //Same verbosity for all workers, as the 276 //Same verbosity for all workers, as the master 252 fVerboseLevel = theModel->fVerboseLevel; << 277 verboseLevel = theModel->verboseLevel; 253 } 278 } 254 279 255 return; 280 return; 256 } 281 } 257 282 258 283 259 //....oooOO0OOooo........oooOO0OOooo........oo 284 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 260 namespace { G4Mutex PenelopeRayleighModelMute 285 namespace { G4Mutex PenelopeRayleighModelMutex = G4MUTEX_INITIALIZER; } 261 G4double G4PenelopeRayleighModel::ComputeCross 286 G4double G4PenelopeRayleighModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 262 G4double energy, 287 G4double energy, 263 G4double Z, 288 G4double Z, 264 G4double, 289 G4double, 265 G4double, 290 G4double, 266 G4double) 291 G4double) 267 { 292 { 268 // Cross section of Rayleigh scattering in P << 293 // Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97 269 // tabulation, Cuellen et al. (1997), with n << 294 // tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel 270 // et al. J. Phys. Chem. Ref. Data 4 (1975) 295 // et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615. 271 296 272 if (fVerboseLevel > 3) << 297 if (verboseLevel > 3) 273 G4cout << "Calling CrossSectionPerAtom() o 298 G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModel" << G4endl; 274 << 299 275 G4int iZ = G4int(Z); << 300 G4int iZ = (G4int) Z; 276 << 301 277 if (!fLogAtomicCrossSection[iZ]) << 302 //Either Initialize() was not called, or we are in a slave and InitializeLocal() was >> 303 //not invoked >> 304 if (!logAtomicCrossSection) >> 305 { >> 306 //create a **thread-local** version of the table. Used only for G4EmCalculator and >> 307 //Unit Tests >> 308 fLocalTable = true; >> 309 logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>; >> 310 } >> 311 //now it should be ok >> 312 if (!logAtomicCrossSection->count(iZ)) 278 { 313 { 279 //If we are here, it means that Initial << 314 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was 280 //not filled up. This can happen in a U 315 //not filled up. This can happen in a UnitTest or via G4EmCalculator 281 if (fVerboseLevel > 0) << 316 G4ExceptionDescription ed; 282 { << 317 ed << "Unable to retrieve the cross section table for Z=" << iZ << G4endl; 283 //Issue a G4Exception (warning) only in ve << 318 ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl; 284 G4ExceptionDescription ed; << 319 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()", 285 ed << "Unable to retrieve the cross sectio << 320 "em2040",JustWarning,ed); 286 ed << "This can happen only in Unit Tests << 287 G4Exception("G4PenelopeRayleighModel::Comp << 288 "em2040",JustWarning,ed); << 289 } << 290 //protect file reading via autolock 321 //protect file reading via autolock 291 G4AutoLock lock(&PenelopeRayleighModelM 322 G4AutoLock lock(&PenelopeRayleighModelMutex); 292 ReadDataFile(iZ); 323 ReadDataFile(iZ); 293 lock.unlock(); << 324 lock.unlock(); 294 } 325 } 295 326 296 G4double cross = 0; 327 G4double cross = 0; 297 G4PhysicsFreeVector* atom = fLogAtomicCross << 328 >> 329 G4PhysicsFreeVector* atom = logAtomicCrossSection->find(iZ)->second; 298 if (!atom) 330 if (!atom) 299 { 331 { 300 G4ExceptionDescription ed; 332 G4ExceptionDescription ed; 301 ed << "Unable to find Z=" << iZ << " in 333 ed << "Unable to find Z=" << iZ << " in the atomic cross section table" << G4endl; 302 G4Exception("G4PenelopeRayleighModel::C 334 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()", 303 "em2041",FatalException,ed); 335 "em2041",FatalException,ed); 304 return 0; 336 return 0; 305 } 337 } 306 G4double logene = G4Log(energy); << 338 G4double logene = std::log(energy); 307 G4double logXS = atom->Value(logene); 339 G4double logXS = atom->Value(logene); 308 cross = G4Exp(logXS); << 340 cross = std::exp(logXS); 309 341 310 if (fVerboseLevel > 2) << 342 if (verboseLevel > 2) 311 { << 343 G4cout << "Rayleigh cross section at " << energy/keV << " keV for Z=" << Z << 312 G4cout << "Rayleigh cross section at " << 344 " = " << cross/barn << " barn" << G4endl; 313 " = " << cross/barn << " barn" << G4endl; << 345 return cross; 314 } << 315 return cross; << 316 } 346 } 317 347 318 348 319 //....oooOO0OOooo........oooOO0OOooo........oo 349 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 320 void G4PenelopeRayleighModel::BuildFormFactorT 350 void G4PenelopeRayleighModel::BuildFormFactorTable(const G4Material* material) 321 { 351 { 322 /* << 352 if (!IsMaster()) 323 1) get composition and equivalent molecula << 353 //Should not be here! 324 */ << 354 G4Exception("G4PenelopeRayleighModel::BuildFormFactorTable()", 325 std::size_t nElements = material->GetNumberO << 355 "em0100",FatalException,"Worker thread in this method"); >> 356 >> 357 /* >> 358 1) get composition and equivalent molecular density >> 359 */ >> 360 >> 361 G4int nElements = material->GetNumberOfElements(); 326 const G4ElementVector* elementVector = mater 362 const G4ElementVector* elementVector = material->GetElementVector(); 327 const G4double* fractionVector = material->G 363 const G4double* fractionVector = material->GetFractionVector(); 328 364 329 std::vector<G4double> *StechiometricFactors 365 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>; 330 for (std::size_t i=0;i<nElements;++i) << 366 for (G4int i=0;i<nElements;i++) 331 { 367 { 332 G4double fraction = fractionVector[i]; 368 G4double fraction = fractionVector[i]; 333 G4double atomicWeigth = (*elementVector) 369 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); 334 StechiometricFactors->push_back(fraction 370 StechiometricFactors->push_back(fraction/atomicWeigth); 335 } 371 } 336 //Find max 372 //Find max 337 G4double MaxStechiometricFactor = 0.; 373 G4double MaxStechiometricFactor = 0.; 338 for (std::size_t i=0;i<nElements;++i) << 374 for (G4int i=0;i<nElements;i++) 339 { 375 { 340 if ((*StechiometricFactors)[i] > MaxStec 376 if ((*StechiometricFactors)[i] > MaxStechiometricFactor) 341 MaxStechiometricFactor = (*Stechiometr 377 MaxStechiometricFactor = (*StechiometricFactors)[i]; 342 } 378 } 343 if (MaxStechiometricFactor<1e-16) 379 if (MaxStechiometricFactor<1e-16) 344 { 380 { 345 G4ExceptionDescription ed; 381 G4ExceptionDescription ed; 346 ed << "Inconsistent data of atomic compo << 382 ed << "Inconsistent data of atomic composition for " << 347 material->GetName() << G4endl; 383 material->GetName() << G4endl; 348 G4Exception("G4PenelopeRayleighModel::Bu 384 G4Exception("G4PenelopeRayleighModel::BuildFormFactorTable()", 349 "em2042",FatalException,ed); 385 "em2042",FatalException,ed); 350 } 386 } 351 //Normalize 387 //Normalize 352 for (std::size_t i=0;i<nElements;++i) << 388 for (G4int i=0;i<nElements;i++) 353 (*StechiometricFactors)[i] /= MaxStechiom 389 (*StechiometricFactors)[i] /= MaxStechiometricFactor; 354 << 390 >> 391 // Equivalent atoms per molecule >> 392 G4double atomsPerMolecule = 0; >> 393 for (G4int i=0;i<nElements;i++) >> 394 atomsPerMolecule += (*StechiometricFactors)[i]; >> 395 355 /* 396 /* 356 CREATE THE FORM FACTOR TABLE 397 CREATE THE FORM FACTOR TABLE 357 */ 398 */ 358 G4PhysicsFreeVector* theFFVec = new G4Physic << 399 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector(logQSquareGrid.size()); >> 400 theFFVec->SetSpline(true); 359 401 360 for (std::size_t k=0;k<fLogQSquareGrid.size( << 402 for (size_t k=0;k<logQSquareGrid.size();k++) 361 { 403 { 362 G4double ff2 = 0; //squared form factor 404 G4double ff2 = 0; //squared form factor 363 for (std::size_t i=0;i<nElements;++i) << 405 for (G4int i=0;i<nElements;i++) 364 { 406 { 365 G4int iZ = (*elementVector)[i]->GetZasInt( << 407 G4int iZ = (G4int) (*elementVector)[i]->GetZ(); 366 G4PhysicsFreeVector* theAtomVec = fAtomicF << 408 G4PhysicsFreeVector* theAtomVec = atomicFormFactor->find(iZ)->second; 367 G4double f = (*theAtomVec)[k]; //the q-gri << 409 G4double f = (*theAtomVec)[k]; //the q-grid is always the same 368 ff2 += f*f*(*StechiometricFactors)[i]; 410 ff2 += f*f*(*StechiometricFactors)[i]; 369 } 411 } 370 if (ff2) 412 if (ff2) 371 theFFVec->PutValue(k,fLogQSquareGrid[k],G4Lo << 413 theFFVec->PutValue(k,logQSquareGrid[k],std::log(ff2)); //NOTICE: THIS IS log(Q^2) vs. log(F^2) 372 } 414 } 373 theFFVec->FillSecondDerivatives(); //vector << 415 logFormFactorTable->insert(std::make_pair(material,theFFVec)); 374 fLogFormFactorTable->insert(std::make_pair(m << 375 416 376 delete StechiometricFactors; 417 delete StechiometricFactors; >> 418 377 return; 419 return; 378 } 420 } 379 421 >> 422 380 //....oooOO0OOooo........oooOO0OOooo........oo 423 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 381 424 382 void G4PenelopeRayleighModel::SampleSecondarie 425 void G4PenelopeRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* , 383 const G4MaterialCutsCouple* couple 426 const G4MaterialCutsCouple* couple, 384 const G4DynamicParticle* aDynamicG 427 const G4DynamicParticle* aDynamicGamma, 385 G4double, 428 G4double, 386 G4double) 429 G4double) 387 { 430 { 388 // Sampling of the Rayleigh final state (nam << 431 // Sampling of the Rayleigh final state (namely, scattering angle of the photon) 389 // from the Penelope2008 model. The scatteri << 432 // from the Penelope2008 model. The scattering angle is sampled from the atomic 390 // cross section dOmega/d(cosTheta) from Bor << 433 // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding 391 // anomalous scattering effects. The Form Fa << 434 // anomalous scattering effects. The Form Factor F(Q) function which appears in the 392 // analytical cross section is retrieved via << 435 // analytical cross section is retrieved via the method GetFSquared(); atomic data 393 // are tabulated for F(Q). Form factor for c << 436 // are tabulated for F(Q). Form factor for compounds is calculated according to 394 // the additivity rule. The sampling from th << 437 // the additivity rule. The sampling from the F(Q) is made via a Rational Inverse 395 // Transform with Aliasing (RITA) algorithm; << 438 // Transform with Aliasing (RITA) algorithm; RITA parameters are calculated once 396 // for each material and managed by G4Penelo 439 // for each material and managed by G4PenelopeSamplingData objects. 397 // The sampling algorithm (rejection method) << 440 // The sampling algorithm (rejection method) has efficiency 67% at low energy, and 398 // increases with energy. For E=100 keV the << 441 // increases with energy. For E=100 keV the efficiency is 100% and 86% for 399 // hydrogen and uranium, respectively. 442 // hydrogen and uranium, respectively. 400 443 401 if (fVerboseLevel > 3) << 444 if (verboseLevel > 3) 402 G4cout << "Calling SamplingSecondaries() o 445 G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModel" << G4endl; 403 446 404 G4double photonEnergy0 = aDynamicGamma->GetK 447 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 405 << 448 406 if (photonEnergy0 <= fIntrinsicLowEnergyLimi 449 if (photonEnergy0 <= fIntrinsicLowEnergyLimit) 407 { 450 { 408 fParticleChange->ProposeTrackStatus(fSto 451 fParticleChange->ProposeTrackStatus(fStopAndKill); 409 fParticleChange->SetProposedKineticEnerg 452 fParticleChange->SetProposedKineticEnergy(0.); 410 fParticleChange->ProposeLocalEnergyDepos 453 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 411 return ; 454 return ; 412 } 455 } 413 456 414 G4ParticleMomentum photonDirection0 = aDynam 457 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 415 << 458 416 const G4Material* theMat = couple->GetMateri 459 const G4Material* theMat = couple->GetMaterial(); 417 460 >> 461 418 //1) Verify if tables are ready 462 //1) Verify if tables are ready 419 //Either Initialize() was not called, or we << 463 if (!pMaxTable || !samplingTable) 420 //not invoked << 464 { 421 if (!fPMaxTable || !fSamplingTable || !fLogF << 465 G4Exception("G4PenelopeRayleighModel::SampleSecondaries()", 422 { << 466 "em2043",FatalException,"Invalid model initialization"); 423 //create a **thread-local** version of t << 467 return; 424 //Unit Tests << 468 } 425 fLocalTable = true; << 469 426 if (!fLogFormFactorTable) << 470 G4PenelopeSamplingData* theDataTable = samplingTable->find(theMat)->second; 427 fLogFormFactorTable = new std::map<const G4M << 471 428 if (!fPMaxTable) << 472 429 fPMaxTable = new std::map<const G4Material*, << 473 G4PhysicsFreeVector* thePMax = pMaxTable->find(theMat)->second; 430 if (!fSamplingTable) << 431 fSamplingTable = new std::map<const G4Materi << 432 } << 433 << 434 if (!fSamplingTable->count(theMat)) << 435 { << 436 //If we are here, it means that Initiali << 437 //not filled up. This can happen in a Un << 438 if (fVerboseLevel > 0) << 439 { << 440 //Issue a G4Exception (warning) only in ve << 441 G4ExceptionDescription ed; << 442 ed << "Unable to find the fSamplingTable d << 443 theMat->GetName() << G4endl; << 444 ed << "This can happen only in Unit Tests" << 445 G4Exception("G4PenelopeRayleighModel::Samp << 446 "em2019",JustWarning,ed); << 447 } << 448 const G4ElementVector* theElementVector << 449 //protect file reading via autolock << 450 G4AutoLock lock(&PenelopeRayleighModelMu << 451 for (std::size_t j=0;j<theMat->GetNumber << 452 { << 453 G4int iZ = theElementVector->at(j)->GetZas << 454 if (!fLogAtomicCrossSection[iZ]) << 455 { << 456 lock.lock(); << 457 ReadDataFile(iZ); << 458 lock.unlock(); << 459 } << 460 } << 461 lock.lock(); << 462 //1) If the table has not been built for << 463 if (!fLogFormFactorTable->count(theMat)) << 464 BuildFormFactorTable(theMat); << 465 << 466 //2) retrieve or build the sampling tabl << 467 if (!(fSamplingTable->count(theMat))) << 468 InitializeSamplingAlgorithm(theMat); << 469 << 470 //3) retrieve or build the pMax data << 471 if (!fPMaxTable->count(theMat)) << 472 GetPMaxTable(theMat); << 473 lock.unlock(); << 474 } << 475 << 476 //Ok, restart the job << 477 G4PenelopeSamplingData* theDataTable = fSamp << 478 G4PhysicsFreeVector* thePMax = fPMaxTable->f << 479 474 480 G4double cosTheta = 1.0; 475 G4double cosTheta = 1.0; 481 << 476 482 //OK, ready to go! 477 //OK, ready to go! 483 G4double qmax = 2.0*photonEnergy0/electron_m 478 G4double qmax = 2.0*photonEnergy0/electron_mass_c2; //this is non-dimensional now 484 479 485 if (qmax < 1e-10) //very low momentum transf 480 if (qmax < 1e-10) //very low momentum transfer 486 { 481 { 487 G4bool loopAgain=false; 482 G4bool loopAgain=false; 488 do 483 do 489 { 484 { 490 loopAgain = false; 485 loopAgain = false; 491 cosTheta = 1.0-2.0*G4UniformRand(); 486 cosTheta = 1.0-2.0*G4UniformRand(); 492 G4double G = 0.5*(1+cosTheta*cosTheta); 487 G4double G = 0.5*(1+cosTheta*cosTheta); 493 if (G4UniformRand()>G) 488 if (G4UniformRand()>G) 494 loopAgain = true; 489 loopAgain = true; 495 }while(loopAgain); 490 }while(loopAgain); 496 } 491 } 497 else //larger momentum transfer 492 else //larger momentum transfer 498 { 493 { 499 std::size_t nData = theDataTable->GetNum << 494 size_t nData = theDataTable->GetNumberOfStoredPoints(); 500 G4double LastQ2inTheTable = theDataTable 495 G4double LastQ2inTheTable = theDataTable->GetX(nData-1); 501 G4double q2max = std::min(qmax*qmax,Last 496 G4double q2max = std::min(qmax*qmax,LastQ2inTheTable); 502 497 503 G4bool loopAgain = false; 498 G4bool loopAgain = false; 504 G4double MaxPValue = thePMax->Value(phot 499 G4double MaxPValue = thePMax->Value(photonEnergy0); 505 G4double xx=0; 500 G4double xx=0; 506 << 501 507 //Sampling by rejection method. The reje << 502 //Sampling by rejection method. The rejection function is 508 //G = 0.5*(1+cos^2(theta)) 503 //G = 0.5*(1+cos^2(theta)) 509 // 504 // 510 do{ 505 do{ 511 loopAgain = false; 506 loopAgain = false; 512 G4double RandomMax = G4UniformRand()*MaxPVal 507 G4double RandomMax = G4UniformRand()*MaxPValue; 513 xx = theDataTable->SampleValue(RandomMax); 508 xx = theDataTable->SampleValue(RandomMax); 514 //xx is a random value of q^2 in (0,q2max),s << 509 //xx is a random value of q^2 in (0,q2max),sampled according to 515 //F(Q^2) via the RITA algorithm 510 //F(Q^2) via the RITA algorithm 516 if (xx > q2max) 511 if (xx > q2max) 517 loopAgain = true; 512 loopAgain = true; 518 cosTheta = 1.0-2.0*xx/q2max; 513 cosTheta = 1.0-2.0*xx/q2max; 519 G4double G = 0.5*(1+cosTheta*cosTheta); 514 G4double G = 0.5*(1+cosTheta*cosTheta); 520 if (G4UniformRand()>G) 515 if (G4UniformRand()>G) 521 loopAgain = true; 516 loopAgain = true; 522 }while(loopAgain); 517 }while(loopAgain); 523 } 518 } 524 << 519 525 G4double sinTheta = std::sqrt(1-cosTheta*cos 520 G4double sinTheta = std::sqrt(1-cosTheta*cosTheta); 526 << 521 527 // Scattered photon angles. ( Z - axis along 522 // Scattered photon angles. ( Z - axis along the parent photon) 528 G4double phi = twopi * G4UniformRand() ; 523 G4double phi = twopi * G4UniformRand() ; 529 G4double dirX = sinTheta*std::cos(phi); 524 G4double dirX = sinTheta*std::cos(phi); 530 G4double dirY = sinTheta*std::sin(phi); 525 G4double dirY = sinTheta*std::sin(phi); 531 G4double dirZ = cosTheta; 526 G4double dirZ = cosTheta; 532 << 527 533 // Update G4VParticleChange for the scattere << 528 // Update G4VParticleChange for the scattered photon 534 G4ThreeVector photonDirection1(dirX, dirY, d 529 G4ThreeVector photonDirection1(dirX, dirY, dirZ); 535 530 536 photonDirection1.rotateUz(photonDirection0); 531 photonDirection1.rotateUz(photonDirection0); 537 fParticleChange->ProposeMomentumDirection(ph 532 fParticleChange->ProposeMomentumDirection(photonDirection1) ; 538 fParticleChange->SetProposedKineticEnergy(ph 533 fParticleChange->SetProposedKineticEnergy(photonEnergy0) ; 539 << 534 540 return; 535 return; 541 } 536 } 542 537 543 538 544 //....oooOO0OOooo........oooOO0OOooo........oo 539 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 540 546 void G4PenelopeRayleighModel::ReadDataFile(con 541 void G4PenelopeRayleighModel::ReadDataFile(const G4int Z) 547 { 542 { 548 if (fVerboseLevel > 2) << 543 if (!IsMaster()) >> 544 //Should not be here! >> 545 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", >> 546 "em0100",FatalException,"Worker thread in this method"); >> 547 >> 548 if (verboseLevel > 2) 549 { 549 { 550 G4cout << "G4PenelopeRayleighModel::Read 550 G4cout << "G4PenelopeRayleighModel::ReadDataFile()" << G4endl; 551 G4cout << "Going to read Rayleigh data f 551 G4cout << "Going to read Rayleigh data files for Z=" << Z << G4endl; 552 } 552 } 553 const char* path = G4FindDataDir("G4LEDATA << 553 554 if(!path) << 554 char* path = getenv("G4LEDATA"); >> 555 if (!path) 555 { 556 { 556 G4String excep = "G4LEDATA environment v 557 G4String excep = "G4LEDATA environment variable not set!"; 557 G4Exception("G4PenelopeRayleighModel::Re 558 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 558 "em0006",FatalException,excep); 559 "em0006",FatalException,excep); 559 return; 560 return; 560 } 561 } 561 562 562 /* 563 /* 563 Read first the cross section file 564 Read first the cross section file 564 */ 565 */ 565 std::ostringstream ost; 566 std::ostringstream ost; 566 if (Z>9) 567 if (Z>9) 567 ost << path << "/penelope/rayleigh/pdgra" 568 ost << path << "/penelope/rayleigh/pdgra" << Z << ".p08"; 568 else 569 else 569 ost << path << "/penelope/rayleigh/pdgra0" 570 ost << path << "/penelope/rayleigh/pdgra0" << Z << ".p08"; 570 std::ifstream file(ost.str().c_str()); 571 std::ifstream file(ost.str().c_str()); 571 if (!file.is_open()) 572 if (!file.is_open()) 572 { 573 { 573 G4String excep = "Data file " + G4String 574 G4String excep = "Data file " + G4String(ost.str()) + " not found!"; 574 G4Exception("G4PenelopeRayleighModel::Re 575 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 575 "em0003",FatalException,excep); 576 "em0003",FatalException,excep); 576 } 577 } 577 G4int readZ =0; 578 G4int readZ =0; 578 std::size_t nPoints= 0; << 579 size_t nPoints= 0; 579 file >> readZ >> nPoints; 580 file >> readZ >> nPoints; 580 //check the right file is opened. 581 //check the right file is opened. 581 if (readZ != Z || nPoints <= 0 || nPoints >= 582 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) 582 { 583 { 583 G4ExceptionDescription ed; 584 G4ExceptionDescription ed; 584 ed << "Corrupted data file for Z=" << Z 585 ed << "Corrupted data file for Z=" << Z << G4endl; 585 G4Exception("G4PenelopeRayleighModel::Re 586 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 586 "em0005",FatalException,ed); 587 "em0005",FatalException,ed); 587 return; 588 return; 588 } << 589 } 589 << 590 G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector((size_t)nPoints); 590 fLogAtomicCrossSection[Z] = new G4PhysicsFre << 591 G4double ene=0,f1=0,f2=0,xs=0; 591 G4double ene=0,f1=0,f2=0,xs=0; 592 for (std::size_t i=0;i<nPoints;++i) << 592 for (size_t i=0;i<nPoints;i++) 593 { 593 { 594 file >> ene >> f1 >> f2 >> xs; 594 file >> ene >> f1 >> f2 >> xs; 595 //dimensional quantities 595 //dimensional quantities 596 ene *= eV; 596 ene *= eV; 597 xs *= cm2; 597 xs *= cm2; 598 fLogAtomicCrossSection[Z]->PutValue(i,G4 << 598 theVec->PutValue(i,std::log(ene),std::log(xs)); 599 if (file.eof() && i != (nPoints-1)) //fi 599 if (file.eof() && i != (nPoints-1)) //file ended too early 600 { 600 { 601 G4ExceptionDescription ed ; << 601 G4ExceptionDescription ed ; 602 ed << "Corrupted data file for Z=" << Z << 602 ed << "Corrupted data file for Z=" << Z << G4endl; 603 ed << "Found less than " << nPoints << "en 603 ed << "Found less than " << nPoints << "entries " <<G4endl; 604 G4Exception("G4PenelopeRayleighModel::Read 604 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 605 "em0005",FatalException,ed); 605 "em0005",FatalException,ed); 606 } 606 } 607 } 607 } >> 608 if (!logAtomicCrossSection) >> 609 { >> 610 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", >> 611 "em2044",FatalException,"Unable to allocate the atomic cross section table"); >> 612 delete theVec; >> 613 return; >> 614 } >> 615 logAtomicCrossSection->insert(std::make_pair(Z,theVec)); 608 file.close(); 616 file.close(); 609 617 610 /* 618 /* 611 Then read the form factor file 619 Then read the form factor file 612 */ 620 */ 613 std::ostringstream ost2; 621 std::ostringstream ost2; 614 if (Z>9) 622 if (Z>9) 615 ost2 << path << "/penelope/rayleigh/pdaff" 623 ost2 << path << "/penelope/rayleigh/pdaff" << Z << ".p08"; 616 else 624 else 617 ost2 << path << "/penelope/rayleigh/pdaff0 625 ost2 << path << "/penelope/rayleigh/pdaff0" << Z << ".p08"; 618 file.open(ost2.str().c_str()); 626 file.open(ost2.str().c_str()); 619 if (!file.is_open()) 627 if (!file.is_open()) 620 { 628 { 621 G4String excep = "Data file " + G4String 629 G4String excep = "Data file " + G4String(ost2.str()) + " not found!"; 622 G4Exception("G4PenelopeRayleighModel::Re 630 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 623 "em0003",FatalException,excep); 631 "em0003",FatalException,excep); 624 } 632 } 625 file >> readZ >> nPoints; 633 file >> readZ >> nPoints; 626 //check the right file is opened. 634 //check the right file is opened. 627 if (readZ != Z || nPoints <= 0 || nPoints >= 635 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) 628 { 636 { 629 G4ExceptionDescription ed; 637 G4ExceptionDescription ed; 630 ed << "Corrupted data file for Z=" << Z 638 ed << "Corrupted data file for Z=" << Z << G4endl; 631 G4Exception("G4PenelopeRayleighModel::Re 639 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 632 "em0005",FatalException,ed); 640 "em0005",FatalException,ed); 633 return; 641 return; 634 } << 642 } 635 fAtomicFormFactor[Z] = new G4PhysicsFreeVect << 643 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector((size_t)nPoints); 636 G4double q=0,ff=0,incoh=0; 644 G4double q=0,ff=0,incoh=0; 637 G4bool fillQGrid = false; 645 G4bool fillQGrid = false; 638 //fill this vector only the first time. 646 //fill this vector only the first time. 639 if (!fLogQSquareGrid.size()) << 647 if (!logQSquareGrid.size()) 640 fillQGrid = true; 648 fillQGrid = true; 641 for (std::size_t i=0;i<nPoints;++i) << 649 for (size_t i=0;i<nPoints;i++) 642 { 650 { 643 file >> q >> ff >> incoh; 651 file >> q >> ff >> incoh; 644 //q and ff are dimensionless (q is in un 652 //q and ff are dimensionless (q is in units of (m_e*c) 645 fAtomicFormFactor[Z]->PutValue(i,q,ff); << 653 theFFVec->PutValue(i,q,ff); 646 if (fillQGrid) 654 if (fillQGrid) 647 { 655 { 648 fLogQSquareGrid.push_back(2.0*G4Log(q)); << 656 logQSquareGrid.push_back(2.0*std::log(q)); 649 } 657 } 650 if (file.eof() && i != (nPoints-1)) //fi 658 if (file.eof() && i != (nPoints-1)) //file ended too early 651 { 659 { 652 G4ExceptionDescription ed; << 660 G4ExceptionDescription ed; 653 ed << "Corrupted data file for Z=" << Z << 661 ed << "Corrupted data file for Z=" << Z << G4endl; 654 ed << "Found less than " << nPoints << "en 662 ed << "Found less than " << nPoints << "entries " <<G4endl; 655 G4Exception("G4PenelopeRayleighModel::Read 663 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 656 "em0005",FatalException,ed); 664 "em0005",FatalException,ed); 657 } 665 } 658 } 666 } >> 667 if (!atomicFormFactor) >> 668 { >> 669 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", >> 670 "em2045",FatalException, >> 671 "Unable to allocate the atomicFormFactor data table"); >> 672 delete theFFVec; >> 673 return; >> 674 } >> 675 atomicFormFactor->insert(std::make_pair(Z,theFFVec)); 659 file.close(); 676 file.close(); 660 return; 677 return; 661 } 678 } 662 679 663 //....oooOO0OOooo........oooOO0OOooo........oo 680 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 664 681 665 G4double G4PenelopeRayleighModel::GetFSquared( 682 G4double G4PenelopeRayleighModel::GetFSquared(const G4Material* mat, const G4double QSquared) 666 { 683 { 667 G4double f2 = 0; 684 G4double f2 = 0; 668 //Input value QSquared could be zero: protec << 685 //Input value QSquared could be zero: protect the log() below against 669 //the FPE exception 686 //the FPE exception 670 //If Q<1e-10, set Q to 1e-10 687 //If Q<1e-10, set Q to 1e-10 671 G4double logQSquared = (QSquared>1e-10) ? G4 << 688 G4double logQSquared = (QSquared>1e-10) ? std::log(QSquared) : -23.; 672 //last value of the table 689 //last value of the table 673 G4double maxlogQ2 = fLogQSquareGrid[fLogQSqu << 690 G4double maxlogQ2 = logQSquareGrid[logQSquareGrid.size()-1]; 674 << 691 >> 692 675 //now it should be all right 693 //now it should be all right 676 G4PhysicsFreeVector* theVec = fLogFormFactor << 694 G4PhysicsFreeVector* theVec = logFormFactorTable->find(mat)->second; 677 695 678 if (!theVec) 696 if (!theVec) 679 { 697 { 680 G4ExceptionDescription ed; 698 G4ExceptionDescription ed; 681 ed << "Unable to retrieve F squared tabl 699 ed << "Unable to retrieve F squared table for " << mat->GetName() << G4endl; 682 G4Exception("G4PenelopeRayleighModel::Ge 700 G4Exception("G4PenelopeRayleighModel::GetFSquared()", 683 "em2046",FatalException,ed); 701 "em2046",FatalException,ed); 684 return 0; 702 return 0; 685 } 703 } 686 if (logQSquared < -20) // Q < 1e-9 704 if (logQSquared < -20) // Q < 1e-9 687 { 705 { 688 G4double logf2 = (*theVec)[0]; //first v 706 G4double logf2 = (*theVec)[0]; //first value of the table 689 f2 = G4Exp(logf2); << 707 f2 = std::exp(logf2); 690 } 708 } 691 else if (logQSquared > maxlogQ2) 709 else if (logQSquared > maxlogQ2) 692 f2 =0; 710 f2 =0; 693 else 711 else 694 { 712 { 695 //log(Q^2) vs. log(F^2) 713 //log(Q^2) vs. log(F^2) 696 G4double logf2 = theVec->Value(logQSquar 714 G4double logf2 = theVec->Value(logQSquared); 697 f2 = G4Exp(logf2); << 715 f2 = std::exp(logf2); 698 716 699 } 717 } 700 if (fVerboseLevel > 3) << 718 if (verboseLevel > 3) 701 { 719 { 702 G4cout << "G4PenelopeRayleighModel::GetF << 720 G4cout << "G4PenelopeRayleighModel::GetFSquared() in " << mat->GetName() << G4endl; 703 G4cout << "Q^2 = " << QSquared << " (un 721 G4cout << "Q^2 = " << QSquared << " (units of 1/(m_e*c); F^2 = " << f2 << G4endl; 704 } 722 } 705 return f2; 723 return f2; 706 } 724 } 707 725 708 //....oooOO0OOooo........oooOO0OOooo........oo 726 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 709 727 710 void G4PenelopeRayleighModel::InitializeSampli 728 void G4PenelopeRayleighModel::InitializeSamplingAlgorithm(const G4Material* mat) 711 { 729 { >> 730 if (!IsMaster()) >> 731 //Should not be here! >> 732 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", >> 733 "em0100",FatalException,"Worker thread in this method"); >> 734 712 G4double q2min = 0; 735 G4double q2min = 0; 713 G4double q2max = 0; 736 G4double q2max = 0; 714 const std::size_t np = 150; //hard-coded in << 737 const size_t np = 150; //hard-coded in Penelope 715 //G4cout << "Init N= " << fLogQSquareGrid.si << 738 //G4cout << "Init N= " << logQSquareGrid.size() << G4endl; 716 for (std::size_t i=1;i<fLogQSquareGrid.size( << 739 for (size_t i=1;i<logQSquareGrid.size();i++) 717 { 740 { 718 G4double Q2 = G4Exp(fLogQSquareGrid[i]); << 741 G4double Q2 = std::exp(logQSquareGrid[i]); 719 if (GetFSquared(mat,Q2) > 1e-35) 742 if (GetFSquared(mat,Q2) > 1e-35) 720 { 743 { 721 q2max = G4Exp(fLogQSquareGrid[i-1]); << 744 q2max = std::exp(logQSquareGrid[i-1]); 722 } 745 } 723 //G4cout << "Q2= " << Q2 << " q2max= " < 746 //G4cout << "Q2= " << Q2 << " q2max= " << q2max << G4endl; 724 } 747 } 725 << 748 726 std::size_t nReducedPoints = np/4; << 749 size_t nReducedPoints = np/4; 727 750 728 //check for errors 751 //check for errors 729 if (np < 16) 752 if (np < 16) 730 { 753 { 731 G4Exception("G4PenelopeRayleighModel::In 754 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 732 "em2047",FatalException, 755 "em2047",FatalException, 733 "Too few points to initialize the sampli 756 "Too few points to initialize the sampling algorithm"); 734 } 757 } 735 if (q2min > (q2max-1e-10)) 758 if (q2min > (q2max-1e-10)) 736 { 759 { 737 G4cout << "q2min= " << q2min << " q2max= 760 G4cout << "q2min= " << q2min << " q2max= " << q2max << G4endl; 738 G4Exception("G4PenelopeRayleighModel::In 761 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 739 "em2048",FatalException, 762 "em2048",FatalException, 740 "Too narrow grid to initialize the sampl 763 "Too narrow grid to initialize the sampling algorithm"); 741 } 764 } 742 765 743 //This is subroutine RITAI0 of Penelope 766 //This is subroutine RITAI0 of Penelope 744 //Create an object of type G4PenelopeRayleig 767 //Create an object of type G4PenelopeRayleighSamplingData --> store in a map::Material* 745 768 746 //temporary vectors --> Then everything is s 769 //temporary vectors --> Then everything is stored in G4PenelopeSamplingData 747 G4DataVector* x = new G4DataVector(); 770 G4DataVector* x = new G4DataVector(); 748 << 771 749 /******************************************* 772 /******************************************************************************* 750 Start with a grid of NUNIF points uniforml 773 Start with a grid of NUNIF points uniformly spaced in the interval q2min,q2max 751 ******************************************** 774 ********************************************************************************/ 752 std::size_t NUNIF = std::min(std::max(((std: << 775 size_t NUNIF = std::min(std::max(((size_t)8),nReducedPoints),np/2); 753 const G4int nip = 51; //hard-coded in Penelo 776 const G4int nip = 51; //hard-coded in Penelope 754 777 755 G4double dx = (q2max-q2min)/((G4double) NUNI << 778 G4double dx = (q2max-q2min)/((G4double) NUNIF-1); 756 x->push_back(q2min); << 779 x->push_back(q2min); 757 for (std::size_t i=1;i<NUNIF-1;++i) << 780 for (size_t i=1;i<NUNIF-1;i++) 758 { 781 { 759 G4double app = q2min + i*dx; 782 G4double app = q2min + i*dx; 760 x->push_back(app); //increase << 783 x->push_back(app); //increase 761 } 784 } 762 x->push_back(q2max); 785 x->push_back(q2max); 763 << 786 764 if (fVerboseLevel> 3) << 787 if (verboseLevel> 3) 765 G4cout << "Vector x has " << x->size() << 788 G4cout << "Vector x has " << x->size() << " points, while NUNIF = " << NUNIF << G4endl; 766 789 767 //Allocate temporary storage vectors 790 //Allocate temporary storage vectors 768 G4DataVector* area = new G4DataVector(); 791 G4DataVector* area = new G4DataVector(); 769 G4DataVector* a = new G4DataVector(); 792 G4DataVector* a = new G4DataVector(); 770 G4DataVector* b = new G4DataVector(); 793 G4DataVector* b = new G4DataVector(); 771 G4DataVector* c = new G4DataVector(); 794 G4DataVector* c = new G4DataVector(); 772 G4DataVector* err = new G4DataVector(); 795 G4DataVector* err = new G4DataVector(); 773 796 774 for (std::size_t i=0;i<NUNIF-1;++i) //build << 797 for (size_t i=0;i<NUNIF-1;i++) //build all points but the last 775 { << 798 { 776 //Temporary vectors for this loop 799 //Temporary vectors for this loop 777 G4DataVector* pdfi = new G4DataVector(); 800 G4DataVector* pdfi = new G4DataVector(); 778 G4DataVector* pdfih = new G4DataVector() 801 G4DataVector* pdfih = new G4DataVector(); 779 G4DataVector* sumi = new G4DataVector(); 802 G4DataVector* sumi = new G4DataVector(); 780 803 781 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4do 804 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 782 G4double pdfmax = 0; 805 G4double pdfmax = 0; 783 for (G4int k=0;k<nip;k++) 806 for (G4int k=0;k<nip;k++) 784 { 807 { 785 G4double xik = (*x)[i]+k*dxi; << 808 G4double xik = (*x)[i]+k*dxi; 786 G4double pdfk = std::max(GetFSquared(mat,x 809 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 787 pdfi->push_back(pdfk); 810 pdfi->push_back(pdfk); 788 pdfmax = std::max(pdfmax,pdfk); << 811 pdfmax = std::max(pdfmax,pdfk); 789 if (k < (nip-1)) 812 if (k < (nip-1)) 790 { 813 { 791 G4double xih = xik + 0.5*dxi; 814 G4double xih = xik + 0.5*dxi; 792 G4double pdfIK = std::max(GetFSquared( 815 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 793 pdfih->push_back(pdfIK); 816 pdfih->push_back(pdfIK); 794 pdfmax = std::max(pdfmax,pdfIK); 817 pdfmax = std::max(pdfmax,pdfIK); 795 } 818 } 796 } 819 } 797 << 820 798 //Simpson's integration 821 //Simpson's integration 799 G4double cons = dxi*0.5*(1./3.); 822 G4double cons = dxi*0.5*(1./3.); 800 sumi->push_back(0.); 823 sumi->push_back(0.); 801 for (G4int k=1;k<nip;k++) 824 for (G4int k=1;k<nip;k++) 802 { 825 { 803 G4double previous = (*sumi)[k-1]; 826 G4double previous = (*sumi)[k-1]; 804 G4double next = previous + cons*((*pdfi)[k 827 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 805 sumi->push_back(next); 828 sumi->push_back(next); 806 } 829 } 807 << 830 808 G4double lastIntegral = (*sumi)[sumi->si 831 G4double lastIntegral = (*sumi)[sumi->size()-1]; 809 area->push_back(lastIntegral); 832 area->push_back(lastIntegral); 810 //Normalize cumulative function 833 //Normalize cumulative function 811 G4double factor = 1.0/lastIntegral; 834 G4double factor = 1.0/lastIntegral; 812 for (std::size_t k=0;k<sumi->size();++k) << 835 for (size_t k=0;k<sumi->size();k++) 813 (*sumi)[k] *= factor; 836 (*sumi)[k] *= factor; 814 << 837 815 //When the PDF vanishes at one of the in 838 //When the PDF vanishes at one of the interval end points, its value is modified 816 if ((*pdfi)[0] < 1e-35) << 839 if ((*pdfi)[0] < 1e-35) 817 (*pdfi)[0] = 1e-5*pdfmax; 840 (*pdfi)[0] = 1e-5*pdfmax; 818 if ((*pdfi)[pdfi->size()-1] < 1e-35) 841 if ((*pdfi)[pdfi->size()-1] < 1e-35) 819 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 842 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 820 843 821 G4double pli = (*pdfi)[0]*factor; 844 G4double pli = (*pdfi)[0]*factor; 822 G4double pui = (*pdfi)[pdfi->size()-1]*f 845 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 823 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx 846 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx); 824 G4double A_temp = (1.0/(pli*dx))-1.0-B_t 847 G4double A_temp = (1.0/(pli*dx))-1.0-B_temp; 825 G4double C_temp = 1.0+A_temp+B_temp; 848 G4double C_temp = 1.0+A_temp+B_temp; 826 if (C_temp < 1e-35) 849 if (C_temp < 1e-35) 827 { 850 { 828 a->push_back(0.); 851 a->push_back(0.); 829 b->push_back(0.); 852 b->push_back(0.); 830 c->push_back(1.); << 853 c->push_back(1.); 831 } 854 } 832 else 855 else 833 { 856 { 834 a->push_back(A_temp); 857 a->push_back(A_temp); 835 b->push_back(B_temp); 858 b->push_back(B_temp); 836 c->push_back(C_temp); 859 c->push_back(C_temp); 837 } 860 } 838 861 839 //OK, now get ERR(I), the integral of th << 862 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 840 //and the true pdf, extended over the in 863 //and the true pdf, extended over the interval (X(I),X(I+1)) 841 G4int icase = 1; //loop code 864 G4int icase = 1; //loop code 842 G4bool reLoop = false; 865 G4bool reLoop = false; 843 err->push_back(0.); 866 err->push_back(0.); 844 do 867 do 845 { 868 { 846 reLoop = false; 869 reLoop = false; 847 (*err)[i] = 0.; //zero variable 870 (*err)[i] = 0.; //zero variable 848 for (G4int k=0;k<nip;k++) 871 for (G4int k=0;k<nip;k++) 849 { 872 { 850 G4double rr = (*sumi)[k]; 873 G4double rr = (*sumi)[k]; 851 G4double pap = (*area)[i]*(1.0+((*a)[i 874 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 852 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(* 875 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 853 if (k == 0 || k == nip-1) 876 if (k == 0 || k == nip-1) 854 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]) 877 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 855 else 878 else 856 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 879 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 857 } 880 } 858 (*err)[i] *= dxi; 881 (*err)[i] *= dxi; 859 << 882 860 //If err(I) is too large, the pdf is appro 883 //If err(I) is too large, the pdf is approximated by a uniform distribution 861 if ((*err)[i] > 0.1*(*area)[i] && icase == << 884 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 862 { 885 { 863 (*b)[i] = 0; 886 (*b)[i] = 0; 864 (*a)[i] = 0; 887 (*a)[i] = 0; 865 (*c)[i] = 1.; 888 (*c)[i] = 1.; 866 icase = 2; 889 icase = 2; 867 reLoop = true; 890 reLoop = true; 868 } 891 } 869 }while(reLoop); 892 }while(reLoop); >> 893 870 delete pdfi; 894 delete pdfi; 871 delete pdfih; 895 delete pdfih; 872 delete sumi; 896 delete sumi; 873 } //end of first loop over i 897 } //end of first loop over i 874 898 875 //Now assign last point 899 //Now assign last point 876 (*x)[x->size()-1] = q2max; 900 (*x)[x->size()-1] = q2max; 877 a->push_back(0.); 901 a->push_back(0.); 878 b->push_back(0.); 902 b->push_back(0.); 879 c->push_back(0.); 903 c->push_back(0.); 880 err->push_back(0.); 904 err->push_back(0.); 881 area->push_back(0.); 905 area->push_back(0.); 882 906 883 if (x->size() != NUNIF || a->size() != NUNIF << 907 if (x->size() != NUNIF || a->size() != NUNIF || 884 err->size() != NUNIF || area->size() != 908 err->size() != NUNIF || area->size() != NUNIF) 885 { 909 { 886 G4ExceptionDescription ed; 910 G4ExceptionDescription ed; 887 ed << "Problem in building the Table for 911 ed << "Problem in building the Table for Sampling: array dimensions do not match" << G4endl; 888 G4Exception("G4PenelopeRayleighModel::In 912 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 889 "em2049",FatalException,ed); 913 "em2049",FatalException,ed); 890 } 914 } 891 << 915 892 /******************************************* 916 /******************************************************************************* 893 New grid points are added by halving the su 917 New grid points are added by halving the sub-intervals with the largest absolute error 894 This is done up to np=150 points in the grid 918 This is done up to np=150 points in the grid 895 ******************************************** 919 ********************************************************************************/ 896 do 920 do 897 { 921 { 898 G4double maxError = 0.0; 922 G4double maxError = 0.0; 899 std::size_t iErrMax = 0; << 923 size_t iErrMax = 0; 900 for (std::size_t i=0;i<err->size()-2;++i << 924 for (size_t i=0;i<err->size()-2;i++) 901 { 925 { 902 //maxError is the lagest of the interval e 926 //maxError is the lagest of the interval errors err[i] 903 if ((*err)[i] > maxError) 927 if ((*err)[i] > maxError) 904 { 928 { 905 maxError = (*err)[i]; 929 maxError = (*err)[i]; 906 iErrMax = i; 930 iErrMax = i; 907 } 931 } 908 } 932 } 909 << 933 910 //OK, now I have to insert one new point 934 //OK, now I have to insert one new point in the position iErrMax 911 G4double newx = 0.5*((*x)[iErrMax]+(*x)[ 935 G4double newx = 0.5*((*x)[iErrMax]+(*x)[iErrMax+1]); 912 << 936 913 x->insert(x->begin()+iErrMax+1,newx); 937 x->insert(x->begin()+iErrMax+1,newx); 914 //Add place-holders in the other vectors 938 //Add place-holders in the other vectors 915 area->insert(area->begin()+iErrMax+1,0.) 939 area->insert(area->begin()+iErrMax+1,0.); 916 a->insert(a->begin()+iErrMax+1,0.); 940 a->insert(a->begin()+iErrMax+1,0.); 917 b->insert(b->begin()+iErrMax+1,0.); 941 b->insert(b->begin()+iErrMax+1,0.); 918 c->insert(c->begin()+iErrMax+1,0.); 942 c->insert(c->begin()+iErrMax+1,0.); 919 err->insert(err->begin()+iErrMax+1,0.); 943 err->insert(err->begin()+iErrMax+1,0.); 920 << 944 921 //Now calculate the other parameters 945 //Now calculate the other parameters 922 for (std::size_t i=iErrMax;i<=iErrMax+1; << 946 for (size_t i=iErrMax;i<=iErrMax+1;i++) 923 { 947 { 924 //Temporary vectors for this loop 948 //Temporary vectors for this loop 925 G4DataVector* pdfi = new G4DataVector(); 949 G4DataVector* pdfi = new G4DataVector(); 926 G4DataVector* pdfih = new G4DataVector(); 950 G4DataVector* pdfih = new G4DataVector(); 927 G4DataVector* sumi = new G4DataVector(); 951 G4DataVector* sumi = new G4DataVector(); 928 << 952 929 G4double dxLocal = (*x)[i+1]-(*x)[i]; 953 G4double dxLocal = (*x)[i+1]-(*x)[i]; 930 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4doub 954 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 931 G4double pdfmax = 0; 955 G4double pdfmax = 0; 932 for (G4int k=0;k<nip;k++) 956 for (G4int k=0;k<nip;k++) 933 { 957 { 934 G4double xik = (*x)[i]+k*dxi; 958 G4double xik = (*x)[i]+k*dxi; 935 G4double pdfk = std::max(GetFSquared(m 959 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 936 pdfi->push_back(pdfk); 960 pdfi->push_back(pdfk); 937 pdfmax = std::max(pdfmax,pdfk); << 961 pdfmax = std::max(pdfmax,pdfk); 938 if (k < (nip-1)) 962 if (k < (nip-1)) 939 { 963 { 940 G4double xih = xik + 0.5*dxi; 964 G4double xih = xik + 0.5*dxi; 941 G4double pdfIK = std::max(GetFSquared(ma 965 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 942 pdfih->push_back(pdfIK); 966 pdfih->push_back(pdfIK); 943 pdfmax = std::max(pdfmax,pdfIK); 967 pdfmax = std::max(pdfmax,pdfIK); 944 } 968 } 945 } 969 } 946 << 970 947 //Simpson's integration 971 //Simpson's integration 948 G4double cons = dxi*0.5*(1./3.); 972 G4double cons = dxi*0.5*(1./3.); 949 sumi->push_back(0.); 973 sumi->push_back(0.); 950 for (G4int k=1;k<nip;k++) 974 for (G4int k=1;k<nip;k++) 951 { 975 { 952 G4double previous = (*sumi)[k-1]; 976 G4double previous = (*sumi)[k-1]; 953 G4double next = previous + cons*((*pdf 977 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 954 sumi->push_back(next); 978 sumi->push_back(next); 955 } 979 } 956 G4double lastIntegral = (*sumi)[sumi->size 980 G4double lastIntegral = (*sumi)[sumi->size()-1]; 957 (*area)[i] = lastIntegral; 981 (*area)[i] = lastIntegral; 958 << 982 959 //Normalize cumulative function 983 //Normalize cumulative function 960 G4double factor = 1.0/lastIntegral; 984 G4double factor = 1.0/lastIntegral; 961 for (std::size_t k=0;k<sumi->size();++k) << 985 for (size_t k=0;k<sumi->size();k++) 962 (*sumi)[k] *= factor; 986 (*sumi)[k] *= factor; 963 << 987 964 //When the PDF vanishes at one of the inte 988 //When the PDF vanishes at one of the interval end points, its value is modified 965 if ((*pdfi)[0] < 1e-35) << 989 if ((*pdfi)[0] < 1e-35) 966 (*pdfi)[0] = 1e-5*pdfmax; 990 (*pdfi)[0] = 1e-5*pdfmax; 967 if ((*pdfi)[pdfi->size()-1] < 1e-35) 991 if ((*pdfi)[pdfi->size()-1] < 1e-35) 968 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 992 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 969 << 993 970 G4double pli = (*pdfi)[0]*factor; 994 G4double pli = (*pdfi)[0]*factor; 971 G4double pui = (*pdfi)[pdfi->size()-1]*fac 995 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 972 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal 996 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal*dxLocal); 973 G4double A_temp = (1.0/(pli*dxLocal))-1.0- 997 G4double A_temp = (1.0/(pli*dxLocal))-1.0-B_temp; 974 G4double C_temp = 1.0+A_temp+B_temp; 998 G4double C_temp = 1.0+A_temp+B_temp; 975 if (C_temp < 1e-35) 999 if (C_temp < 1e-35) 976 { 1000 { 977 (*a)[i]= 0.; 1001 (*a)[i]= 0.; 978 (*b)[i] = 0.; 1002 (*b)[i] = 0.; 979 (*c)[i] = 1; 1003 (*c)[i] = 1; 980 } 1004 } 981 else 1005 else 982 { 1006 { 983 (*a)[i]= A_temp; 1007 (*a)[i]= A_temp; 984 (*b)[i] = B_temp; 1008 (*b)[i] = B_temp; 985 (*c)[i] = C_temp; 1009 (*c)[i] = C_temp; 986 } 1010 } 987 //OK, now get ERR(I), the integral of the << 1011 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 988 //and the true pdf, extended over the inte 1012 //and the true pdf, extended over the interval (X(I),X(I+1)) 989 G4int icase = 1; //loop code 1013 G4int icase = 1; //loop code 990 G4bool reLoop = false; 1014 G4bool reLoop = false; 991 do 1015 do 992 { 1016 { 993 reLoop = false; 1017 reLoop = false; 994 (*err)[i] = 0.; //zero variable 1018 (*err)[i] = 0.; //zero variable 995 for (G4int k=0;k<nip;k++) 1019 for (G4int k=0;k<nip;k++) 996 { 1020 { 997 G4double rr = (*sumi)[k]; << 1021 G4double rr = (*sumi)[k]; 998 G4double pap = (*area)[i]*(1.0+((*a)[i]+ 1022 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 999 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1 1023 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 1000 if (k == 0 || k == nip-1) 1024 if (k == 0 || k == nip-1) 1001 (*err)[i] += 0.5*std::fabs(pap-(*pdfi 1025 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 1002 else 1026 else 1003 (*err)[i] += std::fabs(pap-(*pdfi)[k] 1027 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 1004 } 1028 } 1005 (*err)[i] *= dxi; 1029 (*err)[i] *= dxi; 1006 << 1030 1007 //If err(I) is too large, the pdf is 1031 //If err(I) is too large, the pdf is approximated by a uniform distribution 1008 if ((*err)[i] > 0.1*(*area)[i] && ica << 1032 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 1009 { 1033 { 1010 (*b)[i] = 0; 1034 (*b)[i] = 0; 1011 (*a)[i] = 0; 1035 (*a)[i] = 0; 1012 (*c)[i] = 1.; 1036 (*c)[i] = 1.; 1013 icase = 2; 1037 icase = 2; 1014 reLoop = true; 1038 reLoop = true; 1015 } 1039 } 1016 }while(reLoop); 1040 }while(reLoop); 1017 delete pdfi; 1041 delete pdfi; 1018 delete pdfih; 1042 delete pdfih; 1019 delete sumi; 1043 delete sumi; 1020 } 1044 } 1021 }while(x->size() < np); 1045 }while(x->size() < np); 1022 1046 1023 if (x->size() != np || a->size() != np || << 1047 if (x->size() != np || a->size() != np || 1024 err->size() != np || area->size() != np 1048 err->size() != np || area->size() != np) 1025 { 1049 { 1026 G4Exception("G4PenelopeRayleighModel::I 1050 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 1027 "em2050",FatalException, 1051 "em2050",FatalException, 1028 "Problem in building the extended Table 1052 "Problem in building the extended Table for Sampling: array dimensions do not match "); 1029 } 1053 } 1030 1054 1031 /****************************************** 1055 /******************************************************************************* 1032 Renormalization 1056 Renormalization 1033 ******************************************* 1057 ********************************************************************************/ 1034 G4double ws = 0; 1058 G4double ws = 0; 1035 for (std::size_t i=0;i<np-1;++i) << 1059 for (size_t i=0;i<np-1;i++) 1036 ws += (*area)[i]; 1060 ws += (*area)[i]; 1037 ws = 1.0/ws; 1061 ws = 1.0/ws; 1038 G4double errMax = 0; 1062 G4double errMax = 0; 1039 for (std::size_t i=0;i<np-1;++i) << 1063 for (size_t i=0;i<np-1;i++) 1040 { 1064 { 1041 (*area)[i] *= ws; 1065 (*area)[i] *= ws; 1042 (*err)[i] *= ws; 1066 (*err)[i] *= ws; 1043 errMax = std::max(errMax,(*err)[i]); 1067 errMax = std::max(errMax,(*err)[i]); 1044 } 1068 } 1045 1069 1046 //Vector with the normalized cumulative dis 1070 //Vector with the normalized cumulative distribution 1047 G4DataVector* PAC = new G4DataVector(); 1071 G4DataVector* PAC = new G4DataVector(); 1048 PAC->push_back(0.); 1072 PAC->push_back(0.); 1049 for (std::size_t i=0;i<np-1;++i) << 1073 for (size_t i=0;i<np-1;i++) 1050 { 1074 { 1051 G4double previous = (*PAC)[i]; 1075 G4double previous = (*PAC)[i]; 1052 PAC->push_back(previous+(*area)[i]); 1076 PAC->push_back(previous+(*area)[i]); 1053 } 1077 } 1054 (*PAC)[PAC->size()-1] = 1.; 1078 (*PAC)[PAC->size()-1] = 1.; 1055 << 1079 1056 /****************************************** 1080 /******************************************************************************* 1057 Pre-calculated limits for the initial binar 1081 Pre-calculated limits for the initial binary search for subsequent sampling 1058 ******************************************* 1082 ********************************************************************************/ 1059 std::vector<std::size_t> *ITTL = new std::v << 1083 1060 std::vector<std::size_t> *ITTU = new std::v << 1084 //G4DataVector* ITTL = new G4DataVector(); >> 1085 std::vector<size_t> *ITTL = new std::vector<size_t>; >> 1086 std::vector<size_t> *ITTU = new std::vector<size_t>; 1061 1087 1062 //Just create place-holders 1088 //Just create place-holders 1063 for (std::size_t i=0;i<np;++i) << 1089 for (size_t i=0;i<np;i++) 1064 { 1090 { 1065 ITTL->push_back(0); 1091 ITTL->push_back(0); 1066 ITTU->push_back(0); 1092 ITTU->push_back(0); 1067 } 1093 } 1068 1094 1069 G4double bin = 1.0/(np-1); 1095 G4double bin = 1.0/(np-1); 1070 (*ITTL)[0]=0; 1096 (*ITTL)[0]=0; 1071 for (std::size_t i=1;i<(np-1);++i) << 1097 for (size_t i=1;i<(np-1);i++) 1072 { 1098 { 1073 G4double ptst = i*bin; << 1099 G4double ptst = i*bin; 1074 G4bool found = false; 1100 G4bool found = false; 1075 for (std::size_t j=(*ITTL)[i-1];j<np && << 1101 for (size_t j=(*ITTL)[i-1];j<np && !found;j++) 1076 { 1102 { 1077 if ((*PAC)[j] > ptst) 1103 if ((*PAC)[j] > ptst) 1078 { 1104 { 1079 (*ITTL)[i] = j-1; 1105 (*ITTL)[i] = j-1; 1080 (*ITTU)[i-1] = j; 1106 (*ITTU)[i-1] = j; 1081 found = true; 1107 found = true; 1082 } 1108 } 1083 } 1109 } 1084 } 1110 } 1085 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1111 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1086 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1112 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1087 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1113 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1088 1114 1089 if (ITTU->size() != np || ITTU->size() != n 1115 if (ITTU->size() != np || ITTU->size() != np) 1090 { 1116 { 1091 G4Exception("G4PenelopeRayleighModel::I 1117 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 1092 "em2051",FatalException, 1118 "em2051",FatalException, 1093 "Problem in building the Limit Tables f 1119 "Problem in building the Limit Tables for Sampling: array dimensions do not match"); 1094 } 1120 } 1095 1121 >> 1122 1096 /****************************************** 1123 /******************************************************************************** 1097 Copy tables 1124 Copy tables 1098 ******************************************* 1125 ********************************************************************************/ 1099 G4PenelopeSamplingData* theTable = new G4Pe 1126 G4PenelopeSamplingData* theTable = new G4PenelopeSamplingData(np); 1100 for (std::size_t i=0;i<np;++i) << 1127 for (size_t i=0;i<np;i++) 1101 { 1128 { 1102 theTable->AddPoint((*x)[i],(*PAC)[i],(* 1129 theTable->AddPoint((*x)[i],(*PAC)[i],(*a)[i],(*b)[i],(*ITTL)[i],(*ITTU)[i]); 1103 } 1130 } 1104 1131 1105 if (fVerboseLevel > 2) << 1132 if (verboseLevel > 2) 1106 { 1133 { 1107 G4cout << "**************************** << 1134 G4cout << "*************************************************************************" << 1108 G4endl; 1135 G4endl; 1109 G4cout << "Sampling table for Penelope 1136 G4cout << "Sampling table for Penelope Rayleigh scattering in " << mat->GetName() << G4endl; 1110 theTable->DumpTable(); 1137 theTable->DumpTable(); 1111 } << 1138 } 1112 fSamplingTable->insert(std::make_pair(mat,t << 1139 samplingTable->insert(std::make_pair(mat,theTable)); 1113 1140 >> 1141 1114 //Clean up temporary vectors 1142 //Clean up temporary vectors 1115 delete x; 1143 delete x; 1116 delete a; 1144 delete a; 1117 delete b; 1145 delete b; 1118 delete c; 1146 delete c; 1119 delete err; 1147 delete err; 1120 delete area; 1148 delete area; 1121 delete PAC; 1149 delete PAC; 1122 delete ITTL; 1150 delete ITTL; 1123 delete ITTU; 1151 delete ITTU; 1124 1152 1125 //DONE! 1153 //DONE! 1126 return; 1154 return; >> 1155 1127 } 1156 } 1128 1157 1129 //....oooOO0OOooo........oooOO0OOooo........o 1158 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1130 1159 1131 void G4PenelopeRayleighModel::GetPMaxTable(co 1160 void G4PenelopeRayleighModel::GetPMaxTable(const G4Material* mat) 1132 { 1161 { 1133 if (!fPMaxTable) << 1162 if (!IsMaster()) >> 1163 //Should not be here! >> 1164 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()", >> 1165 "em0100",FatalException,"Worker thread in this method"); >> 1166 >> 1167 if (!pMaxTable) 1134 { 1168 { 1135 G4cout << "G4PenelopeRayleighModel::Bui 1169 G4cout << "G4PenelopeRayleighModel::BuildPMaxTable" << G4endl; 1136 G4cout << "Going to instanziate the fPM << 1170 G4cout << "Going to instanziate the pMaxTable !" << G4endl; 1137 G4cout << "That should _not_ be here! " 1171 G4cout << "That should _not_ be here! " << G4endl; 1138 fPMaxTable = new std::map<const G4Mater << 1172 pMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 1139 } 1173 } 1140 //check if the table is already there 1174 //check if the table is already there 1141 if (fPMaxTable->count(mat)) << 1175 if (pMaxTable->count(mat)) 1142 return; 1176 return; 1143 1177 1144 //otherwise build it 1178 //otherwise build it 1145 if (!fSamplingTable) << 1179 if (!samplingTable) 1146 { 1180 { 1147 G4Exception("G4PenelopeRayleighModel::G 1181 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()", 1148 "em2052",FatalException, 1182 "em2052",FatalException, 1149 "SamplingTable is not properly instanti 1183 "SamplingTable is not properly instantiated"); 1150 return; 1184 return; 1151 } 1185 } 1152 1186 1153 //This should not be: the sampling table is << 1187 if (!samplingTable->count(mat)) 1154 if (!fSamplingTable->count(mat)) << 1188 InitializeSamplingAlgorithm(mat); 1155 { << 1189 1156 G4ExceptionDescription ed; << 1190 G4PenelopeSamplingData *theTable = samplingTable->find(mat)->second; 1157 ed << "Sampling table for material " < << 1191 size_t tablePoints = theTable->GetNumberOfStoredPoints(); 1158 G4Exception("G4PenelopeRayleighModel:: << 1159 "em2052",FatalException, << 1160 ed); << 1161 return; << 1162 } << 1163 << 1164 G4PenelopeSamplingData *theTable = fSamplin << 1165 std::size_t tablePoints = theTable->GetNumb << 1166 1192 1167 std::size_t nOfEnergyPoints = fLogEnergyGri << 1193 size_t nOfEnergyPoints = logEnergyGridPMax.size(); 1168 G4PhysicsFreeVector* theVec = new G4Physics 1194 G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector(nOfEnergyPoints); 1169 1195 1170 const std::size_t nip = 51; //hard-coded in << 1196 const size_t nip = 51; //hard-coded in Penelope 1171 1197 1172 for (std::size_t ie=0;ie<fLogEnergyGridPMax << 1198 for (size_t ie=0;ie<logEnergyGridPMax.size();ie++) 1173 { 1199 { 1174 G4double energy = G4Exp(fLogEnergyGridP << 1200 G4double energy = std::exp(logEnergyGridPMax[ie]); 1175 G4double Qm = 2.0*energy/electron_mass_ 1201 G4double Qm = 2.0*energy/electron_mass_c2; //this is non-dimensional now 1176 G4double Qm2 = Qm*Qm; 1202 G4double Qm2 = Qm*Qm; 1177 G4double firstQ2 = theTable->GetX(0); 1203 G4double firstQ2 = theTable->GetX(0); 1178 G4double lastQ2 = theTable->GetX(tableP 1204 G4double lastQ2 = theTable->GetX(tablePoints-1); 1179 G4double thePMax = 0; 1205 G4double thePMax = 0; 1180 << 1206 1181 if (Qm2 > firstQ2) 1207 if (Qm2 > firstQ2) 1182 { 1208 { 1183 if (Qm2 < lastQ2) 1209 if (Qm2 < lastQ2) 1184 { 1210 { 1185 //bisection to look for the index of 1211 //bisection to look for the index of Qm 1186 std::size_t lowerBound = 0; << 1212 size_t lowerBound = 0; 1187 std::size_t upperBound = tablePoints- << 1213 size_t upperBound = tablePoints-1; 1188 while (lowerBound <= upperBound) 1214 while (lowerBound <= upperBound) 1189 { 1215 { 1190 std::size_t midBin = (lowerBound + uppe << 1216 size_t midBin = (lowerBound + upperBound)/2; 1191 if( Qm2 < theTable->GetX(midBin)) 1217 if( Qm2 < theTable->GetX(midBin)) 1192 { upperBound = midBin-1; } 1218 { upperBound = midBin-1; } 1193 else 1219 else 1194 { lowerBound = midBin+1; } 1220 { lowerBound = midBin+1; } 1195 } 1221 } 1196 //upperBound is the output (but also 1222 //upperBound is the output (but also lowerBounf --> should be the same!) 1197 G4double Q1 = theTable->GetX(upperBou 1223 G4double Q1 = theTable->GetX(upperBound); 1198 G4double Q2 = Qm2; 1224 G4double Q2 = Qm2; 1199 G4double DQ = (Q2-Q1)/((G4double)(nip 1225 G4double DQ = (Q2-Q1)/((G4double)(nip-1)); 1200 G4double theA = theTable->GetA(upperB 1226 G4double theA = theTable->GetA(upperBound); 1201 G4double theB = theTable->GetB(upperB 1227 G4double theB = theTable->GetB(upperBound); 1202 G4double thePAC = theTable->GetPAC(up 1228 G4double thePAC = theTable->GetPAC(upperBound); 1203 G4DataVector* fun = new G4DataVector( 1229 G4DataVector* fun = new G4DataVector(); 1204 for (std::size_t k=0;k<nip;++k) << 1230 for (size_t k=0;k<nip;k++) 1205 { 1231 { 1206 G4double qi = Q1 + k*DQ; 1232 G4double qi = Q1 + k*DQ; 1207 G4double tau = (qi-Q1)/ 1233 G4double tau = (qi-Q1)/ 1208 (theTable->GetX(upperBound+1)-Q1); 1234 (theTable->GetX(upperBound+1)-Q1); 1209 G4double con1 = 2.0*theB*tau; << 1235 G4double con1 = 2.0*theB*tau; 1210 G4double ci = 1.0+theA+theB; 1236 G4double ci = 1.0+theA+theB; 1211 G4double con2 = ci-theA*tau; 1237 G4double con2 = ci-theA*tau; 1212 G4double etap = 0; 1238 G4double etap = 0; 1213 if (std::fabs(con1) > 1.0e-16*std::fabs 1239 if (std::fabs(con1) > 1.0e-16*std::fabs(con2)) 1214 etap = con2*(1.0-std::sqrt(1.0-2.0*ta 1240 etap = con2*(1.0-std::sqrt(1.0-2.0*tau*con1/(con2*con2)))/con1; 1215 else 1241 else 1216 etap = tau/con2; 1242 etap = tau/con2; 1217 G4double theFun = (theTable->GetPAC(upp 1243 G4double theFun = (theTable->GetPAC(upperBound+1)-thePAC)* 1218 (1.0+(theA+theB*etap)*etap)*(1.0+(the 1244 (1.0+(theA+theB*etap)*etap)*(1.0+(theA+theB*etap)*etap)/ 1219 ((1.0-theB*etap*etap)*ci*(theTable->G 1245 ((1.0-theB*etap*etap)*ci*(theTable->GetX(upperBound+1)-Q1)); 1220 fun->push_back(theFun); 1246 fun->push_back(theFun); 1221 } 1247 } 1222 //Now intergrate numerically the fun 1248 //Now intergrate numerically the fun Cavalieri-Simpson's method 1223 G4DataVector* sum = new G4DataVector; 1249 G4DataVector* sum = new G4DataVector; 1224 G4double CONS = DQ*(1./12.); 1250 G4double CONS = DQ*(1./12.); 1225 G4double HCONS = 0.5*CONS; 1251 G4double HCONS = 0.5*CONS; 1226 sum->push_back(0.); 1252 sum->push_back(0.); 1227 G4double secondPoint = (*sum)[0] + << 1253 G4double secondPoint = (*sum)[0] + 1228 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*C 1254 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*CONS; 1229 sum->push_back(secondPoint); 1255 sum->push_back(secondPoint); 1230 for (std::size_t hh=2;hh<nip-1;++hh) << 1256 for (size_t hh=2;hh<nip-1;hh++) 1231 { 1257 { 1232 G4double previous = (*sum)[hh-1]; 1258 G4double previous = (*sum)[hh-1]; 1233 G4double next = previous+(13.0*((*fun)[ 1259 G4double next = previous+(13.0*((*fun)[hh-1]+(*fun)[hh])- 1234 (*fun)[hh+1]-(*fun)[hh-2])*HCON 1260 (*fun)[hh+1]-(*fun)[hh-2])*HCONS; 1235 sum->push_back(next); 1261 sum->push_back(next); 1236 } 1262 } 1237 G4double last = (*sum)[nip-2]+(5.0*(* 1263 G4double last = (*sum)[nip-2]+(5.0*(*fun)[nip-1]+8.0*(*fun)[nip-2]- 1238 (*fun)[nip-3])*CONS; 1264 (*fun)[nip-3])*CONS; 1239 sum->push_back(last); << 1265 sum->push_back(last); 1240 thePMax = thePAC + (*sum)[sum->size() 1266 thePMax = thePAC + (*sum)[sum->size()-1]; //last point 1241 delete fun; 1267 delete fun; 1242 delete sum; 1268 delete sum; 1243 } 1269 } 1244 else 1270 else 1245 { 1271 { 1246 thePMax = 1.0; 1272 thePMax = 1.0; 1247 } << 1273 } 1248 } 1274 } 1249 else 1275 else 1250 { 1276 { 1251 thePMax = theTable->GetPAC(0); 1277 thePMax = theTable->GetPAC(0); 1252 } 1278 } 1253 1279 1254 //Write number in the table 1280 //Write number in the table 1255 theVec->PutValue(ie,energy,thePMax); 1281 theVec->PutValue(ie,energy,thePMax); 1256 } 1282 } 1257 << 1283 1258 fPMaxTable->insert(std::make_pair(mat,theVe << 1284 pMaxTable->insert(std::make_pair(mat,theVec)); 1259 return; 1285 return; >> 1286 1260 } 1287 } 1261 1288 1262 //....oooOO0OOooo........oooOO0OOooo........o 1289 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1263 1290 1264 void G4PenelopeRayleighModel::DumpFormFactorT 1291 void G4PenelopeRayleighModel::DumpFormFactorTable(const G4Material* mat) 1265 { 1292 { 1266 G4cout << "******************************** 1293 G4cout << "*****************************************************************" << G4endl; 1267 G4cout << "G4PenelopeRayleighModel: Form Fa 1294 G4cout << "G4PenelopeRayleighModel: Form Factor Table for " << mat->GetName() << G4endl; 1268 //try to use the same format as Penelope-Fo 1295 //try to use the same format as Penelope-Fortran, namely Q (/m_e*c) and F 1269 G4cout << "Q/(m_e*c) F(Q) 1296 G4cout << "Q/(m_e*c) F(Q) " << G4endl; 1270 G4cout << "******************************** 1297 G4cout << "*****************************************************************" << G4endl; 1271 if (!fLogFormFactorTable->count(mat)) << 1298 if (!logFormFactorTable->count(mat)) 1272 BuildFormFactorTable(mat); 1299 BuildFormFactorTable(mat); 1273 << 1300 1274 G4PhysicsFreeVector* theVec = fLogFormFacto << 1301 G4PhysicsFreeVector* theVec = logFormFactorTable->find(mat)->second; 1275 for (std::size_t i=0;i<theVec->GetVectorLen << 1302 for (size_t i=0;i<theVec->GetVectorLength();i++) 1276 { 1303 { 1277 G4double logQ2 = theVec->GetLowEdgeEner 1304 G4double logQ2 = theVec->GetLowEdgeEnergy(i); 1278 G4double Q = G4Exp(0.5*logQ2); << 1305 G4double Q = std::exp(0.5*logQ2); 1279 G4double logF2 = (*theVec)[i]; 1306 G4double logF2 = (*theVec)[i]; 1280 G4double F = G4Exp(0.5*logF2); << 1307 G4double F = std::exp(0.5*logF2); 1281 G4cout << Q << " " << F << 1308 G4cout << Q << " " << F << G4endl; 1282 } 1309 } 1283 //DONE 1310 //DONE 1284 return; 1311 return; 1285 } 1312 } 1286 1313 1287 //....oooOO0OOooo........oooOO0OOooo........o 1314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo... 1288 1315 1289 void G4PenelopeRayleighModel::SetParticle(con 1316 void G4PenelopeRayleighModel::SetParticle(const G4ParticleDefinition* p) 1290 { 1317 { 1291 if(!fParticle) { 1318 if(!fParticle) { 1292 fParticle = p; << 1319 fParticle = p; 1293 } 1320 } 1294 } 1321 } 1295 1322