Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4PenelopePhotoElectricModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4PenelopePhotoElectricModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4PenelopePhotoElectricModel.cc (Version 9.5)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4PenelopePhotoElectricModel.cc,v 1.6 2010-12-15 10:26:41 pandola Exp $
                                                   >>  27 // GEANT4 tag $Name: not supported by cvs2svn $
 26 //                                                 28 //
 27 // Author: Luciano Pandola                         29 // Author: Luciano Pandola
 28 //                                                 30 //
 29 // History:                                        31 // History:
 30 // --------                                        32 // --------
 31 // 08 Jan 2010   L Pandola  First implementati     33 // 08 Jan 2010   L Pandola  First implementation
 32 // 01 Feb 2011   L Pandola  Suppress fake ener <<  34 // 01 Feb 2011   L Pandola  Suppress fake energy-violation warning when Auger is active.
 33 //                          is active.         <<  35 //                          Make sure that fluorescence/Auger is generated only if 
 34 //                          Make sure that flu <<  36 //                          above threshold
 35 //                          only if above thre << 
 36 // 25 May 2011   L Pandola  Renamed (make v200     37 // 25 May 2011   L Pandola  Renamed (make v2008 as default Penelope)
 37 // 10 Jun 2011   L Pandola  Migrate atomic dee     38 // 10 Jun 2011   L Pandola  Migrate atomic deexcitation interface
 38 // 07 Oct 2011   L Pandola  Bug fix (potential     39 // 07 Oct 2011   L Pandola  Bug fix (potential violation of energy conservation)
 39 // 27 Sep 2013   L Pandola  Migrate to MT para << 
 40 //                          tables.            << 
 41 // 02 Oct 2013   L Pandola  Rewrite sampling a << 
 42 //                          to improve CPU per << 
 43 //                                                 40 //
 44                                                    41 
 45 #include "G4PenelopePhotoElectricModel.hh"         42 #include "G4PenelopePhotoElectricModel.hh"
 46 #include "G4PhysicalConstants.hh"              << 
 47 #include "G4SystemOfUnits.hh"                  << 
 48 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 49 #include "G4MaterialCutsCouple.hh"                 44 #include "G4MaterialCutsCouple.hh"
 50 #include "G4DynamicParticle.hh"                    45 #include "G4DynamicParticle.hh"
 51 #include "G4PhysicsTable.hh"                       46 #include "G4PhysicsTable.hh"
 52 #include "G4PhysicsFreeVector.hh"                  47 #include "G4PhysicsFreeVector.hh"
 53 #include "G4ElementTable.hh"                       48 #include "G4ElementTable.hh"
 54 #include "G4Element.hh"                            49 #include "G4Element.hh"
 55 #include "G4AtomicTransitionManager.hh"            50 #include "G4AtomicTransitionManager.hh"
 56 #include "G4AtomicShell.hh"                        51 #include "G4AtomicShell.hh"
 57 #include "G4Gamma.hh"                              52 #include "G4Gamma.hh"
 58 #include "G4Electron.hh"                           53 #include "G4Electron.hh"
 59 #include "G4AutoLock.hh"                       << 
 60 #include "G4LossTableManager.hh"                   54 #include "G4LossTableManager.hh"
 61 #include "G4Exp.hh"                            << 
 62                                                    55 
 63 //....oooOO0OOooo........oooOO0OOooo........oo     56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 64                                                    57 
 65 const G4int G4PenelopePhotoElectricModel::fMax << 
 66 G4PhysicsTable* G4PenelopePhotoElectricModel:: << 
 67                                                    58 
 68 //....oooOO0OOooo........oooOO0OOooo........oo <<  59 G4PenelopePhotoElectricModel::G4PenelopePhotoElectricModel(const G4ParticleDefinition*,
 69                                                << 
 70 G4PenelopePhotoElectricModel::G4PenelopePhotoE << 
 71                  const G4String& nam)              60                  const G4String& nam)
 72   :G4VEmModel(nam),fParticleChange(nullptr),fP <<  61   :G4VEmModel(nam),isInitialised(false),logAtomicShellXS(0)
 73    fAtomDeexcitation(nullptr),fIsInitialised(f << 
 74 {                                                  62 {
 75   fIntrinsicLowEnergyLimit = 100.0*eV;             63   fIntrinsicLowEnergyLimit = 100.0*eV;
 76   fIntrinsicHighEnergyLimit = 100.0*GeV;           64   fIntrinsicHighEnergyLimit = 100.0*GeV;
 77   //  SetLowEnergyLimit(fIntrinsicLowEnergyLim     65   //  SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
 78   SetHighEnergyLimit(fIntrinsicHighEnergyLimit     66   SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
 79   //                                               67   //
 80                                                <<  68   verboseLevel= 0;
 81   if (part)                                    << 
 82     SetParticle(part);                         << 
 83                                                << 
 84   fVerboseLevel= 0;                            << 
 85   // Verbosity scale:                              69   // Verbosity scale:
 86   // 0 = nothing                               <<  70   // 0 = nothing 
 87   // 1 = warning for energy non-conservation   <<  71   // 1 = warning for energy non-conservation 
 88   // 2 = details of energy budget                  72   // 2 = details of energy budget
 89   // 3 = calculation of cross sections, file o     73   // 3 = calculation of cross sections, file openings, sampling of atoms
 90   // 4 = entering in methods                       74   // 4 = entering in methods
 91                                                    75 
 92   //Mark this model as "applicable" for atomic     76   //Mark this model as "applicable" for atomic deexcitation
 93   SetDeexcitationFlag(true);                       77   SetDeexcitationFlag(true);
 94                                                    78 
 95   fTransitionManager = G4AtomicTransitionManag     79   fTransitionManager = G4AtomicTransitionManager::Instance();
 96 }                                                  80 }
 97                                                    81 
 98 //....oooOO0OOooo........oooOO0OOooo........oo     82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 99                                                    83 
100 G4PenelopePhotoElectricModel::~G4PenelopePhoto     84 G4PenelopePhotoElectricModel::~G4PenelopePhotoElectricModel()
101 {                                              <<  85 {  
102   if (IsMaster() || fLocalTable)               <<  86   std::map <const G4int,G4PhysicsTable*>::iterator i;
                                                   >>  87   if (logAtomicShellXS)
103     {                                              88     {
104       for(G4int i=0; i<=fMaxZ; ++i)            <<  89       for (i=logAtomicShellXS->begin();i != logAtomicShellXS->end();i++)
105   {                                                90   {
106     if(fLogAtomicShellXS[i]) {                 <<  91     G4PhysicsTable* tab = i->second;
107       fLogAtomicShellXS[i]->clearAndDestroy(); <<  92     tab->clearAndDestroy();
108       delete fLogAtomicShellXS[i];             <<  93     delete tab;
109       fLogAtomicShellXS[i] = nullptr;          << 
110     }                                          << 
111   }                                                94   }
112     }                                              95     }
                                                   >>  96   delete logAtomicShellXS;
113 }                                                  97 }
114                                                    98 
115 //....oooOO0OOooo........oooOO0OOooo........oo     99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
116                                                   100 
117 void G4PenelopePhotoElectricModel::Initialise(    101 void G4PenelopePhotoElectricModel::Initialise(const G4ParticleDefinition* particle,
118                 const G4DataVector& cuts)         102                 const G4DataVector& cuts)
119 {                                                 103 {
120   if (fVerboseLevel > 3)                       << 104   if (verboseLevel > 3)
121     G4cout << "Calling  G4PenelopePhotoElectri    105     G4cout << "Calling  G4PenelopePhotoElectricModel::Initialise()" << G4endl;
122                                                   106 
123   fAtomDeexcitation = G4LossTableManager::Inst << 107   // logAtomicShellXS is created only once, since it is  never cleared
124   //Issue warning if the AtomicDeexcitation ha << 108   if (!logAtomicShellXS)
125   if (!fAtomDeexcitation)                      << 109     logAtomicShellXS = new std::map<const G4int,G4PhysicsTable*>;
126     {                                          << 
127       G4cout << G4endl;                        << 
128       G4cout << "WARNING from G4PenelopePhotoE << 
129       G4cout << "Atomic de-excitation module i << 
130       G4cout << "any fluorescence/Auger emissi << 
131       G4cout << "Please make sure this is inte << 
132     }                                          << 
133                                                << 
134   SetParticle(particle);                       << 
135                                                << 
136   //Only the master model creates/fills/destro << 
137   if (IsMaster() && particle == fParticle)     << 
138     {                                          << 
139       G4ProductionCutsTable* theCoupleTable =  << 
140   G4ProductionCutsTable::GetProductionCutsTabl << 
141                                                << 
142       for (G4int i=0;i<(G4int)theCoupleTable-> << 
143   {                                            << 
144     const G4Material* material =               << 
145       theCoupleTable->GetMaterialCutsCouple(i) << 
146     const G4ElementVector* theElementVector =  << 
147                                                << 
148     for (std::size_t j=0;j<material->GetNumber << 
149       {                                        << 
150         G4int iZ = theElementVector->at(j)->Ge << 
151         //read data files only in the master   << 
152         if (!fLogAtomicShellXS[iZ])            << 
153     ReadDataFile(iZ);                          << 
154       }                                        << 
155   }                                            << 
156                                                   110 
157       InitialiseElementSelectors(particle,cuts << 111   InitialiseElementSelectors(particle,cuts);
                                                   >> 112   fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
158                                                   113 
159       if (fVerboseLevel > 0) {                 << 114   if (verboseLevel > 0) { 
160   G4cout << "Penelope Photo-Electric model v20 << 115     G4cout << "Penelope Photo-Electric model v2008 is initialized " << G4endl
161          << "Energy range: "                   << 116      << "Energy range: "
162          << LowEnergyLimit() / MeV << " MeV -  << 117      << LowEnergyLimit() / MeV << " MeV - "
163          << HighEnergyLimit() / GeV << " GeV"; << 118      << HighEnergyLimit() / GeV << " GeV";
164       }                                        << 119   }
165     }                                          << 
166                                                   120 
167   if(fIsInitialised) return;                   << 121   if(isInitialised) return;
168   fParticleChange = GetParticleChangeForGamma(    122   fParticleChange = GetParticleChangeForGamma();
169   fIsInitialised = true;                       << 123   isInitialised = true;
170                                                   124 
171 }                                                 125 }
172                                                   126 
173 void G4PenelopePhotoElectricModel::InitialiseL << 
174                  G4VEmModel *masterModel)      << 
175 {                                              << 
176   if (fVerboseLevel > 3)                       << 
177     G4cout << "Calling  G4PenelopePhotoElectri << 
178   //                                           << 
179   //Check that particle matches: one might hav << 
180   //for e+ and e-).                            << 
181   //                                           << 
182   if (part == fParticle)                       << 
183     {                                          << 
184       SetElementSelectors(masterModel->GetElem << 
185                                                << 
186       //Get the const table pointers from the  << 
187       const G4PenelopePhotoElectricModel* theM << 
188   static_cast<G4PenelopePhotoElectricModel*> ( << 
189       for(G4int i=0; i<=fMaxZ; ++i)            << 
190   fLogAtomicShellXS[i] = theModel->fLogAtomicS << 
191       //Same verbosity for all workers, as the << 
192       fVerboseLevel = theModel->fVerboseLevel; << 
193     }                                          << 
194                                                << 
195  return;                                       << 
196 }                                              << 
197                                                << 
198 //....oooOO0OOooo........oooOO0OOooo........oo    127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
199 namespace { G4Mutex  PenelopePhotoElectricMode << 128 
200 G4double G4PenelopePhotoElectricModel::Compute    129 G4double G4PenelopePhotoElectricModel::ComputeCrossSectionPerAtom(
201                   const G4ParticleDefinition*,    130                   const G4ParticleDefinition*,
202                   G4double energy,                131                   G4double energy,
203                   G4double Z, G4double,           132                   G4double Z, G4double,
204                   G4double, G4double)             133                   G4double, G4double)
205 {                                                 134 {
206   //                                              135   //
207   // Penelope model v2008                         136   // Penelope model v2008
208   //                                              137   //
209   if (fVerboseLevel > 3)                       << 
210     G4cout << "Calling ComputeCrossSectionPerA << 
211                                                   138 
212   G4int iZ = G4int(Z);                         << 139   if (verboseLevel > 3)
                                                   >> 140     G4cout << "Calling ComputeCrossSectionPerAtom() of G4PenelopePhotoElectricModel" << G4endl;
213                                                   141 
214   if (!fLogAtomicShellXS[iZ])                  << 142   G4int iZ = (G4int) Z;
215     {                                          << 
216       //If we are here, it means that Initiali << 
217       //not filled up. This can happen in a Un << 
218       if (fVerboseLevel > 0)                   << 
219   {                                            << 
220     //Issue a G4Exception (warning) only in ve << 
221     G4ExceptionDescription ed;                 << 
222     ed << "Unable to retrieve the shell cross  << 
223     ed << "This can happen only in Unit Tests  << 
224     G4Exception("G4PenelopePhotoElectricModel: << 
225           "em2038",JustWarning,ed);            << 
226   }                                            << 
227       //protect file reading via autolock      << 
228       G4AutoLock lock(&PenelopePhotoElectricMo << 
229       ReadDataFile(iZ);                        << 
230       lock.unlock();                           << 
231     }                                          << 
232                                                   143 
                                                   >> 144   //read data files
                                                   >> 145   if (!logAtomicShellXS->count(iZ))
                                                   >> 146     ReadDataFile(iZ);
                                                   >> 147   //now it should be ok
                                                   >> 148   if (!logAtomicShellXS->count(iZ))     
                                                   >> 149     G4Exception("G4PenelopePhotoElectricModel::ComputeCrossSectionPerAtom()",
                                                   >> 150     "em2038",FatalException,
                                                   >> 151     "Unable to retrieve the shell cross section table");     
                                                   >> 152   
233   G4double cross = 0;                             153   G4double cross = 0;
234   G4PhysicsTable* theTable =  fLogAtomicShellX << 154 
                                                   >> 155   G4PhysicsTable* theTable =  logAtomicShellXS->find(iZ)->second;
235   G4PhysicsFreeVector* totalXSLog = (G4Physics    156   G4PhysicsFreeVector* totalXSLog = (G4PhysicsFreeVector*) (*theTable)[0];
236                                                   157 
237    if (!totalXSLog)                               158    if (!totalXSLog)
238      {                                            159      {
239        G4Exception("G4PenelopePhotoElectricMod    160        G4Exception("G4PenelopePhotoElectricModel::ComputeCrossSectionPerAtom()",
240        "em2039",FatalException,                   161        "em2039",FatalException,
241        "Unable to retrieve the total cross sec << 162        "Unable to retrieve the total cross section table");       
242        return 0;                                  163        return 0;
243      }                                            164      }
244    G4double logene = G4Log(energy);            << 165    G4double logene = std::log(energy);
245    G4double logXS = totalXSLog->Value(logene);    166    G4double logXS = totalXSLog->Value(logene);
246    cross = G4Exp(logXS);                       << 167    cross = std::exp(logXS);
247                                                << 168  
248   if (fVerboseLevel > 2)                       << 169   if (verboseLevel > 2)
249     G4cout << "Photoelectric cross section at     170     G4cout << "Photoelectric cross section at " << energy/MeV << " MeV for Z=" << Z <<
250       " = " << cross/barn << " barn" << G4endl    171       " = " << cross/barn << " barn" << G4endl;
251   return cross;                                   172   return cross;
252 }                                                 173 }
253                                                   174 
254 //....oooOO0OOooo........oooOO0OOooo........oo    175 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
255                                                   176 
256 void G4PenelopePhotoElectricModel::SampleSecon    177 void G4PenelopePhotoElectricModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
257                  const G4MaterialCutsCouple* c    178                  const G4MaterialCutsCouple* couple,
258                  const G4DynamicParticle* aDyn    179                  const G4DynamicParticle* aDynamicGamma,
259                  G4double,                        180                  G4double,
260                  G4double)                        181                  G4double)
261 {                                                 182 {
262   //                                              183   //
263   // Photoelectric effect, Penelope model v200    184   // Photoelectric effect, Penelope model v2008
264   //                                              185   //
265   // The target atom and the target shell are  << 186   // The target atom and the target shell are sampled according to the Livermore 
266   // database                                  << 187   // database 
267   //  D.E. Cullen et al., Report UCRL-50400 (1    188   //  D.E. Cullen et al., Report UCRL-50400 (1989)
268   // The angular distribution of the electron  << 189   // The angular distribution of the electron in the final state is sampled 
269   // according to the Sauter distribution from << 190   // according to the Sauter distribution from 
270   //  F. Sauter, Ann. Phys. 11 (1931) 454         191   //  F. Sauter, Ann. Phys. 11 (1931) 454
271   // The energy of the final electron is given << 192   // The energy of the final electron is given by the initial photon energy minus 
272   // the binding energy. Fluorescence de-excit << 193   // the binding energy. Fluorescence de-excitation is subsequently produced 
273   // (to fill the vacancy) according to the ge    194   // (to fill the vacancy) according to the general Geant4 G4DeexcitationManager:
274   //  J. Stepanek, Comp. Phys. Comm. 1206 pp 1    195   //  J. Stepanek, Comp. Phys. Comm. 1206 pp 1-1-9 (1997)
275                                                   196 
276   if (fVerboseLevel > 3)                       << 197   if (verboseLevel > 3)
277     G4cout << "Calling SamplingSecondaries() o    198     G4cout << "Calling SamplingSecondaries() of G4PenelopePhotoElectricModel" << G4endl;
278                                                   199 
279   G4double photonEnergy = aDynamicGamma->GetKi    200   G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
280                                                   201 
281   // always kill primary                          202   // always kill primary
282   fParticleChange->ProposeTrackStatus(fStopAnd    203   fParticleChange->ProposeTrackStatus(fStopAndKill);
283   fParticleChange->SetProposedKineticEnergy(0.    204   fParticleChange->SetProposedKineticEnergy(0.);
284                                                   205 
285   if (photonEnergy <= fIntrinsicLowEnergyLimit    206   if (photonEnergy <= fIntrinsicLowEnergyLimit)
286     {                                             207     {
287       fParticleChange->ProposeLocalEnergyDepos    208       fParticleChange->ProposeLocalEnergyDeposit(photonEnergy);
288       return ;                                    209       return ;
289     }                                             210     }
290                                                   211 
291   G4ParticleMomentum photonDirection = aDynami    212   G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
292                                                   213 
293   // Select randomly one element in the curren    214   // Select randomly one element in the current material
294   if (fVerboseLevel > 2)                       << 215   if (verboseLevel > 2)
295     G4cout << "Going to select element in " <<    216     G4cout << "Going to select element in " << couple->GetMaterial()->GetName() << G4endl;
296                                                   217 
297   // atom can be selected efficiently if eleme    218   // atom can be selected efficiently if element selectors are initialised
298   const G4Element* anElement =                    219   const G4Element* anElement =
299     SelectRandomAtom(couple,G4Gamma::GammaDefi    220     SelectRandomAtom(couple,G4Gamma::GammaDefinition(),photonEnergy);
300   G4int Z = anElement->GetZasInt();            << 221   G4int Z = (G4int) anElement->GetZ();
301   if (fVerboseLevel > 2)                       << 222   if (verboseLevel > 2)
302     G4cout << "Selected " << anElement->GetNam    223     G4cout << "Selected " << anElement->GetName() << G4endl;
303                                                << 224   
304   // Select the ionised shell in the current a    225   // Select the ionised shell in the current atom according to shell cross sections
305   //shellIndex = 0 --> K shell                    226   //shellIndex = 0 --> K shell
306   //             1-3 --> L shells                 227   //             1-3 --> L shells
307   //             4-8 --> M shells                 228   //             4-8 --> M shells
308   //             9 --> outer shells cumulative    229   //             9 --> outer shells cumulatively
309   //                                              230   //
310   std::size_t shellIndex = SelectRandomShell(Z << 231   size_t shellIndex = SelectRandomShell(Z,photonEnergy);
311                                                   232 
312   if (fVerboseLevel > 2)                       << 233   if (verboseLevel > 2)
313     G4cout << "Selected shell " << shellIndex     234     G4cout << "Selected shell " << shellIndex << " of element " << anElement->GetName() << G4endl;
314                                                   235 
315   // Retrieve the corresponding identifier and    236   // Retrieve the corresponding identifier and binding energy of the selected shell
316   const G4AtomicTransitionManager* transitionM    237   const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
317                                                   238 
318   //The number of shell cross section possibly << 239   //The number of shell cross section possibly reported in the Penelope database 
319   //might be different from the number of shel    240   //might be different from the number of shells in the G4AtomicTransitionManager
320   //(namely, Penelope may contain more shell,     241   //(namely, Penelope may contain more shell, especially for very light elements).
321   //In order to avoid a warning message from t << 242   //In order to avoid a warning message from the G4AtomicTransitionManager, I 
322   //add this protection. Results are anyway ch    243   //add this protection. Results are anyway changed, because when G4AtomicTransitionManager
323   //has a shellID>maxID, it sets the shellID t << 244   //has a shellID>maxID, it sets the shellID to the last valid shell. 
324   std::size_t numberOfShells = (std::size_t) t << 245   size_t numberOfShells = (size_t) transitionManager->NumberOfShells(Z);
325   if (shellIndex >= numberOfShells)               246   if (shellIndex >= numberOfShells)
326     shellIndex = numberOfShells-1;                247     shellIndex = numberOfShells-1;
327                                                   248 
328   const G4AtomicShell* shell = fTransitionMana    249   const G4AtomicShell* shell = fTransitionManager->Shell(Z,shellIndex);
329   G4double bindingEnergy = shell->BindingEnerg    250   G4double bindingEnergy = shell->BindingEnergy();
                                                   >> 251   //G4int shellId = shell->ShellId();
330                                                   252 
331   //Penelope considers only K, L and M shells. << 253   //Penelope considers only K, L and M shells. Cross sections of outer shells are 
332   //not included in the Penelope database. If  << 254   //not included in the Penelope database. If SelectRandomShell() returns 
333   //shellIndex = 9, it means that an outer she << 255   //shellIndex = 9, it means that an outer shell was ionized. In this case the 
334   //Penelope recipe is to set bindingEnergy =  << 256   //Penelope recipe is to set bindingEnergy = 0 (the energy is entirely assigned 
335   //to the electron) and to disregard fluoresc    257   //to the electron) and to disregard fluorescence.
336   if (shellIndex == 9)                            258   if (shellIndex == 9)
337     bindingEnergy = 0.*eV;                        259     bindingEnergy = 0.*eV;
338                                                   260 
                                                   >> 261 
339   G4double localEnergyDeposit = 0.0;              262   G4double localEnergyDeposit = 0.0;
340   G4double cosTheta = 1.0;                        263   G4double cosTheta = 1.0;
341                                                   264 
342   // Primary outcoming electron                   265   // Primary outcoming electron
343   G4double eKineticEnergy = photonEnergy - bin    266   G4double eKineticEnergy = photonEnergy - bindingEnergy;
344                                                << 267   
345   // There may be cases where the binding ener    268   // There may be cases where the binding energy of the selected shell is > photon energy
346   // In such cases do not generate secondaries    269   // In such cases do not generate secondaries
347   if (eKineticEnergy > 0.)                        270   if (eKineticEnergy > 0.)
348     {                                             271     {
349       // The electron is created                  272       // The electron is created
350       // Direction sampled from the Sauter dis    273       // Direction sampled from the Sauter distribution
351       cosTheta = SampleElectronDirection(eKine    274       cosTheta = SampleElectronDirection(eKineticEnergy);
352       G4double sinTheta = std::sqrt(1-cosTheta    275       G4double sinTheta = std::sqrt(1-cosTheta*cosTheta);
353       G4double phi = twopi * G4UniformRand() ;    276       G4double phi = twopi * G4UniformRand() ;
354       G4double dirx = sinTheta * std::cos(phi)    277       G4double dirx = sinTheta * std::cos(phi);
355       G4double diry = sinTheta * std::sin(phi)    278       G4double diry = sinTheta * std::sin(phi);
356       G4double dirz = cosTheta ;                  279       G4double dirz = cosTheta ;
357       G4ThreeVector electronDirection(dirx,dir    280       G4ThreeVector electronDirection(dirx,diry,dirz); //electron direction
358       electronDirection.rotateUz(photonDirecti    281       electronDirection.rotateUz(photonDirection);
359       G4DynamicParticle* electron = new G4Dyna << 282       G4DynamicParticle* electron = new G4DynamicParticle (G4Electron::Electron(), 
360                  electronDirection,            << 283                  electronDirection, 
361                  eKineticEnergy);                 284                  eKineticEnergy);
362       fvect->push_back(electron);                 285       fvect->push_back(electron);
363     }                                          << 286     } 
364   else                                         << 287   else    
365     bindingEnergy = photonEnergy;                 288     bindingEnergy = photonEnergy;
366                                                   289 
                                                   >> 290 
367   G4double energyInFluorescence = 0; //testing    291   G4double energyInFluorescence = 0; //testing purposes
368   G4double energyInAuger = 0; //testing purpos    292   G4double energyInAuger = 0; //testing purposes
369                                                << 293  
370   //Now, take care of fluorescence, if require    294   //Now, take care of fluorescence, if required. According to the Penelope
371   //recipe, I have to skip fluoresence complet << 295   //recipe, I have to skip fluoresence completely if shellIndex == 9 
372   //(= sampling of a shell outer than K,L,M)      296   //(= sampling of a shell outer than K,L,M)
373   if (fAtomDeexcitation && shellIndex<9)          297   if (fAtomDeexcitation && shellIndex<9)
374     {                                          << 298     {      
375       G4int index = couple->GetIndex();           299       G4int index = couple->GetIndex();
376       if (fAtomDeexcitation->CheckDeexcitation    300       if (fAtomDeexcitation->CheckDeexcitationActiveRegion(index))
377   {                                            << 301   { 
378     std::size_t nBefore = fvect->size();       << 302     size_t nBefore = fvect->size();
379     fAtomDeexcitation->GenerateParticles(fvect    303     fAtomDeexcitation->GenerateParticles(fvect,shell,Z,index);
380     std::size_t nAfter = fvect->size();        << 304     size_t nAfter = fvect->size();
381                                                   305 
382     if (nAfter > nBefore) //actual production     306     if (nAfter > nBefore) //actual production of fluorescence
383       {                                           307       {
384         for (std::size_t j=nBefore;j<nAfter;++ << 308         for (size_t j=nBefore;j<nAfter;j++) //loop on products
385     {                                             309     {
386       G4double itsEnergy = ((*fvect)[j])->GetK    310       G4double itsEnergy = ((*fvect)[j])->GetKineticEnergy();
387       if (itsEnergy < bindingEnergy) // valid  << 311       bindingEnergy -= itsEnergy;
388         {                                      << 312       if (((*fvect)[j])->GetParticleDefinition() == G4Gamma::Definition())
389           bindingEnergy -= itsEnergy;          << 313         energyInFluorescence += itsEnergy;
390           if (((*fvect)[j])->GetParticleDefini << 314       else if (((*fvect)[j])->GetParticleDefinition() == G4Electron::Definition())
391       energyInFluorescence += itsEnergy;       << 315         energyInAuger += itsEnergy;
392           else if (((*fvect)[j])->GetParticleD << 316       
393       energyInAuger += itsEnergy;              << 
394         }                                      << 
395       else //invalid secondary: takes more tha << 
396         {                                      << 
397           delete (*fvect)[j];                  << 
398           (*fvect)[j] = nullptr;               << 
399         }                                      << 
400     }                                             317     }
401       }                                           318       }
                                                   >> 319 
402   }                                               320   }
403     }                                             321     }
404                                                   322 
405   //Residual energy is deposited locally          323   //Residual energy is deposited locally
406   localEnergyDeposit += bindingEnergy;            324   localEnergyDeposit += bindingEnergy;
407                                                << 325       
408   if (localEnergyDeposit < 0) //Should not be: << 326   if (localEnergyDeposit < 0)
409     {                                             327     {
410       G4Exception("G4PenelopePhotoElectricMode << 328       G4cout << "WARNING - "
411       "em2099",JustWarning,"WARNING: Negative  << 329        << "G4PenelopePhotoElectricModel::SampleSecondaries() - Negative energy deposit"
                                                   >> 330        << G4endl;
412       localEnergyDeposit = 0;                     331       localEnergyDeposit = 0;
413     }                                             332     }
414                                                   333 
415   fParticleChange->ProposeLocalEnergyDeposit(l    334   fParticleChange->ProposeLocalEnergyDeposit(localEnergyDeposit);
416                                                   335 
417   if (fVerboseLevel > 1)                       << 336   if (verboseLevel > 1)
418     {                                             337     {
419       G4cout << "-----------------------------    338       G4cout << "-----------------------------------------------------------" << G4endl;
420       G4cout << "Energy balance from G4Penelop    339       G4cout << "Energy balance from G4PenelopePhotoElectric" << G4endl;
421       G4cout << "Selected shell: " << WriteTar << 340       G4cout << "Selected shell: " << WriteTargetShell(shellIndex) << " of element " << 
422   anElement->GetName() << G4endl;                 341   anElement->GetName() << G4endl;
423       G4cout << "Incoming photon energy: " <<     342       G4cout << "Incoming photon energy: " << photonEnergy/keV << " keV" << G4endl;
424       G4cout << "-----------------------------    343       G4cout << "-----------------------------------------------------------" << G4endl;
425       if (eKineticEnergy)                         344       if (eKineticEnergy)
426   G4cout << "Outgoing electron " << eKineticEn    345   G4cout << "Outgoing electron " << eKineticEnergy/keV << " keV" << G4endl;
427       if (energyInFluorescence)                   346       if (energyInFluorescence)
428   G4cout << "Fluorescence x-rays: " << energyI    347   G4cout << "Fluorescence x-rays: " << energyInFluorescence/keV << " keV" << G4endl;
429       if (energyInAuger)                          348       if (energyInAuger)
430   G4cout << "Auger electrons: " << energyInAug    349   G4cout << "Auger electrons: " << energyInAuger/keV << " keV" << G4endl;
431       G4cout << "Local energy deposit " << loc    350       G4cout << "Local energy deposit " << localEnergyDeposit/keV << " keV" << G4endl;
432       G4cout << "Total final state: " <<       << 351       G4cout << "Total final state: " << 
433   (eKineticEnergy+energyInFluorescence+localEn << 352   (eKineticEnergy+energyInFluorescence+localEnergyDeposit+energyInAuger)/keV << 
434   " keV" << G4endl;                               353   " keV" << G4endl;
435       G4cout << "-----------------------------    354       G4cout << "-----------------------------------------------------------" << G4endl;
436     }                                             355     }
437   if (fVerboseLevel > 0)                       << 356   if (verboseLevel > 0)
438     {                                             357     {
439       G4double energyDiff =                    << 358       G4double energyDiff = 
440   std::fabs(eKineticEnergy+energyInFluorescenc    359   std::fabs(eKineticEnergy+energyInFluorescence+localEnergyDeposit+energyInAuger-photonEnergy);
441       if (energyDiff > 0.05*keV)                  360       if (energyDiff > 0.05*keV)
442   {                                               361   {
443     G4cout << "Warning from G4PenelopePhotoEle << 362     G4cout << "Warning from G4PenelopePhotoElectric: problem with energy conservation: " << 
444       (eKineticEnergy+energyInFluorescence+loc << 363       (eKineticEnergy+energyInFluorescence+localEnergyDeposit+energyInAuger)/keV 
445      << " keV (final) vs. " <<                 << 364      << " keV (final) vs. " << 
446       photonEnergy/keV << " keV (initial)" <<     365       photonEnergy/keV << " keV (initial)" << G4endl;
447     G4cout << "-------------------------------    366     G4cout << "-----------------------------------------------------------" << G4endl;
448     G4cout << "Energy balance from G4PenelopeP    367     G4cout << "Energy balance from G4PenelopePhotoElectric" << G4endl;
449     G4cout << "Selected shell: " << WriteTarge << 368     G4cout << "Selected shell: " << WriteTargetShell(shellIndex) << " of element " << 
450       anElement->GetName() << G4endl;             369       anElement->GetName() << G4endl;
451     G4cout << "Incoming photon energy: " << ph    370     G4cout << "Incoming photon energy: " << photonEnergy/keV << " keV" << G4endl;
452     G4cout << "-------------------------------    371     G4cout << "-----------------------------------------------------------" << G4endl;
453     if (eKineticEnergy)                           372     if (eKineticEnergy)
454       G4cout << "Outgoing electron " << eKinet    373       G4cout << "Outgoing electron " << eKineticEnergy/keV << " keV" << G4endl;
455     if (energyInFluorescence)                     374     if (energyInFluorescence)
456       G4cout << "Fluorescence x-rays: " << ene    375       G4cout << "Fluorescence x-rays: " << energyInFluorescence/keV << " keV" << G4endl;
457     if (energyInAuger)                            376     if (energyInAuger)
458       G4cout << "Auger electrons: " << energyI    377       G4cout << "Auger electrons: " << energyInAuger/keV << " keV" << G4endl;
459     G4cout << "Local energy deposit " << local    378     G4cout << "Local energy deposit " << localEnergyDeposit/keV << " keV" << G4endl;
460     G4cout << "Total final state: " <<         << 379     G4cout << "Total final state: " << 
461       (eKineticEnergy+energyInFluorescence+loc << 380       (eKineticEnergy+energyInFluorescence+localEnergyDeposit+energyInAuger)/keV << 
462       " keV" << G4endl;                           381       " keV" << G4endl;
463     G4cout << "-------------------------------    382     G4cout << "-----------------------------------------------------------" << G4endl;
464   }                                               383   }
465     }                                             384     }
466 }                                                 385 }
467                                                   386 
468 //....oooOO0OOooo........oooOO0OOooo........oo    387 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
469                                                   388 
470 G4double G4PenelopePhotoElectricModel::SampleE    389 G4double G4PenelopePhotoElectricModel::SampleElectronDirection(G4double energy)
471 {                                                 390 {
472   G4double costheta = 1.0;                        391   G4double costheta = 1.0;
473   if (energy>1*GeV) return costheta;              392   if (energy>1*GeV) return costheta;
474                                                << 393  
475   //1) initialize energy-dependent variables      394   //1) initialize energy-dependent variables
476   // Variable naming according to Eq. (2.24) o    395   // Variable naming according to Eq. (2.24) of Penelope Manual
477   // (pag. 44)                                    396   // (pag. 44)
478   G4double gamma = 1.0 + energy/electron_mass_    397   G4double gamma = 1.0 + energy/electron_mass_c2;
479   G4double gamma2 = gamma*gamma;                  398   G4double gamma2 = gamma*gamma;
480   G4double beta = std::sqrt((gamma2-1.0)/gamma    399   G4double beta = std::sqrt((gamma2-1.0)/gamma2);
481                                                << 400    
482   // ac corresponds to "A" of Eq. (2.31)          401   // ac corresponds to "A" of Eq. (2.31)
483   //                                              402   //
484   G4double ac = (1.0/beta) - 1.0;                 403   G4double ac = (1.0/beta) - 1.0;
485   G4double a1 = 0.5*beta*gamma*(gamma-1.0)*(ga    404   G4double a1 = 0.5*beta*gamma*(gamma-1.0)*(gamma-2.0);
486   G4double a2 = ac + 2.0;                         405   G4double a2 = ac + 2.0;
487   G4double gtmax = 2.0*(a1 + 1.0/ac);             406   G4double gtmax = 2.0*(a1 + 1.0/ac);
488                                                << 407  
489   G4double tsam = 0;                              408   G4double tsam = 0;
490   G4double gtr = 0;                               409   G4double gtr = 0;
491                                                   410 
492   //2) sampling. Eq. (2.31) of Penelope Manual    411   //2) sampling. Eq. (2.31) of Penelope Manual
493   // tsam = 1-std::cos(theta)                     412   // tsam = 1-std::cos(theta)
494   // gtr = rejection function according to Eq.    413   // gtr = rejection function according to Eq. (2.28)
495   do{                                             414   do{
496     G4double rand = G4UniformRand();              415     G4double rand = G4UniformRand();
497     tsam = 2.0*ac * (2.0*rand + a2*std::sqrt(r    416     tsam = 2.0*ac * (2.0*rand + a2*std::sqrt(rand)) / (a2*a2 - 4.0*rand);
498     gtr = (2.0 - tsam) * (a1 + 1.0/(ac+tsam));    417     gtr = (2.0 - tsam) * (a1 + 1.0/(ac+tsam));
499   }while(G4UniformRand()*gtmax > gtr);            418   }while(G4UniformRand()*gtmax > gtr);
500   costheta = 1.0-tsam;                            419   costheta = 1.0-tsam;
                                                   >> 420   
501                                                   421 
502   return costheta;                                422   return costheta;
503 }                                                 423 }
504                                                   424 
505 //....oooOO0OOooo........oooOO0OOooo........oo    425 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
506                                                   426 
507 void G4PenelopePhotoElectricModel::ReadDataFil    427 void G4PenelopePhotoElectricModel::ReadDataFile(G4int Z)
508 {                                                 428 {
509   if (!IsMaster())                             << 429   if (verboseLevel > 2)
510       //Should not be here!                    << 
511     G4Exception("G4PenelopePhotoElectricModel: << 
512     "em0100",FatalException,"Worker thread in  << 
513                                                << 
514   if (fVerboseLevel > 2)                       << 
515     {                                             430     {
516       G4cout << "G4PenelopePhotoElectricModel:    431       G4cout << "G4PenelopePhotoElectricModel::ReadDataFile()" << G4endl;
517       G4cout << "Going to read PhotoElectric d    432       G4cout << "Going to read PhotoElectric data files for Z=" << Z << G4endl;
518     }                                             433     }
519                                                << 434  
520     const char* path = G4FindDataDir("G4LEDATA << 435   char* path = getenv("G4LEDATA");
521     if(!path)                                  << 436   if (!path)
522     {                                             437     {
523       G4String excep = "G4PenelopePhotoElectri    438       G4String excep = "G4PenelopePhotoElectricModel - G4LEDATA environment variable not set!";
524       G4Exception("G4PenelopePhotoElectricMode    439       G4Exception("G4PenelopePhotoElectricModel::ReadDataFile()",
525       "em0006",FatalException,excep);             440       "em0006",FatalException,excep);
526       return;                                     441       return;
527     }                                             442     }
528                                                << 443  
529   /*                                              444   /*
530     Read the cross section file                   445     Read the cross section file
531   */                                              446   */
532   std::ostringstream ost;                         447   std::ostringstream ost;
533   if (Z>9)                                        448   if (Z>9)
534     ost << path << "/penelope/photoelectric/pd    449     ost << path << "/penelope/photoelectric/pdgph" << Z << ".p08";
535   else                                            450   else
536     ost << path << "/penelope/photoelectric/pd    451     ost << path << "/penelope/photoelectric/pdgph0" << Z << ".p08";
537   std::ifstream file(ost.str().c_str());          452   std::ifstream file(ost.str().c_str());
538   if (!file.is_open())                            453   if (!file.is_open())
539     {                                             454     {
540       G4String excep = "G4PenelopePhotoElectri    455       G4String excep = "G4PenelopePhotoElectricModel - data file " + G4String(ost.str()) + " not found!";
541       G4Exception("G4PenelopePhotoElectricMode    456       G4Exception("G4PenelopePhotoElectricModel::ReadDataFile()",
542       "em0003",FatalException,excep);             457       "em0003",FatalException,excep);
543     }                                             458     }
544   //I have to know in advance how many points     459   //I have to know in advance how many points are in the data list
545   //to initialize the G4PhysicsFreeVector()       460   //to initialize the G4PhysicsFreeVector()
546   std::size_t ndata=0;                         << 461   size_t ndata=0;
547   G4String line;                                  462   G4String line;
548   while( getline(file, line) )                    463   while( getline(file, line) )
549     ndata++;                                      464     ndata++;
550   ndata -= 1;                                     465   ndata -= 1;
551   //G4cout << "Found: " << ndata << " lines" <    466   //G4cout << "Found: " << ndata << " lines" << G4endl;
552                                                   467 
553   file.clear();                                   468   file.clear();
554   file.close();                                   469   file.close();
555   file.open(ost.str().c_str());                   470   file.open(ost.str().c_str());
556                                                   471 
557   G4int readZ =0;                                 472   G4int readZ =0;
558   std::size_t nShells= 0;                      << 473   size_t nShells= 0;
559   file >> readZ >> nShells;                       474   file >> readZ >> nShells;
560                                                   475 
561   if (fVerboseLevel > 3)                       << 476   if (verboseLevel > 3)
562     G4cout << "Element Z=" << Z << " , nShells    477     G4cout << "Element Z=" << Z << " , nShells = " << nShells << G4endl;
563                                                   478 
564   //check the right file is opened.               479   //check the right file is opened.
565   if (readZ != Z || nShells <= 0 || nShells >     480   if (readZ != Z || nShells <= 0 || nShells > 50) //protect nShell against large values
566     {                                             481     {
567       G4ExceptionDescription ed;                  482       G4ExceptionDescription ed;
568       ed << "Corrupted data file for Z=" << Z     483       ed << "Corrupted data file for Z=" << Z << G4endl;
569       G4Exception("G4PenelopePhotoElectricMode    484       G4Exception("G4PenelopePhotoElectricModel::ReadDataFile()",
570       "em0005",FatalException,ed);                485       "em0005",FatalException,ed);
571       return;                                     486       return;
572     }                                             487     }
573   G4PhysicsTable* thePhysicsTable = new G4Phys    488   G4PhysicsTable* thePhysicsTable = new G4PhysicsTable();
574                                                << 489 
575   //the table has to contain nShell+1 G4Physic << 490   //the table has to contain nShell+1 G4PhysicsFreeVectors, 
576   //(theTable)[0] --> total cross section         491   //(theTable)[0] --> total cross section
577   //(theTable)[ishell] --> cross section for s    492   //(theTable)[ishell] --> cross section for shell (ishell-1)
578                                                   493 
579   //reserve space for the vectors                 494   //reserve space for the vectors
580   //everything is log-log                         495   //everything is log-log
581   for (std::size_t i=0;i<nShells+1;++i)        << 496   for (size_t i=0;i<nShells+1;i++)
582     thePhysicsTable->push_back(new G4PhysicsFr    497     thePhysicsTable->push_back(new G4PhysicsFreeVector(ndata));
583                                                   498 
584   std::size_t k =0;                            << 499   size_t k =0;
585   for (k=0;k<ndata && !file.eof();++k)         << 500   for (k=0;k<ndata && !file.eof();k++)
586     {                                             501     {
587       G4double energy = 0;                        502       G4double energy = 0;
588       G4double aValue = 0;                        503       G4double aValue = 0;
589       file >> energy ;                            504       file >> energy ;
590       energy *= eV;                               505       energy *= eV;
591       G4double logene = G4Log(energy);         << 506       G4double logene = std::log(energy);
592       //loop on the columns                       507       //loop on the columns
593       for (std::size_t i=0;i<nShells+1;++i)    << 508       for (size_t i=0;i<nShells+1;i++)
594   {                                               509   {
595     file >> aValue;                               510     file >> aValue;
596     aValue *= barn;                               511     aValue *= barn;
597     G4PhysicsFreeVector* theVec = (G4PhysicsFr << 512     G4PhysicsFreeVector* theVec = (G4PhysicsFreeVector*) ((*thePhysicsTable)[i]);  
598     if (aValue < 1e-40*cm2) //protection again    513     if (aValue < 1e-40*cm2) //protection against log(0)
599       aValue = 1e-40*cm2;                         514       aValue = 1e-40*cm2;
600     theVec->PutValue(k,logene,G4Log(aValue));  << 515     theVec->PutValue(k,logene,std::log(aValue));
601   }                                               516   }
602     }                                             517     }
603                                                   518 
604   if (fVerboseLevel > 2)                       << 519   if (verboseLevel > 2)
605     {                                             520     {
606       G4cout << "G4PenelopePhotoElectricModel: << 521       G4cout << "G4PenelopePhotoElectricModel: read " << k << " points for element Z = " 
607        << Z << G4endl;                            522        << Z << G4endl;
608     }                                             523     }
609                                                   524 
610   fLogAtomicShellXS[Z] = thePhysicsTable;      << 525   logAtomicShellXS->insert(std::make_pair(Z,thePhysicsTable));
611                                                << 526  
612   file.close();                                   527   file.close();
613   return;                                         528   return;
614 }                                                 529 }
615                                                   530 
616 //....oooOO0OOooo........oooOO0OOooo........oo    531 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
617                                                   532 
618 std::size_t G4PenelopePhotoElectricModel::GetN << 533 size_t G4PenelopePhotoElectricModel::SelectRandomShell(G4int Z,G4double energy)
619 {                                                 534 {
620   if (!IsMaster())                             << 535   G4double logEnergy = std::log(energy);
621     //Should not be here!                      << 536 
622     G4Exception("G4PenelopePhotoElectricModel: << 537   //Check if data have been read (it should be!)
623     "em0100",FatalException,"Worker thread in  << 538   if (!logAtomicShellXS->count(Z))
                                                   >> 539      {
                                                   >> 540        G4ExceptionDescription ed;
                                                   >> 541        ed << "Cannot find shell cross section data for Z=" << Z << G4endl;
                                                   >> 542        G4Exception("G4PenelopePhotoElectricModel::SelectRandomShell()",
                                                   >> 543        "em2038",FatalException,ed);
                                                   >> 544      }
                                                   >> 545 
                                                   >> 546   size_t shellIndex = 0;
                                                   >> 547  
                                                   >> 548   G4PhysicsTable* theTable =  logAtomicShellXS->find(Z)->second;
                                                   >> 549 
                                                   >> 550   G4DataVector* tempVector = new G4DataVector();
                                                   >> 551 
                                                   >> 552   G4double sum = 0;
                                                   >> 553   //loop on shell partial XS, retrieve the value for the given energy and store on 
                                                   >> 554   //a temporary vector
                                                   >> 555   tempVector->push_back(sum); //first element is zero
                                                   >> 556 
                                                   >> 557   G4PhysicsFreeVector* totalXSLog = (G4PhysicsFreeVector*) (*theTable)[0];
                                                   >> 558   G4double logXS = totalXSLog->Value(logEnergy);
                                                   >> 559   G4double totalXS = std::exp(logXS);
                                                   >> 560              
                                                   >> 561   //Notice: totalXS is the total cross section and it does *not* correspond to 
                                                   >> 562   //the sum of partialXS's, since these include only K, L and M shells.
                                                   >> 563   //
                                                   >> 564   // Therefore, here one have to consider the possibility of ionisation of 
                                                   >> 565   // an outer shell. Conventionally, it is indicated with id=10 in Penelope
                                                   >> 566   //
                                                   >> 567   
                                                   >> 568   for (size_t k=1;k<theTable->entries();k++)
                                                   >> 569     {
                                                   >> 570       G4PhysicsFreeVector* partialXSLog = (G4PhysicsFreeVector*) (*theTable)[k];
                                                   >> 571       G4double logXS = partialXSLog->Value(logEnergy);
                                                   >> 572       G4double partialXS = std::exp(logXS);
                                                   >> 573       sum += partialXS;
                                                   >> 574       tempVector->push_back(sum);     
                                                   >> 575     }
                                                   >> 576 
                                                   >> 577   tempVector->push_back(totalXS); //last element
624                                                   578 
                                                   >> 579   G4double random = G4UniformRand()*totalXS; 
                                                   >> 580 
                                                   >> 581   /*
                                                   >> 582   for (size_t i=0;i<tempVector->size(); i++)
                                                   >> 583     G4cout << i << " " << (*tempVector)[i]/totalXS << G4endl;
                                                   >> 584   */
                                                   >> 585   
                                                   >> 586   //locate bin of tempVector
                                                   >> 587   //Now one has to sample according to the elements in tempVector
                                                   >> 588   //This gives the left edge of the interval...
                                                   >> 589   size_t lowerBound = 0;
                                                   >> 590   size_t upperBound = tempVector->size()-1; 
                                                   >> 591   while (lowerBound <= upperBound)
                                                   >> 592    {
                                                   >> 593      size_t midBin = (lowerBound + upperBound)/2;
                                                   >> 594      if( random < (*tempVector)[midBin])
                                                   >> 595        upperBound = midBin-1; 
                                                   >> 596      else
                                                   >> 597        lowerBound = midBin+1; 
                                                   >> 598    }
                                                   >> 599  
                                                   >> 600   shellIndex = upperBound;
                                                   >> 601 
                                                   >> 602   delete tempVector;
                                                   >> 603   return shellIndex;
                                                   >> 604 }
                                                   >> 605 
                                                   >> 606 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >> 607 
                                                   >> 608 size_t G4PenelopePhotoElectricModel::GetNumberOfShellXS(G4int Z)
                                                   >> 609 {
625   //read data files                               610   //read data files
626   if (!fLogAtomicShellXS[Z])                   << 611   if (!logAtomicShellXS->count(Z))
627     ReadDataFile(Z);                              612     ReadDataFile(Z);
628   //now it should be ok                           613   //now it should be ok
629   if (!fLogAtomicShellXS[Z])                   << 614   if (!logAtomicShellXS->count(Z))
630      {                                            615      {
631        G4ExceptionDescription ed;                 616        G4ExceptionDescription ed;
632        ed << "Cannot find shell cross section     617        ed << "Cannot find shell cross section data for Z=" << Z << G4endl;
633        G4Exception("G4PenelopePhotoElectricMod    618        G4Exception("G4PenelopePhotoElectricModel::GetNumberOfShellXS()",
634        "em2038",FatalException,ed);               619        "em2038",FatalException,ed);
635      }                                            620      }
636   //one vector is allocated for the _total_ cr    621   //one vector is allocated for the _total_ cross section
637   std::size_t nEntries = fLogAtomicShellXS[Z]- << 622   size_t nEntries = logAtomicShellXS->find(Z)->second->entries();
638   return  (nEntries-1);                           623   return  (nEntries-1);
639 }                                                 624 }
640                                                   625 
641 //....oooOO0OOooo........oooOO0OOooo........oo    626 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
642                                                   627 
643 G4double G4PenelopePhotoElectricModel::GetShel << 628 G4double G4PenelopePhotoElectricModel::GetShellCrossSection(G4int Z,size_t shellID,G4double energy)
644 {                                                 629 {
645   //this forces also the loading of the data      630   //this forces also the loading of the data
646   std::size_t entries = GetNumberOfShellXS(Z); << 631   size_t entries = GetNumberOfShellXS(Z);
647                                                   632 
648   if (shellID >= entries)                         633   if (shellID >= entries)
649     {                                             634     {
650       G4cout << "Element Z=" << Z << " has dat    635       G4cout << "Element Z=" << Z << " has data for " << entries << " shells only" << G4endl;
651       G4cout << "so shellID should be from 0 t    636       G4cout << "so shellID should be from 0 to " << entries-1 << G4endl;
652       return 0;                                   637       return 0;
653     }                                             638     }
654                                                << 639   
655   G4PhysicsTable* theTable =  fLogAtomicShellX << 640   G4PhysicsTable* theTable =  logAtomicShellXS->find(Z)->second;
656   //[0] is the total XS, shellID is in the ele    641   //[0] is the total XS, shellID is in the element [shellID+1]
657   G4PhysicsFreeVector* totalXSLog = (G4Physics    642   G4PhysicsFreeVector* totalXSLog = (G4PhysicsFreeVector*) (*theTable)[shellID+1];
658                                                << 643  
659   if (!totalXSLog)                                644   if (!totalXSLog)
660      {                                            645      {
661        G4Exception("G4PenelopePhotoElectricMod    646        G4Exception("G4PenelopePhotoElectricModel::GetShellCrossSection()",
662        "em2039",FatalException,                   647        "em2039",FatalException,
663        "Unable to retrieve the total cross sec    648        "Unable to retrieve the total cross section table");
664        return 0;                                  649        return 0;
665      }                                            650      }
666    G4double logene = G4Log(energy);            << 651    G4double logene = std::log(energy);
667    G4double logXS = totalXSLog->Value(logene);    652    G4double logXS = totalXSLog->Value(logene);
668    G4double cross = G4Exp(logXS);              << 653    G4double cross = std::exp(logXS);
669    if (cross < 2e-40*cm2) cross = 0;              654    if (cross < 2e-40*cm2) cross = 0;
670    return cross;                                  655    return cross;
671 }                                                 656 }
672                                                   657 
673 //....oooOO0OOooo........oooOO0OOooo........oo    658 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
674                                                   659 
675 G4String G4PenelopePhotoElectricModel::WriteTa << 660 G4String G4PenelopePhotoElectricModel::WriteTargetShell(size_t shellID)
676 {                                                 661 {
677   G4String theShell = "outer shell";              662   G4String theShell = "outer shell";
678   if (shellID == 0)                               663   if (shellID == 0)
679     theShell = "K";                               664     theShell = "K";
680   else if (shellID == 1)                          665   else if (shellID == 1)
681     theShell = "L1";                              666     theShell = "L1";
682   else if (shellID == 2)                          667   else if (shellID == 2)
683     theShell = "L2";                              668     theShell = "L2";
684   else if (shellID == 3)                          669   else if (shellID == 3)
685     theShell = "L3";                              670     theShell = "L3";
686   else if (shellID == 4)                          671   else if (shellID == 4)
687     theShell = "M1";                              672     theShell = "M1";
688   else if (shellID == 5)                          673   else if (shellID == 5)
689     theShell = "M2";                              674     theShell = "M2";
690   else if (shellID == 6)                          675   else if (shellID == 6)
691     theShell = "M3";                              676     theShell = "M3";
692   else if (shellID == 7)                          677   else if (shellID == 7)
693     theShell = "M4";                              678     theShell = "M4";
694   else if (shellID == 8)                          679   else if (shellID == 8)
695     theShell = "M5";                              680     theShell = "M5";
696                                                << 681       
697   return theShell;                                682   return theShell;
698 }                                              << 
699                                                << 
700 //....oooOO0OOooo........oooOO0OOooo........oo << 
701                                                << 
702 void G4PenelopePhotoElectricModel::SetParticle << 
703 {                                              << 
704   if(!fParticle) {                             << 
705     fParticle = p;                             << 
706   }                                            << 
707 }                                              << 
708                                                << 
709 //....oooOO0OOooo........oooOO0OOooo........oo << 
710                                                << 
711 std::size_t G4PenelopePhotoElectricModel::Sele << 
712 {                                              << 
713   G4double logEnergy = G4Log(energy);          << 
714                                                << 
715   //Check if data have been read (it should be << 
716   if (!fLogAtomicShellXS[Z])                   << 
717      {                                         << 
718        G4ExceptionDescription ed;              << 
719        ed << "Cannot find shell cross section  << 
720        G4Exception("G4PenelopePhotoElectricMod << 
721        "em2038",FatalException,ed);            << 
722      }                                         << 
723                                                << 
724   G4PhysicsTable* theTable =  fLogAtomicShellX << 
725                                                << 
726   G4double sum = 0;                            << 
727   G4PhysicsFreeVector* totalXSLog = (G4Physics << 
728   G4double logXS = totalXSLog->Value(logEnergy << 
729   G4double totalXS = G4Exp(logXS);             << 
730                                                << 
731   //Notice: totalXS is the total cross section << 
732   //the sum of partialXS's, since these includ << 
733   //                                           << 
734   // Therefore, here one have to consider the  << 
735   // an outer shell. Conventionally, it is ind << 
736   //                                           << 
737   G4double random = G4UniformRand()*totalXS;   << 
738                                                << 
739   for (std::size_t k=1;k<theTable->entries();+ << 
740     {                                          << 
741       //Add one shell                          << 
742       G4PhysicsFreeVector* partialXSLog = (G4P << 
743       G4double logXSLocal = partialXSLog->Valu << 
744       G4double partialXS = G4Exp(logXSLocal);  << 
745       sum += partialXS;                        << 
746       if (random <= sum)                       << 
747   return k-1;                                  << 
748     }                                          << 
749   //none of the shells K, L, M: return outer s << 
750   return 9;                                    << 
751 }                                                 683 }
752                                                   684