Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PenelopeComptonModel.cc 75180 2013-10-29 10:11:24Z gcosmo $ 26 // 27 // 27 // Author: Luciano Pandola 28 // Author: Luciano Pandola 28 // 29 // 29 // History: 30 // History: 30 // -------- 31 // -------- 31 // 15 Feb 2010 L Pandola Implementation 32 // 15 Feb 2010 L Pandola Implementation 32 // 18 Mar 2010 L Pandola Removed GetAtomsPe << 33 // 18 Mar 2010 L Pandola Removed GetAtomsPerMolecule(), now demanded 33 // to G4PenelopeOsc 34 // to G4PenelopeOscillatorManager 34 // 01 Feb 2011 L Pandola Suppress fake ener << 35 // 01 Feb 2011 L Pandola Suppress fake energy-violation warning when Auger is active. 35 // active. << 36 // Make sure that fluorescence/Auger is generated only if 36 // Make sure that flu << 37 // above threshold 37 // if above thresho << 38 // 24 May 2011 L Pandola Renamed (make v200 38 // 24 May 2011 L Pandola Renamed (make v2008 as default Penelope) 39 // 10 Jun 2011 L Pandola Migrate atomic dee 39 // 10 Jun 2011 L Pandola Migrate atomic deexcitation interface 40 // 09 Oct 2013 L Pandola Migration to MT 40 // 09 Oct 2013 L Pandola Migration to MT 41 // 25 Jul 2023 D Iuso Fix for possible i << 42 // 41 // 43 #include "G4PenelopeComptonModel.hh" 42 #include "G4PenelopeComptonModel.hh" 44 #include "G4PhysicalConstants.hh" 43 #include "G4PhysicalConstants.hh" 45 #include "G4SystemOfUnits.hh" 44 #include "G4SystemOfUnits.hh" 46 #include "G4ParticleDefinition.hh" 45 #include "G4ParticleDefinition.hh" 47 #include "G4MaterialCutsCouple.hh" 46 #include "G4MaterialCutsCouple.hh" 48 #include "G4DynamicParticle.hh" 47 #include "G4DynamicParticle.hh" 49 #include "G4VEMDataSet.hh" 48 #include "G4VEMDataSet.hh" 50 #include "G4PhysicsTable.hh" 49 #include "G4PhysicsTable.hh" 51 #include "G4PhysicsLogVector.hh" 50 #include "G4PhysicsLogVector.hh" 52 #include "G4AtomicTransitionManager.hh" 51 #include "G4AtomicTransitionManager.hh" 53 #include "G4AtomicShell.hh" 52 #include "G4AtomicShell.hh" 54 #include "G4Gamma.hh" 53 #include "G4Gamma.hh" 55 #include "G4Electron.hh" 54 #include "G4Electron.hh" 56 #include "G4PenelopeOscillatorManager.hh" 55 #include "G4PenelopeOscillatorManager.hh" 57 #include "G4PenelopeOscillator.hh" 56 #include "G4PenelopeOscillator.hh" 58 #include "G4LossTableManager.hh" 57 #include "G4LossTableManager.hh" 59 #include "G4Exp.hh" << 60 58 61 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 60 >> 61 63 G4PenelopeComptonModel::G4PenelopeComptonModel 62 G4PenelopeComptonModel::G4PenelopeComptonModel(const G4ParticleDefinition* part, 64 const G4String& nam) 63 const G4String& nam) 65 :G4VEmModel(nam),fParticleChange(nullptr),fP << 64 :G4VEmModel(nam),fParticleChange(0),fParticle(0), 66 fAtomDeexcitation(nullptr), << 65 isInitialised(false),fAtomDeexcitation(0), 67 fOscManager(nullptr),fIsInitialised(false) << 66 oscManager(0) 68 { 67 { 69 fIntrinsicLowEnergyLimit = 100.0*eV; 68 fIntrinsicLowEnergyLimit = 100.0*eV; 70 fIntrinsicHighEnergyLimit = 100.0*GeV; 69 fIntrinsicHighEnergyLimit = 100.0*GeV; >> 70 // SetLowEnergyLimit(fIntrinsicLowEnergyLimit); 71 SetHighEnergyLimit(fIntrinsicHighEnergyLimit 71 SetHighEnergyLimit(fIntrinsicHighEnergyLimit); 72 // 72 // 73 fOscManager = G4PenelopeOscillatorManager::G << 73 oscManager = G4PenelopeOscillatorManager::GetOscillatorManager(); 74 74 75 if (part) 75 if (part) 76 SetParticle(part); 76 SetParticle(part); 77 << 77 78 fVerboseLevel= 0; << 78 verboseLevel= 0; 79 // Verbosity scale: 79 // Verbosity scale: 80 // 0 = nothing << 80 // 0 = nothing 81 // 1 = warning for energy non-conservation << 81 // 1 = warning for energy non-conservation 82 // 2 = details of energy budget 82 // 2 = details of energy budget 83 // 3 = calculation of cross sections, file o 83 // 3 = calculation of cross sections, file openings, sampling of atoms 84 // 4 = entering in methods 84 // 4 = entering in methods 85 85 86 //Mark this model as "applicable" for atomic 86 //Mark this model as "applicable" for atomic deexcitation 87 SetDeexcitationFlag(true); 87 SetDeexcitationFlag(true); 88 88 89 fTransitionManager = G4AtomicTransitionManag 89 fTransitionManager = G4AtomicTransitionManager::Instance(); 90 } 90 } 91 91 92 //....oooOO0OOooo........oooOO0OOooo........oo 92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 93 93 94 G4PenelopeComptonModel::~G4PenelopeComptonMode 94 G4PenelopeComptonModel::~G4PenelopeComptonModel() 95 {;} 95 {;} 96 96 97 //....oooOO0OOooo........oooOO0OOooo........oo 97 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 98 98 99 void G4PenelopeComptonModel::Initialise(const 99 void G4PenelopeComptonModel::Initialise(const G4ParticleDefinition* part, 100 const G4DataVector&) 100 const G4DataVector&) 101 { 101 { 102 if (fVerboseLevel > 3) << 102 if (verboseLevel > 3) 103 G4cout << "Calling G4PenelopeComptonModel: 103 G4cout << "Calling G4PenelopeComptonModel::Initialise()" << G4endl; 104 104 105 fAtomDeexcitation = G4LossTableManager::Inst 105 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation(); 106 //Issue warning if the AtomicDeexcitation ha 106 //Issue warning if the AtomicDeexcitation has not been declared 107 if (!fAtomDeexcitation) 107 if (!fAtomDeexcitation) 108 { 108 { 109 G4cout << G4endl; 109 G4cout << G4endl; 110 G4cout << "WARNING from G4PenelopeCompto 110 G4cout << "WARNING from G4PenelopeComptonModel " << G4endl; 111 G4cout << "Atomic de-excitation module i 111 G4cout << "Atomic de-excitation module is not instantiated, so there will not be "; 112 G4cout << "any fluorescence/Auger emissi 112 G4cout << "any fluorescence/Auger emission." << G4endl; 113 G4cout << "Please make sure this is inte 113 G4cout << "Please make sure this is intended" << G4endl; 114 } 114 } 115 115 116 SetParticle(part); 116 SetParticle(part); 117 117 118 if (IsMaster() && part == fParticle) << 118 if (IsMaster() && part == fParticle) 119 { 119 { 120 120 121 if (fVerboseLevel > 0) << 121 if (verboseLevel > 0) 122 { 122 { 123 G4cout << "Penelope Compton model v2008 is 123 G4cout << "Penelope Compton model v2008 is initialized " << G4endl 124 << "Energy range: " 124 << "Energy range: " 125 << LowEnergyLimit() / keV << " keV - " 125 << LowEnergyLimit() / keV << " keV - " 126 << HighEnergyLimit() / GeV << " GeV"; << 126 << HighEnergyLimit() / GeV << " GeV"; 127 } << 128 //Issue a warning, if the model is going << 129 //energy which is outside the validity o << 130 if (LowEnergyLimit() < fIntrinsicLowEner << 131 { << 132 G4ExceptionDescription ed; << 133 ed << "Using the Penelope Compton model ou << 134 << G4endl; << 135 ed << "-> LowEnergyLimit() in process = " << 136 ed << "-> Instrinsic low-energy limit = " << 137 << G4endl; << 138 ed << "Result of the simulation have to be << 139 G4Exception("G4PenelopeComptonModel::Initi << 140 "em2100",JustWarning,ed); << 141 } 127 } 142 } << 128 } 143 129 144 if(fIsInitialised) return; << 130 if(isInitialised) return; 145 fParticleChange = GetParticleChangeForGamma( 131 fParticleChange = GetParticleChangeForGamma(); 146 fIsInitialised = true; << 132 isInitialised = true; 147 133 148 } 134 } 149 135 150 //....oooOO0OOooo........oooOO0OOooo........oo 136 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 151 137 152 void G4PenelopeComptonModel::InitialiseLocal(c 138 void G4PenelopeComptonModel::InitialiseLocal(const G4ParticleDefinition* part, 153 139 G4VEmModel *masterModel) 154 { 140 { 155 if (fVerboseLevel > 3) << 141 if (verboseLevel > 3) 156 G4cout << "Calling G4PenelopeComptonModel 142 G4cout << "Calling G4PenelopeComptonModel::InitialiseLocal()" << G4endl; >> 143 157 // 144 // 158 //Check that particle matches: one might hav << 145 //Check that particle matches: one might have multiple master models (e.g. 159 //for e+ and e-). 146 //for e+ and e-). 160 // 147 // 161 if (part == fParticle) 148 if (part == fParticle) 162 { 149 { 163 //Get the const table pointers from the 150 //Get the const table pointers from the master to the workers 164 const G4PenelopeComptonModel* theModel = << 151 const G4PenelopeComptonModel* theModel = 165 static_cast<G4PenelopeComptonModel*> ( 152 static_cast<G4PenelopeComptonModel*> (masterModel); 166 << 153 167 //Same verbosity for all workers, as the 154 //Same verbosity for all workers, as the master 168 fVerboseLevel = theModel->fVerboseLevel; << 155 verboseLevel = theModel->verboseLevel; 169 } 156 } >> 157 170 return; 158 return; 171 } 159 } 172 160 173 161 174 //....oooOO0OOooo........oooOO0OOooo........oo 162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 175 163 176 G4double G4PenelopeComptonModel::CrossSectionP 164 G4double G4PenelopeComptonModel::CrossSectionPerVolume(const G4Material* material, 177 165 const G4ParticleDefinition* p, 178 166 G4double energy, 179 167 G4double, 180 168 G4double) 181 { 169 { 182 // Penelope model v2008 to calculate the Com 170 // Penelope model v2008 to calculate the Compton scattering cross section: 183 // D. Brusa et al., Nucl. Instrum. Meth. A 3 171 // D. Brusa et al., Nucl. Instrum. Meth. A 379 (1996) 167 184 // << 172 // 185 // The cross section for Compton scattering << 173 // The cross section for Compton scattering is calculated according to the Klein-Nishina 186 // formula for energy > 5 MeV. 174 // formula for energy > 5 MeV. 187 // For E < 5 MeV it is used a parametrizatio 175 // For E < 5 MeV it is used a parametrization for the differential cross-section dSigma/dOmega, 188 // which is integrated numerically in cos(th 176 // which is integrated numerically in cos(theta), G4PenelopeComptonModel::DifferentialCrossSection(). 189 // The parametrization includes the J(p) << 177 // The parametrization includes the J(p) 190 // distribution profiles for the atomic shel << 178 // distribution profiles for the atomic shells, that are tabulated from Hartree-Fock calculations 191 // from F. Biggs et al., At. Data Nucl. Data 179 // from F. Biggs et al., At. Data Nucl. Data Tables 16 (1975) 201 192 // 180 // 193 if (fVerboseLevel > 3) << 181 if (verboseLevel > 3) 194 G4cout << "Calling CrossSectionPerVolume() 182 G4cout << "Calling CrossSectionPerVolume() of G4PenelopeComptonModel" << G4endl; 195 SetupForMaterial(p, material, energy); 183 SetupForMaterial(p, material, energy); 196 184 197 G4double cs = 0; << 198 //Force null cross-section if below the low- << 199 if (energy < LowEnergyLimit()) << 200 return cs; << 201 << 202 //Retrieve the oscillator table for this mat 185 //Retrieve the oscillator table for this material 203 G4PenelopeOscillatorTable* theTable = fOscMa << 186 G4PenelopeOscillatorTable* theTable = oscManager->GetOscillatorTableCompton(material); >> 187 >> 188 G4double cs = 0; 204 189 205 if (energy < 5*MeV) //explicit calculation f 190 if (energy < 5*MeV) //explicit calculation for E < 5 MeV 206 { 191 { 207 size_t numberOfOscillators = theTable->s 192 size_t numberOfOscillators = theTable->size(); 208 for (size_t i=0;i<numberOfOscillators;i+ 193 for (size_t i=0;i<numberOfOscillators;i++) 209 { 194 { 210 G4PenelopeOscillator* theOsc = (*theTable) 195 G4PenelopeOscillator* theOsc = (*theTable)[i]; 211 //sum contributions coming from each oscil 196 //sum contributions coming from each oscillator 212 cs += OscillatorTotalCrossSection(energy,t 197 cs += OscillatorTotalCrossSection(energy,theOsc); 213 } 198 } 214 } 199 } 215 else //use Klein-Nishina for E>5 MeV 200 else //use Klein-Nishina for E>5 MeV 216 cs = KleinNishinaCrossSection(energy,mater 201 cs = KleinNishinaCrossSection(energy,material); 217 << 202 218 //cross sections are in units of pi*classic_ 203 //cross sections are in units of pi*classic_electr_radius^2 219 cs *= pi*classic_electr_radius*classic_elect 204 cs *= pi*classic_electr_radius*classic_electr_radius; 220 205 221 //Now, cs is the cross section *per molecule << 206 //Now, cs is the cross section *per molecule*, let's calculate the 222 //cross section per volume 207 //cross section per volume >> 208 223 G4double atomDensity = material->GetTotNbOfA 209 G4double atomDensity = material->GetTotNbOfAtomsPerVolume(); 224 G4double atPerMol = fOscManager->GetAtomsPe << 210 G4double atPerMol = oscManager->GetAtomsPerMolecule(material); 225 211 226 if (fVerboseLevel > 3) << 212 if (verboseLevel > 3) 227 G4cout << "Material " << material->GetName << 213 G4cout << "Material " << material->GetName() << " has " << atPerMol << 228 "atoms per molecule" << G4endl; 214 "atoms per molecule" << G4endl; 229 215 230 G4double moleculeDensity = 0.; 216 G4double moleculeDensity = 0.; 231 217 232 if (atPerMol) 218 if (atPerMol) 233 moleculeDensity = atomDensity/atPerMol; 219 moleculeDensity = atomDensity/atPerMol; 234 220 235 G4double csvolume = cs*moleculeDensity; 221 G4double csvolume = cs*moleculeDensity; 236 << 222 237 if (fVerboseLevel > 2) << 223 if (verboseLevel > 2) 238 G4cout << "Compton mean free path at " << << 224 G4cout << "Compton mean free path at " << energy/keV << " keV for material " << 239 material->GetName() << " = " << (1 225 material->GetName() << " = " << (1./csvolume)/mm << " mm" << G4endl; 240 return csvolume; 226 return csvolume; 241 } 227 } 242 228 243 //....oooOO0OOooo........oooOO0OOooo........oo 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 244 230 245 //This is a dummy method. Never inkoved by the 231 //This is a dummy method. Never inkoved by the tracking, it just issues 246 //a warning if one tries to get Cross Sections 232 //a warning if one tries to get Cross Sections per Atom via the 247 //G4EmCalculator. 233 //G4EmCalculator. 248 G4double G4PenelopeComptonModel::ComputeCrossS 234 G4double G4PenelopeComptonModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 249 235 G4double, 250 236 G4double, 251 237 G4double, 252 238 G4double, 253 239 G4double) 254 { 240 { 255 G4cout << "*** G4PenelopeComptonModel -- WAR 241 G4cout << "*** G4PenelopeComptonModel -- WARNING ***" << G4endl; 256 G4cout << "Penelope Compton model v2008 does 242 G4cout << "Penelope Compton model v2008 does not calculate cross section _per atom_ " << G4endl; 257 G4cout << "so the result is always zero. For 243 G4cout << "so the result is always zero. For physics values, please invoke " << G4endl; 258 G4cout << "GetCrossSectionPerVolume() or Get 244 G4cout << "GetCrossSectionPerVolume() or GetMeanFreePath() via the G4EmCalculator" << G4endl; 259 return 0; 245 return 0; 260 } 246 } 261 247 262 //....oooOO0OOooo........oooOO0OOooo........oo 248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 263 249 264 void G4PenelopeComptonModel::SampleSecondaries 250 void G4PenelopeComptonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 265 const G4MaterialCutsCouple* c 251 const G4MaterialCutsCouple* couple, 266 const G4DynamicParticle* aDyna 252 const G4DynamicParticle* aDynamicGamma, 267 G4double, 253 G4double, 268 G4double) 254 G4double) 269 { 255 { >> 256 270 // Penelope model v2008 to sample the Compto 257 // Penelope model v2008 to sample the Compton scattering final state. 271 // D. Brusa et al., Nucl. Instrum. Meth. A 3 258 // D. Brusa et al., Nucl. Instrum. Meth. A 379 (1996) 167 272 // The model determines also the original sh << 259 // The model determines also the original shell from which the electron is expelled, 273 // in order to produce fluorescence de-excit 260 // in order to produce fluorescence de-excitation (from G4DeexcitationManager) 274 // << 261 // 275 // The final state for Compton scattering is << 262 // The final state for Compton scattering is calculated according to the Klein-Nishina 276 // formula for energy > 5 MeV. In this case, << 263 // formula for energy > 5 MeV. In this case, the Doppler broadening is negligible and 277 // one can assume that the target electron i 264 // one can assume that the target electron is at rest. 278 // For E < 5 MeV it is used the parametrizat 265 // For E < 5 MeV it is used the parametrization for the differential cross-section dSigma/dOmega, 279 // to sample the scattering angle and the en << 266 // to sample the scattering angle and the energy of the emerging electron, which is 280 // G4PenelopeComptonModel::DifferentialCross << 267 // G4PenelopeComptonModel::DifferentialCrossSection(). The rejection method is 281 // used to sample cos(theta). The efficiency << 268 // used to sample cos(theta). The efficiency increases monotonically with photon energy and is 282 // nearly independent on the Z; typical valu << 269 // nearly independent on the Z; typical values are 35%, 80% and 95% for 1 keV, 1 MeV and 10 MeV, 283 // respectively. 270 // respectively. 284 // The parametrization includes the J(p) dis << 271 // The parametrization includes the J(p) distribution profiles for the atomic shells, that are 285 // tabulated << 272 // tabulated 286 // from Hartree-Fock calculations from F. Bi << 273 // from Hartree-Fock calculations from F. Biggs et al., At. Data Nucl. Data Tables 16 (1975) 201. 287 // Doppler broadening is included. 274 // Doppler broadening is included. 288 // 275 // 289 276 290 if (fVerboseLevel > 3) << 277 if (verboseLevel > 3) 291 G4cout << "Calling SampleSecondaries() of 278 G4cout << "Calling SampleSecondaries() of G4PenelopeComptonModel" << G4endl; 292 << 279 293 G4double photonEnergy0 = aDynamicGamma->GetK 280 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 294 281 295 // do nothing below the threshold << 282 if (photonEnergy0 <= fIntrinsicLowEnergyLimit) 296 // should never get here because the XS is z << 283 { 297 if(photonEnergy0 < LowEnergyLimit()) << 284 fParticleChange->ProposeTrackStatus(fStopAndKill); 298 return; << 285 fParticleChange->SetProposedKineticEnergy(0.); >> 286 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); >> 287 return ; >> 288 } 299 289 300 G4ParticleMomentum photonDirection0 = aDynam 290 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 301 const G4Material* material = couple->GetMate 291 const G4Material* material = couple->GetMaterial(); 302 292 303 G4PenelopeOscillatorTable* theTable = fOscMa << 293 G4PenelopeOscillatorTable* theTable = oscManager->GetOscillatorTableCompton(material); 304 294 305 const G4int nmax = 64; 295 const G4int nmax = 64; 306 G4double rn[nmax]={0.0}; 296 G4double rn[nmax]={0.0}; 307 G4double pac[nmax]={0.0}; 297 G4double pac[nmax]={0.0}; 308 << 298 309 G4double S=0.0; 299 G4double S=0.0; 310 G4double epsilon = 0.0; 300 G4double epsilon = 0.0; 311 G4double cosTheta = 1.0; 301 G4double cosTheta = 1.0; 312 G4double hartreeFunc = 0.0; 302 G4double hartreeFunc = 0.0; 313 G4double oscStren = 0.0; 303 G4double oscStren = 0.0; 314 size_t numberOfOscillators = theTable->size( 304 size_t numberOfOscillators = theTable->size(); 315 size_t targetOscillator = 0; 305 size_t targetOscillator = 0; 316 G4double ionEnergy = 0.0*eV; 306 G4double ionEnergy = 0.0*eV; 317 307 318 G4double ek = photonEnergy0/electron_mass_c2 308 G4double ek = photonEnergy0/electron_mass_c2; 319 G4double ek2 = 2.*ek+1.0; 309 G4double ek2 = 2.*ek+1.0; 320 G4double eks = ek*ek; 310 G4double eks = ek*ek; 321 G4double ek1 = eks-ek2-1.0; 311 G4double ek1 = eks-ek2-1.0; 322 312 323 G4double taumin = 1.0/ek2; 313 G4double taumin = 1.0/ek2; 324 //This is meant to fix a possible (rare) flo << 314 G4double a1 = std::log(ek2); 325 //causing an infinite loop. The maximum of t << 326 //be represented (i.e. ~ 1. - 1e-16). Fix by << 327 static G4double taumax = std::nexttoward(1.0 << 328 if (fVerboseLevel > 3) << 329 G4cout << "G4PenelopeComptonModel: maximum << 330 //To here. << 331 G4double a1 = G4Log(ek2); << 332 G4double a2 = a1+2.0*ek*(1.0+ek)/(ek2*ek2); 315 G4double a2 = a1+2.0*ek*(1.0+ek)/(ek2*ek2); 333 316 334 G4double TST = 0; 317 G4double TST = 0; 335 G4double tau = 0.; 318 G4double tau = 0.; 336 << 319 337 //If the incoming photon is above 5 MeV, the << 320 //If the incoming photon is above 5 MeV, the quicker approach based on the 338 //pure Klein-Nishina formula is used 321 //pure Klein-Nishina formula is used 339 if (photonEnergy0 > 5*MeV) 322 if (photonEnergy0 > 5*MeV) 340 { 323 { 341 do{ 324 do{ 342 do{ 325 do{ 343 if ((a2*G4UniformRand()) < a1) 326 if ((a2*G4UniformRand()) < a1) 344 tau = std::pow(taumin,G4UniformRand()); << 327 tau = std::pow(taumin,G4UniformRand()); 345 else 328 else 346 tau = std::sqrt(1.0+G4UniformRand()*(tau << 329 tau = std::sqrt(1.0+G4UniformRand()*(taumin*taumin-1.0)); 347 //rejection function 330 //rejection function 348 TST = (1.0+tau*(ek1+tau*(ek2+tau*eks)))/(e 331 TST = (1.0+tau*(ek1+tau*(ek2+tau*eks)))/(eks*tau*(1.0+tau*tau)); 349 }while (G4UniformRand()> TST); 332 }while (G4UniformRand()> TST); 350 if (tau > taumax) tau = taumax; //prevent FP << 351 epsilon=tau; 333 epsilon=tau; 352 cosTheta = 1.0 - (1.0-tau)/(ek*tau); 334 cosTheta = 1.0 - (1.0-tau)/(ek*tau); 353 335 354 //Target shell electrons << 336 //Target shell electrons 355 TST = fOscManager->GetTotalZ(material)*G4Uni << 337 TST = oscManager->GetTotalZ(material)*G4UniformRand(); 356 targetOscillator = numberOfOscillators-1; // 338 targetOscillator = numberOfOscillators-1; //last level 357 S=0.0; 339 S=0.0; 358 G4bool levelFound = false; 340 G4bool levelFound = false; 359 for (size_t j=0;j<numberOfOscillators && !le 341 for (size_t j=0;j<numberOfOscillators && !levelFound; j++) 360 { 342 { 361 S += (*theTable)[j]->GetOscillatorStreng << 343 S += (*theTable)[j]->GetOscillatorStrength(); 362 if (S > TST) << 344 if (S > TST) 363 { 345 { 364 targetOscillator = j; 346 targetOscillator = j; 365 levelFound = true; 347 levelFound = true; 366 } 348 } 367 } 349 } 368 //check whether the level is valid 350 //check whether the level is valid 369 ionEnergy = (*theTable)[targetOscillator]->G 351 ionEnergy = (*theTable)[targetOscillator]->GetIonisationEnergy(); 370 }while((epsilon*photonEnergy0-photonEner 352 }while((epsilon*photonEnergy0-photonEnergy0+ionEnergy) >0); 371 } 353 } 372 else //photonEnergy0 < 5 MeV 354 else //photonEnergy0 < 5 MeV 373 { 355 { 374 //Incoherent scattering function for the 356 //Incoherent scattering function for theta=PI 375 G4double s0=0.0; 357 G4double s0=0.0; 376 G4double pzomc=0.0; 358 G4double pzomc=0.0; 377 G4double rni=0.0; 359 G4double rni=0.0; 378 G4double aux=0.0; 360 G4double aux=0.0; 379 for (size_t i=0;i<numberOfOscillators;i+ 361 for (size_t i=0;i<numberOfOscillators;i++) 380 { 362 { 381 ionEnergy = (*theTable)[i]->GetIonisationE 363 ionEnergy = (*theTable)[i]->GetIonisationEnergy(); 382 if (photonEnergy0 > ionEnergy) 364 if (photonEnergy0 > ionEnergy) 383 { 365 { 384 G4double aux2 = photonEnergy0*(photonE 366 G4double aux2 = photonEnergy0*(photonEnergy0-ionEnergy)*2.0; 385 hartreeFunc = (*theTable)[i]->GetHartr << 367 hartreeFunc = (*theTable)[i]->GetHartreeFactor(); 386 oscStren = (*theTable)[i]->GetOscillat 368 oscStren = (*theTable)[i]->GetOscillatorStrength(); 387 pzomc = hartreeFunc*(aux2-electron_mas 369 pzomc = hartreeFunc*(aux2-electron_mass_c2*ionEnergy)/ 388 (electron_mass_c2*std::sqrt(2.0*aux2+ionEn 370 (electron_mass_c2*std::sqrt(2.0*aux2+ionEnergy*ionEnergy)); 389 if (pzomc > 0) << 371 if (pzomc > 0) 390 rni = 1.0-0.5*G4Exp(0.5-(std::sqrt(0.5)+st << 372 rni = 1.0-0.5*std::exp(0.5-(std::sqrt(0.5)+std::sqrt(2.0)*pzomc)* 391 (std::sqrt(0.5)+std::sqrt(2.0)* << 373 (std::sqrt(0.5)+std::sqrt(2.0)*pzomc)); 392 else << 374 else 393 rni = 0.5*G4Exp(0.5-(std::sqrt(0.5)-std::s << 375 rni = 0.5*std::exp(0.5-(std::sqrt(0.5)-std::sqrt(2.0)*pzomc)* 394 (std::sqrt(0.5)-std::sqrt(2.0)*pzom << 376 (std::sqrt(0.5)-std::sqrt(2.0)*pzomc)); 395 s0 += oscStren*rni; 377 s0 += oscStren*rni; 396 } 378 } 397 } << 379 } 398 //Sampling tau 380 //Sampling tau 399 G4double cdt1 = 0.; 381 G4double cdt1 = 0.; 400 do 382 do 401 { 383 { 402 if ((G4UniformRand()*a2) < a1) << 384 if ((G4UniformRand()*a2) < a1) 403 tau = std::pow(taumin,G4UniformRand()); << 385 tau = std::pow(taumin,G4UniformRand()); 404 else << 386 else 405 tau = std::sqrt(1.0+G4UniformRand()*(tau << 387 tau = std::sqrt(1.0+G4UniformRand()*(taumin*taumin-1.0)); 406 if (tau > taumax) tau = taumax; //prevent << 407 cdt1 = (1.0-tau)/(ek*tau); 388 cdt1 = (1.0-tau)/(ek*tau); 408 //Incoherent scattering function 389 //Incoherent scattering function 409 S = 0.; 390 S = 0.; 410 for (size_t i=0;i<numberOfOscillators;i++) 391 for (size_t i=0;i<numberOfOscillators;i++) 411 { 392 { 412 ionEnergy = (*theTable)[i]->GetIonisat 393 ionEnergy = (*theTable)[i]->GetIonisationEnergy(); 413 if (photonEnergy0 > ionEnergy) //sum o 394 if (photonEnergy0 > ionEnergy) //sum only on excitable levels 414 { 395 { 415 aux = photonEnergy0*(photonEnergy0-ionEn 396 aux = photonEnergy0*(photonEnergy0-ionEnergy)*cdt1; 416 hartreeFunc = (*theTable)[i]->GetHartree << 397 hartreeFunc = (*theTable)[i]->GetHartreeFactor(); 417 oscStren = (*theTable)[i]->GetOscillator 398 oscStren = (*theTable)[i]->GetOscillatorStrength(); 418 pzomc = hartreeFunc*(aux-electron_mass_c 399 pzomc = hartreeFunc*(aux-electron_mass_c2*ionEnergy)/ 419 (electron_mass_c2*std::sqrt(2.0*aux+io 400 (electron_mass_c2*std::sqrt(2.0*aux+ionEnergy*ionEnergy)); 420 if (pzomc > 0) << 401 if (pzomc > 0) 421 rn[i] = 1.0-0.5*G4Exp(0.5-(std::sqrt(0 << 402 rn[i] = 1.0-0.5*std::exp(0.5-(std::sqrt(0.5)+std::sqrt(2.0)*pzomc)* 422 (std::sqrt(0.5)+std::sqrt(2.0)* << 403 (std::sqrt(0.5)+std::sqrt(2.0)*pzomc)); 423 else << 404 else 424 rn[i] = 0.5*G4Exp(0.5-(std::sqrt(0.5)- << 405 rn[i] = 0.5*std::exp(0.5-(std::sqrt(0.5)-std::sqrt(2.0)*pzomc)* 425 (std::sqrt(0.5)-std::sqrt(2.0)*pzom << 406 (std::sqrt(0.5)-std::sqrt(2.0)*pzomc)); 426 S += oscStren*rn[i]; 407 S += oscStren*rn[i]; 427 pac[i] = S; 408 pac[i] = S; 428 } 409 } 429 else 410 else 430 pac[i] = S-1e-6; << 411 pac[i] = S-1e-6; 431 } 412 } 432 //Rejection function 413 //Rejection function 433 TST = S*(1.0+tau*(ek1+tau*(ek2+tau*eks)))/ << 414 TST = S*(1.0+tau*(ek1+tau*(ek2+tau*eks)))/(eks*tau*(1.0+tau*tau)); 434 }while ((G4UniformRand()*s0) > TST); 415 }while ((G4UniformRand()*s0) > TST); 435 416 436 cosTheta = 1.0 - cdt1; 417 cosTheta = 1.0 - cdt1; 437 G4double fpzmax=0.0,fpz=0.0; 418 G4double fpzmax=0.0,fpz=0.0; 438 G4double A=0.0; 419 G4double A=0.0; 439 //Target electron shell 420 //Target electron shell 440 do 421 do 441 { 422 { 442 do 423 do 443 { 424 { 444 TST = S*G4UniformRand(); 425 TST = S*G4UniformRand(); 445 targetOscillator = numberOfOscillators 426 targetOscillator = numberOfOscillators-1; //last level 446 G4bool levelFound = false; 427 G4bool levelFound = false; 447 for (size_t i=0;i<numberOfOscillators 428 for (size_t i=0;i<numberOfOscillators && !levelFound;i++) 448 { 429 { 449 if (pac[i]>TST) << 430 if (pac[i]>TST) 450 { << 431 { 451 targetOscillator = i; 432 targetOscillator = i; 452 levelFound = true; 433 levelFound = true; 453 } 434 } 454 } 435 } 455 A = G4UniformRand()*rn[targetOscillato 436 A = G4UniformRand()*rn[targetOscillator]; 456 hartreeFunc = (*theTable)[targetOscill << 437 hartreeFunc = (*theTable)[targetOscillator]->GetHartreeFactor(); 457 oscStren = (*theTable)[targetOscillato 438 oscStren = (*theTable)[targetOscillator]->GetOscillatorStrength(); 458 if (A < 0.5) << 439 if (A < 0.5) 459 pzomc = (std::sqrt(0.5)-std::sqrt(0.5-G4Lo << 440 pzomc = (std::sqrt(0.5)-std::sqrt(0.5-std::log(2.0*A)))/ 460 (std::sqrt(2.0)*hartreeFunc); << 441 (std::sqrt(2.0)*hartreeFunc); 461 else << 442 else 462 pzomc = (std::sqrt(0.5-G4Log(2.0-2.0*A))-s << 443 pzomc = (std::sqrt(0.5-std::log(2.0-2.0*A))-std::sqrt(0.5))/ 463 (std::sqrt(2.0)*hartreeFunc); << 444 (std::sqrt(2.0)*hartreeFunc); 464 } while (pzomc < -1); 445 } while (pzomc < -1); 465 446 466 // F(EP) rejection 447 // F(EP) rejection 467 G4double XQC = 1.0+tau*(tau-2.0*cosTheta); 448 G4double XQC = 1.0+tau*(tau-2.0*cosTheta); 468 G4double AF = std::sqrt(XQC)*(1.0+tau*(tau 449 G4double AF = std::sqrt(XQC)*(1.0+tau*(tau-cosTheta)/XQC); 469 if (AF > 0) << 450 if (AF > 0) 470 fpzmax = 1.0+AF*0.2; 451 fpzmax = 1.0+AF*0.2; 471 else 452 else 472 fpzmax = 1.0-AF*0.2; << 453 fpzmax = 1.0-AF*0.2; 473 fpz = 1.0+AF*std::max(std::min(pzomc,0.2), 454 fpz = 1.0+AF*std::max(std::min(pzomc,0.2),-0.2); 474 }while ((fpzmax*G4UniformRand())>fpz); 455 }while ((fpzmax*G4UniformRand())>fpz); 475 << 456 476 //Energy of the scattered photon 457 //Energy of the scattered photon 477 G4double T = pzomc*pzomc; 458 G4double T = pzomc*pzomc; 478 G4double b1 = 1.0-T*tau*tau; 459 G4double b1 = 1.0-T*tau*tau; 479 G4double b2 = 1.0-T*tau*cosTheta; 460 G4double b2 = 1.0-T*tau*cosTheta; 480 if (pzomc > 0.0) << 461 if (pzomc > 0.0) 481 epsilon = (tau/b1)*(b2+std::sqrt(std::abs(b2 << 462 epsilon = (tau/b1)*(b2+std::sqrt(std::abs(b2*b2-b1*(1.0-T)))); 482 else << 463 else 483 epsilon = (tau/b1)*(b2-std::sqrt(std::abs(b2 << 464 epsilon = (tau/b1)*(b2-std::sqrt(std::abs(b2*b2-b1*(1.0-T)))); 484 } //energy < 5 MeV 465 } //energy < 5 MeV 485 << 466 486 //Ok, the kinematics has been calculated. 467 //Ok, the kinematics has been calculated. 487 G4double sinTheta = std::sqrt(1-cosTheta*cos 468 G4double sinTheta = std::sqrt(1-cosTheta*cosTheta); 488 G4double phi = twopi * G4UniformRand() ; 469 G4double phi = twopi * G4UniformRand() ; 489 G4double dirx = sinTheta * std::cos(phi); 470 G4double dirx = sinTheta * std::cos(phi); 490 G4double diry = sinTheta * std::sin(phi); 471 G4double diry = sinTheta * std::sin(phi); 491 G4double dirz = cosTheta ; 472 G4double dirz = cosTheta ; 492 473 493 // Update G4VParticleChange for the scattere 474 // Update G4VParticleChange for the scattered photon 494 G4ThreeVector photonDirection1(dirx,diry,dir 475 G4ThreeVector photonDirection1(dirx,diry,dirz); 495 photonDirection1.rotateUz(photonDirection0); 476 photonDirection1.rotateUz(photonDirection0); 496 fParticleChange->ProposeMomentumDirection(ph 477 fParticleChange->ProposeMomentumDirection(photonDirection1) ; 497 478 498 G4double photonEnergy1 = epsilon * photonEne 479 G4double photonEnergy1 = epsilon * photonEnergy0; 499 480 500 if (photonEnergy1 > 0.) << 481 if (photonEnergy1 > 0.) 501 fParticleChange->SetProposedKineticEnergy( << 482 fParticleChange->SetProposedKineticEnergy(photonEnergy1) ; 502 else 483 else 503 { 484 { 504 fParticleChange->SetProposedKineticEnergy( 485 fParticleChange->SetProposedKineticEnergy(0.) ; 505 fParticleChange->ProposeTrackStatus(fStopA 486 fParticleChange->ProposeTrackStatus(fStopAndKill); 506 } 487 } 507 << 488 508 //Create scattered electron 489 //Create scattered electron 509 G4double diffEnergy = photonEnergy0*(1-epsil 490 G4double diffEnergy = photonEnergy0*(1-epsilon); 510 ionEnergy = (*theTable)[targetOscillator]->G 491 ionEnergy = (*theTable)[targetOscillator]->GetIonisationEnergy(); 511 492 512 G4double Q2 = << 493 G4double Q2 = 513 photonEnergy0*photonEnergy0+photonEnergy1* 494 photonEnergy0*photonEnergy0+photonEnergy1*(photonEnergy1-2.0*photonEnergy0*cosTheta); 514 G4double cosThetaE = 0.; //scattering angle 495 G4double cosThetaE = 0.; //scattering angle for the electron 515 496 516 if (Q2 > 1.0e-12) << 497 if (Q2 > 1.0e-12) 517 cosThetaE = (photonEnergy0-photonEnergy1*c << 498 cosThetaE = (photonEnergy0-photonEnergy1*cosTheta)/std::sqrt(Q2); 518 else << 499 else 519 cosThetaE = 1.0; << 500 cosThetaE = 1.0; 520 G4double sinThetaE = std::sqrt(1-cosThetaE*c 501 G4double sinThetaE = std::sqrt(1-cosThetaE*cosThetaE); 521 502 522 //Now, try to handle fluorescence 503 //Now, try to handle fluorescence 523 //Notice: merged levels are indicated with Z 504 //Notice: merged levels are indicated with Z=0 and flag=30 524 G4int shFlag = (*theTable)[targetOscillator] << 505 G4int shFlag = (*theTable)[targetOscillator]->GetShellFlag(); 525 G4int Z = (G4int) (*theTable)[targetOscillat 506 G4int Z = (G4int) (*theTable)[targetOscillator]->GetParentZ(); 526 507 527 //initialize here, then check photons create 508 //initialize here, then check photons created by Atomic-Deexcitation, and the final state e- 528 G4double bindingEnergy = 0.*eV; 509 G4double bindingEnergy = 0.*eV; 529 const G4AtomicShell* shell = 0; 510 const G4AtomicShell* shell = 0; 530 511 531 //Real level 512 //Real level 532 if (Z > 0 && shFlag<30) 513 if (Z > 0 && shFlag<30) 533 { 514 { 534 shell = fTransitionManager->Shell(Z,shFl 515 shell = fTransitionManager->Shell(Z,shFlag-1); 535 bindingEnergy = shell->BindingEnergy(); << 516 bindingEnergy = shell->BindingEnergy(); 536 } 517 } 537 518 538 G4double ionEnergyInPenelopeDatabase = ionEn 519 G4double ionEnergyInPenelopeDatabase = ionEnergy; 539 //protection against energy non-conservation 520 //protection against energy non-conservation 540 ionEnergy = std::max(bindingEnergy,ionEnergy << 521 ionEnergy = std::max(bindingEnergy,ionEnergyInPenelopeDatabase); 541 522 542 //subtract the excitation energy. If not emi 523 //subtract the excitation energy. If not emitted by fluorescence 543 //the ionization energy is deposited as loca 524 //the ionization energy is deposited as local energy deposition 544 G4double eKineticEnergy = diffEnergy - ionEn << 525 G4double eKineticEnergy = diffEnergy - ionEnergy; 545 G4double localEnergyDeposit = ionEnergy; << 526 G4double localEnergyDeposit = ionEnergy; 546 G4double energyInFluorescence = 0.; //testin 527 G4double energyInFluorescence = 0.; //testing purposes only 547 G4double energyInAuger = 0; //testing purpos 528 G4double energyInAuger = 0; //testing purposes 548 529 549 if (eKineticEnergy < 0) << 530 if (eKineticEnergy < 0) 550 { 531 { 551 //It means that there was some problem/m << 532 //It means that there was some problem/mismatch between the two databases. 552 //Try to make it work 533 //Try to make it work 553 //In this case available Energy (diffEne 534 //In this case available Energy (diffEnergy) < ionEnergy 554 //Full residual energy is deposited loca 535 //Full residual energy is deposited locally 555 localEnergyDeposit = diffEnergy; 536 localEnergyDeposit = diffEnergy; 556 eKineticEnergy = 0.0; 537 eKineticEnergy = 0.0; 557 } 538 } 558 539 559 //the local energy deposit is what remains: 540 //the local energy deposit is what remains: part of this may be spent for fluorescence. 560 //Notice: shell might be nullptr (invalid!) << 541 //Notice: shell might be NULL (invalid!) if shFlag=30. Must be protected 561 //Now, take care of fluorescence, if require 542 //Now, take care of fluorescence, if required 562 if (fAtomDeexcitation && shell) 543 if (fAtomDeexcitation && shell) 563 { << 544 { 564 G4int index = couple->GetIndex(); 545 G4int index = couple->GetIndex(); 565 if (fAtomDeexcitation->CheckDeexcitation 546 if (fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) 566 { << 547 { 567 size_t nBefore = fvect->size(); 548 size_t nBefore = fvect->size(); 568 fAtomDeexcitation->GenerateParticles(fvect 549 fAtomDeexcitation->GenerateParticles(fvect,shell,Z,index); 569 size_t nAfter = fvect->size(); << 550 size_t nAfter = fvect->size(); 570 << 551 571 if (nAfter > nBefore) //actual production 552 if (nAfter > nBefore) //actual production of fluorescence 572 { 553 { 573 for (size_t j=nBefore;j<nAfter;j++) // 554 for (size_t j=nBefore;j<nAfter;j++) //loop on products 574 { 555 { 575 G4double itsEnergy = ((*fvect)[j])->GetK 556 G4double itsEnergy = ((*fvect)[j])->GetKineticEnergy(); 576 if (itsEnergy < localEnergyDeposit) // v << 557 localEnergyDeposit -= itsEnergy; 577 { << 558 if (((*fvect)[j])->GetParticleDefinition() == G4Gamma::Definition()) 578 localEnergyDeposit -= itsEnergy; << 559 energyInFluorescence += itsEnergy; 579 if (((*fvect)[j])->GetParticleDefini << 560 else if (((*fvect)[j])->GetParticleDefinition() == G4Electron::Definition()) 580 energyInFluorescence += itsEnergy; << 561 energyInAuger += itsEnergy; 581 else if (((*fvect)[j])->GetParticleD << 562 582 G4Electron::Definition()) << 583 energyInAuger += itsEnergy; << 584 } << 585 else //invalid secondary: takes more tha << 586 { << 587 delete (*fvect)[j]; << 588 (*fvect)[j] = nullptr; << 589 } << 590 } 563 } 591 } 564 } 592 << 565 593 } 566 } 594 } 567 } 595 568 596 //Always produce explicitly the electron << 569 >> 570 /* >> 571 if(DeexcitationFlag() && Z > 5 && shellId>0) { >> 572 >> 573 const G4ProductionCutsTable* theCoupleTable= >> 574 G4ProductionCutsTable::GetProductionCutsTable(); >> 575 >> 576 size_t index = couple->GetIndex(); >> 577 G4double cutg = (*(theCoupleTable->GetEnergyCutsVector(0)))[index]; >> 578 G4double cute = (*(theCoupleTable->GetEnergyCutsVector(1)))[index]; >> 579 >> 580 // Generation of fluorescence >> 581 // Data in EADL are available only for Z > 5 >> 582 // Protection to avoid generating photons in the unphysical case of >> 583 // shell binding energy > photon energy >> 584 if (localEnergyDeposit > cutg || localEnergyDeposit > cute) >> 585 { >> 586 G4DynamicParticle* aPhoton; >> 587 deexcitationManager.SetCutForSecondaryPhotons(cutg); >> 588 deexcitationManager.SetCutForAugerElectrons(cute); >> 589 >> 590 photonVector = deexcitationManager.GenerateParticles(Z,shellId); >> 591 if(photonVector) >> 592 { >> 593 size_t nPhotons = photonVector->size(); >> 594 for (size_t k=0; k<nPhotons; k++) >> 595 { >> 596 aPhoton = (*photonVector)[k]; >> 597 if (aPhoton) >> 598 { >> 599 G4double itsEnergy = aPhoton->GetKineticEnergy(); >> 600 G4bool keepIt = false; >> 601 if (itsEnergy <= localEnergyDeposit) >> 602 { >> 603 //check if good! >> 604 if(aPhoton->GetDefinition() == G4Gamma::Gamma() >> 605 && itsEnergy >= cutg) >> 606 { >> 607 keepIt = true; >> 608 energyInFluorescence += itsEnergy; >> 609 } >> 610 if (aPhoton->GetDefinition() == G4Electron::Electron() && >> 611 itsEnergy >= cute) >> 612 { >> 613 energyInAuger += itsEnergy; >> 614 keepIt = true; >> 615 } >> 616 } >> 617 //good secondary, register it >> 618 if (keepIt) >> 619 { >> 620 localEnergyDeposit -= itsEnergy; >> 621 fvect->push_back(aPhoton); >> 622 } >> 623 else >> 624 { >> 625 delete aPhoton; >> 626 (*photonVector)[k] = 0; >> 627 } >> 628 } >> 629 } >> 630 delete photonVector; >> 631 } >> 632 } >> 633 } >> 634 */ >> 635 >> 636 >> 637 //Always produce explicitely the electron 597 G4DynamicParticle* electron = 0; 638 G4DynamicParticle* electron = 0; 598 639 599 G4double xEl = sinThetaE * std::cos(phi+pi); << 640 G4double xEl = sinThetaE * std::cos(phi+pi); 600 G4double yEl = sinThetaE * std::sin(phi+pi); 641 G4double yEl = sinThetaE * std::sin(phi+pi); 601 G4double zEl = cosThetaE; 642 G4double zEl = cosThetaE; 602 G4ThreeVector eDirection(xEl,yEl,zEl); //ele 643 G4ThreeVector eDirection(xEl,yEl,zEl); //electron direction 603 eDirection.rotateUz(photonDirection0); 644 eDirection.rotateUz(photonDirection0); 604 electron = new G4DynamicParticle (G4Electron 645 electron = new G4DynamicParticle (G4Electron::Electron(), 605 eDirection,eKineticEnergy) ; 646 eDirection,eKineticEnergy) ; 606 fvect->push_back(electron); 647 fvect->push_back(electron); >> 648 607 649 608 if (localEnergyDeposit < 0) //Should not be: << 650 if (localEnergyDeposit < 0) 609 { 651 { 610 G4Exception("G4PenelopeComptonModel::Sam << 652 G4cout << "WARNING-" 611 "em2099",JustWarning,"WARNING: Negative << 653 << "G4PenelopeComptonModel::SampleSecondaries - Negative energy deposit" >> 654 << G4endl; 612 localEnergyDeposit=0.; 655 localEnergyDeposit=0.; 613 } 656 } 614 fParticleChange->ProposeLocalEnergyDeposit(l 657 fParticleChange->ProposeLocalEnergyDeposit(localEnergyDeposit); 615 << 658 616 G4double electronEnergy = 0.; 659 G4double electronEnergy = 0.; 617 if (electron) 660 if (electron) 618 electronEnergy = eKineticEnergy; 661 electronEnergy = eKineticEnergy; 619 if (fVerboseLevel > 1) << 662 if (verboseLevel > 1) 620 { 663 { 621 G4cout << "----------------------------- 664 G4cout << "-----------------------------------------------------------" << G4endl; 622 G4cout << "Energy balance from G4Penelop 665 G4cout << "Energy balance from G4PenelopeCompton" << G4endl; 623 G4cout << "Incoming photon energy: " << 666 G4cout << "Incoming photon energy: " << photonEnergy0/keV << " keV" << G4endl; 624 G4cout << "----------------------------- 667 G4cout << "-----------------------------------------------------------" << G4endl; 625 G4cout << "Scattered photon: " << photon 668 G4cout << "Scattered photon: " << photonEnergy1/keV << " keV" << G4endl; 626 G4cout << "Scattered electron " << elect 669 G4cout << "Scattered electron " << electronEnergy/keV << " keV" << G4endl; 627 if (energyInFluorescence) 670 if (energyInFluorescence) 628 G4cout << "Fluorescence x-rays: " << energyI 671 G4cout << "Fluorescence x-rays: " << energyInFluorescence/keV << " keV" << G4endl; 629 if (energyInAuger) 672 if (energyInAuger) 630 G4cout << "Auger electrons: " << energyInAug 673 G4cout << "Auger electrons: " << energyInAuger/keV << " keV" << G4endl; 631 G4cout << "Local energy deposit " << loc 674 G4cout << "Local energy deposit " << localEnergyDeposit/keV << " keV" << G4endl; 632 G4cout << "Total final state: " << (phot 675 G4cout << "Total final state: " << (photonEnergy1+electronEnergy+energyInFluorescence+ 633 localEnergyDeposit+energyInAuger)/ << 676 localEnergyDeposit+energyInAuger)/keV << 634 " keV" << G4endl; 677 " keV" << G4endl; 635 G4cout << "----------------------------- 678 G4cout << "-----------------------------------------------------------" << G4endl; 636 } 679 } 637 if (fVerboseLevel > 0) << 680 if (verboseLevel > 0) 638 { 681 { 639 G4double energyDiff = std::fabs(photonEn 682 G4double energyDiff = std::fabs(photonEnergy1+ 640 electronEnergy+energyInFluoresce 683 electronEnergy+energyInFluorescence+ 641 localEnergyDeposit+energyInAuger 684 localEnergyDeposit+energyInAuger-photonEnergy0); 642 if (energyDiff > 0.05*keV) 685 if (energyDiff > 0.05*keV) 643 G4cout << "Warning from G4PenelopeCompton: p << 686 G4cout << "Warning from G4PenelopeCompton: problem with energy conservation: " << 644 (photonEnergy1+electronEnergy+energyInFluo << 687 (photonEnergy1+electronEnergy+energyInFluorescence+energyInAuger+localEnergyDeposit)/keV << 645 " keV (final) vs. " << << 688 " keV (final) vs. " << 646 photonEnergy0/keV << " keV (initial)" << G 689 photonEnergy0/keV << " keV (initial)" << G4endl; 647 } << 690 } 648 } 691 } 649 692 650 //....oooOO0OOooo........oooOO0OOooo........oo 693 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 651 694 652 G4double G4PenelopeComptonModel::DifferentialC 695 G4double G4PenelopeComptonModel::DifferentialCrossSection(G4double cosTheta,G4double energy, 653 G4PenelopeOscillator* osc) 696 G4PenelopeOscillator* osc) 654 { 697 { 655 // 698 // 656 // Penelope model v2008. Single differential << 699 // Penelope model v2008. Single differential cross section *per electron* 657 // for photon Compton scattering by << 700 // for photon Compton scattering by 658 // electrons in the given atomic oscillator, << 701 // electrons in the given atomic oscillator, differential in the direction of the 659 // scattering photon. This is in units of pi << 702 // scattering photon. This is in units of pi*classic_electr_radius**2 660 // 703 // 661 // D. Brusa et al., Nucl. Instrum. Meth. A 3 704 // D. Brusa et al., Nucl. Instrum. Meth. A 379 (1996) 167 662 // The parametrization includes the J(p) dis << 705 // The parametrization includes the J(p) distribution profiles for the atomic shells, 663 // that are tabulated from Hartree-Fock calc << 706 // that are tabulated from Hartree-Fock calculations 664 // from F. Biggs et al., At. Data Nucl. Data 707 // from F. Biggs et al., At. Data Nucl. Data Tables 16 (1975) 201 665 // 708 // 666 G4double ionEnergy = osc->GetIonisationEnerg 709 G4double ionEnergy = osc->GetIonisationEnergy(); 667 G4double harFunc = osc->GetHartreeFactor(); << 710 G4double harFunc = osc->GetHartreeFactor(); 668 711 669 static const G4double k2 = std::sqrt(2.); 712 static const G4double k2 = std::sqrt(2.); 670 static const G4double k1 = 1./k2; << 713 static const G4double k1 = 1./k2; 671 714 672 if (energy < ionEnergy) 715 if (energy < ionEnergy) 673 return 0; 716 return 0; 674 717 675 //energy of the Compton line 718 //energy of the Compton line 676 G4double cdt1 = 1.0-cosTheta; 719 G4double cdt1 = 1.0-cosTheta; 677 G4double EOEC = 1.0+(energy/electron_mass_c2 << 720 G4double EOEC = 1.0+(energy/electron_mass_c2)*cdt1; 678 G4double ECOE = 1.0/EOEC; 721 G4double ECOE = 1.0/EOEC; 679 722 680 //Incoherent scattering function (analytical 723 //Incoherent scattering function (analytical profile) 681 G4double aux = energy*(energy-ionEnergy)*cdt 724 G4double aux = energy*(energy-ionEnergy)*cdt1; 682 G4double Pzimax = << 725 G4double Pzimax = 683 (aux - electron_mass_c2*ionEnergy)/(electr 726 (aux - electron_mass_c2*ionEnergy)/(electron_mass_c2*std::sqrt(2*aux+ionEnergy*ionEnergy)); 684 G4double sia = 0.0; 727 G4double sia = 0.0; 685 G4double x = harFunc*Pzimax; 728 G4double x = harFunc*Pzimax; 686 if (x > 0) << 729 if (x > 0) 687 sia = 1.0-0.5*G4Exp(0.5-(k1+k2*x)*(k1+k2*x << 730 sia = 1.0-0.5*std::exp(0.5-(k1+k2*x)*(k1+k2*x)); 688 else << 731 else 689 sia = 0.5*G4Exp(0.5-(k1-k2*x)*(k1-k2*x)); << 732 sia = 0.5*std::exp(0.5-(k1-k2*x)*(k1-k2*x)); 690 << 733 691 //1st order correction, integral of Pz times 734 //1st order correction, integral of Pz times the Compton profile. 692 //Calculated approximately using a free-elec 735 //Calculated approximately using a free-electron gas profile 693 G4double pf = 3.0/(4.0*harFunc); 736 G4double pf = 3.0/(4.0*harFunc); 694 if (std::fabs(Pzimax) < pf) 737 if (std::fabs(Pzimax) < pf) 695 { 738 { 696 G4double QCOE2 = 1.0+ECOE*ECOE-2.0*ECOE* 739 G4double QCOE2 = 1.0+ECOE*ECOE-2.0*ECOE*cosTheta; 697 G4double p2 = Pzimax*Pzimax; 740 G4double p2 = Pzimax*Pzimax; 698 G4double dspz = std::sqrt(QCOE2)* 741 G4double dspz = std::sqrt(QCOE2)* 699 (1.0+ECOE*(ECOE-cosTheta)/QCOE2)*harFunc 742 (1.0+ECOE*(ECOE-cosTheta)/QCOE2)*harFunc 700 *0.25*(2*p2-(p2*p2)/(pf*pf)-(pf*pf)); 743 *0.25*(2*p2-(p2*p2)/(pf*pf)-(pf*pf)); 701 sia += std::max(dspz,-1.0*sia); 744 sia += std::max(dspz,-1.0*sia); 702 } 745 } 703 746 704 G4double XKN = EOEC+ECOE-1.0+cosTheta*cosThe 747 G4double XKN = EOEC+ECOE-1.0+cosTheta*cosTheta; 705 748 706 //Differential cross section (per electron, 749 //Differential cross section (per electron, in units of pi*classic_electr_radius**2) 707 G4double diffCS = ECOE*ECOE*XKN*sia; 750 G4double diffCS = ECOE*ECOE*XKN*sia; 708 751 709 return diffCS; 752 return diffCS; 710 } 753 } 711 754 712 //....oooOO0OOooo........oooOO0OOooo........oo 755 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 713 756 714 G4double G4PenelopeComptonModel::OscillatorTot 757 G4double G4PenelopeComptonModel::OscillatorTotalCrossSection(G4double energy,G4PenelopeOscillator* osc) 715 { 758 { 716 //Total cross section (integrated) for the g << 759 //Total cross section (integrated) for the given oscillator in units of 717 //pi*classic_electr_radius^2 760 //pi*classic_electr_radius^2 718 761 719 //Integrate differential cross section for e 762 //Integrate differential cross section for each oscillator 720 G4double stre = osc->GetOscillatorStrength() 763 G4double stre = osc->GetOscillatorStrength(); 721 << 764 722 // here one uses the using the 20-point 765 // here one uses the using the 20-point 723 // Gauss quadrature method with an adaptive 766 // Gauss quadrature method with an adaptive bipartition scheme 724 const G4int npoints=10; 767 const G4int npoints=10; 725 const G4int ncallsmax=20000; 768 const G4int ncallsmax=20000; 726 const G4int nst=256; 769 const G4int nst=256; 727 static const G4double Abscissas[10] = {7.652 770 static const G4double Abscissas[10] = {7.652651133497334e-02,2.2778585114164508e-01,3.7370608871541956e-01, 728 5.1086700195082710e-01,6.36053680726 771 5.1086700195082710e-01,6.3605368072651503e-01,7.4633190646015079e-01, 729 8.3911697182221882e-01,9.12234428251 772 8.3911697182221882e-01,9.1223442825132591e-01,9.6397192727791379e-01, 730 9.9312859918509492e-01}; 773 9.9312859918509492e-01}; 731 static const G4double Weights[10] = {1.52753 774 static const G4double Weights[10] = {1.5275338713072585e-01,1.4917298647260375e-01,1.4209610931838205e-01, 732 1.3168863844917663e-01,1.1819453196151 775 1.3168863844917663e-01,1.1819453196151842e-01,1.0193011981724044e-01, 733 8.3276741576704749e-02,6.2672048334109 776 8.3276741576704749e-02,6.2672048334109064e-02,4.0601429800386941e-02, 734 1.7614007139152118e-02}; 777 1.7614007139152118e-02}; 735 778 736 G4double MaxError = 1e-5; 779 G4double MaxError = 1e-5; 737 //Error control 780 //Error control 738 G4double Ctol = std::min(std::max(MaxError,1 781 G4double Ctol = std::min(std::max(MaxError,1e-13),1e-02); 739 G4double Ptol = 0.01*Ctol; 782 G4double Ptol = 0.01*Ctol; 740 G4double Err=1e35; 783 G4double Err=1e35; 741 784 742 //Gauss integration from -1 to 1 785 //Gauss integration from -1 to 1 743 G4double LowPoint = -1.0; 786 G4double LowPoint = -1.0; 744 G4double HighPoint = 1.0; 787 G4double HighPoint = 1.0; 745 788 746 G4double h=HighPoint-LowPoint; 789 G4double h=HighPoint-LowPoint; 747 G4double sumga=0.0; 790 G4double sumga=0.0; 748 G4double a=0.5*(HighPoint-LowPoint); 791 G4double a=0.5*(HighPoint-LowPoint); 749 G4double b=0.5*(HighPoint+LowPoint); 792 G4double b=0.5*(HighPoint+LowPoint); 750 G4double c=a*Abscissas[0]; 793 G4double c=a*Abscissas[0]; 751 G4double d= Weights[0]* 794 G4double d= Weights[0]* 752 (DifferentialCrossSection(b+c,energy,osc)+ 795 (DifferentialCrossSection(b+c,energy,osc)+DifferentialCrossSection(b-c,energy,osc)); 753 for (G4int i=2;i<=npoints;i++) 796 for (G4int i=2;i<=npoints;i++) 754 { 797 { 755 c=a*Abscissas[i-1]; 798 c=a*Abscissas[i-1]; 756 d += Weights[i-1]* 799 d += Weights[i-1]* 757 (DifferentialCrossSection(b+c,energy,osc)+Di 800 (DifferentialCrossSection(b+c,energy,osc)+DifferentialCrossSection(b-c,energy,osc)); 758 } 801 } 759 G4int icall = 2*npoints; 802 G4int icall = 2*npoints; 760 G4int LH=1; 803 G4int LH=1; 761 G4double S[nst],x[nst],sn[nst],xrn[nst]; 804 G4double S[nst],x[nst],sn[nst],xrn[nst]; 762 S[0]=d*a; 805 S[0]=d*a; 763 x[0]=LowPoint; 806 x[0]=LowPoint; 764 807 765 G4bool loopAgain = true; 808 G4bool loopAgain = true; 766 809 767 //Adaptive bipartition scheme 810 //Adaptive bipartition scheme 768 do{ 811 do{ 769 G4double h0=h; 812 G4double h0=h; 770 h=0.5*h; //bipartition 813 h=0.5*h; //bipartition 771 G4double sumr=0; 814 G4double sumr=0; 772 G4int LHN=0; 815 G4int LHN=0; 773 G4double si,xa,xb,xc; 816 G4double si,xa,xb,xc; 774 for (G4int i=1;i<=LH;i++){ 817 for (G4int i=1;i<=LH;i++){ 775 si=S[i-1]; 818 si=S[i-1]; 776 xa=x[i-1]; 819 xa=x[i-1]; 777 xb=xa+h; 820 xb=xa+h; 778 xc=xa+h0; 821 xc=xa+h0; 779 a=0.5*(xb-xa); 822 a=0.5*(xb-xa); 780 b=0.5*(xb+xa); 823 b=0.5*(xb+xa); 781 c=a*Abscissas[0]; 824 c=a*Abscissas[0]; 782 G4double dLocal = Weights[0]* 825 G4double dLocal = Weights[0]* 783 (DifferentialCrossSection(b+c,energy,osc)+Di 826 (DifferentialCrossSection(b+c,energy,osc)+DifferentialCrossSection(b-c,energy,osc)); 784 << 827 785 for (G4int j=1;j<npoints;j++) 828 for (G4int j=1;j<npoints;j++) 786 { 829 { 787 c=a*Abscissas[j]; 830 c=a*Abscissas[j]; 788 dLocal += Weights[j]* 831 dLocal += Weights[j]* 789 (DifferentialCrossSection(b+c,energy,osc 832 (DifferentialCrossSection(b+c,energy,osc)+DifferentialCrossSection(b-c,energy,osc)); 790 } << 833 } 791 G4double s1=dLocal*a; 834 G4double s1=dLocal*a; 792 a=0.5*(xc-xb); 835 a=0.5*(xc-xb); 793 b=0.5*(xc+xb); 836 b=0.5*(xc+xb); 794 c=a*Abscissas[0]; 837 c=a*Abscissas[0]; 795 dLocal=Weights[0]* 838 dLocal=Weights[0]* 796 (DifferentialCrossSection(b+c,energy,osc)+Di 839 (DifferentialCrossSection(b+c,energy,osc)+DifferentialCrossSection(b-c,energy,osc)); 797 << 840 798 for (G4int j=1;j<npoints;j++) 841 for (G4int j=1;j<npoints;j++) 799 { 842 { 800 c=a*Abscissas[j]; 843 c=a*Abscissas[j]; 801 dLocal += Weights[j]* 844 dLocal += Weights[j]* 802 (DifferentialCrossSection(b+c,energy,osc 845 (DifferentialCrossSection(b+c,energy,osc)+DifferentialCrossSection(b-c,energy,osc)); 803 } << 846 } 804 G4double s2=dLocal*a; 847 G4double s2=dLocal*a; 805 icall=icall+4*npoints; 848 icall=icall+4*npoints; 806 G4double s12=s1+s2; 849 G4double s12=s1+s2; 807 if (std::abs(s12-si)<std::max(Ptol*std:: 850 if (std::abs(s12-si)<std::max(Ptol*std::abs(s12),1e-35)) 808 sumga += s12; 851 sumga += s12; 809 else 852 else 810 { 853 { 811 sumr += s12; 854 sumr += s12; 812 LHN += 2; 855 LHN += 2; 813 sn[LHN-1]=s2; 856 sn[LHN-1]=s2; 814 xrn[LHN-1]=xb; 857 xrn[LHN-1]=xb; 815 sn[LHN-2]=s1; 858 sn[LHN-2]=s1; 816 xrn[LHN-2]=xa; 859 xrn[LHN-2]=xa; 817 } 860 } 818 << 861 819 if (icall>ncallsmax || LHN>nst) 862 if (icall>ncallsmax || LHN>nst) 820 { 863 { 821 G4cout << "G4PenelopeComptonModel: " << G4 864 G4cout << "G4PenelopeComptonModel: " << G4endl; 822 G4cout << "LowPoint: " << LowPoint << ", H 865 G4cout << "LowPoint: " << LowPoint << ", High Point: " << HighPoint << G4endl; 823 G4cout << "Tolerance: " << MaxError << G4e 866 G4cout << "Tolerance: " << MaxError << G4endl; 824 G4cout << "Calls: " << icall << ", Integra 867 G4cout << "Calls: " << icall << ", Integral: " << sumga << ", Error: " << Err << G4endl; 825 G4cout << "Number of open subintervals: " 868 G4cout << "Number of open subintervals: " << LHN << G4endl; 826 G4cout << "WARNING: the required accuracy 869 G4cout << "WARNING: the required accuracy has not been attained" << G4endl; 827 loopAgain = false; 870 loopAgain = false; 828 } 871 } 829 } 872 } 830 Err=std::abs(sumr)/std::max(std::abs(sumr+ 873 Err=std::abs(sumr)/std::max(std::abs(sumr+sumga),1e-35); 831 if (Err < Ctol || LHN == 0) << 874 if (Err < Ctol || LHN == 0) 832 loopAgain = false; //end of cycle 875 loopAgain = false; //end of cycle 833 LH=LHN; 876 LH=LHN; 834 for (G4int i=0;i<LH;i++) 877 for (G4int i=0;i<LH;i++) 835 { 878 { 836 S[i]=sn[i]; 879 S[i]=sn[i]; 837 x[i]=xrn[i]; 880 x[i]=xrn[i]; 838 } 881 } 839 }while(Ctol < 1.0 && loopAgain); << 882 }while(Ctol < 1.0 && loopAgain); >> 883 840 884 841 G4double xs = stre*sumga; 885 G4double xs = stre*sumga; 842 886 843 return xs; << 887 return xs; 844 } 888 } 845 889 846 //....oooOO0OOooo........oooOO0OOooo........oo 890 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 847 891 848 G4double G4PenelopeComptonModel::KleinNishinaC 892 G4double G4PenelopeComptonModel::KleinNishinaCrossSection(G4double energy, 849 const G4Material* material) 893 const G4Material* material) 850 { 894 { 851 // use Klein-Nishina formula 895 // use Klein-Nishina formula 852 // total cross section in units of pi*classi 896 // total cross section in units of pi*classic_electr_radius^2 >> 897 853 G4double cs = 0; 898 G4double cs = 0; 854 899 855 G4double ek =energy/electron_mass_c2; 900 G4double ek =energy/electron_mass_c2; 856 G4double eks = ek*ek; 901 G4double eks = ek*ek; 857 G4double ek2 = 1.0+ek+ek; 902 G4double ek2 = 1.0+ek+ek; 858 G4double ek1 = eks-ek2-1.0; 903 G4double ek1 = eks-ek2-1.0; 859 904 860 G4double t0 = 1.0/ek2; 905 G4double t0 = 1.0/ek2; 861 G4double csl = 0.5*eks*t0*t0+ek2*t0+ek1*G4Lo << 906 G4double csl = 0.5*eks*t0*t0+ek2*t0+ek1*std::log(t0)-(1.0/t0); 862 907 863 G4PenelopeOscillatorTable* theTable = fOscMa << 908 G4PenelopeOscillatorTable* theTable = oscManager->GetOscillatorTableCompton(material); 864 909 865 for (size_t i=0;i<theTable->size();i++) 910 for (size_t i=0;i<theTable->size();i++) 866 { 911 { 867 G4PenelopeOscillator* theOsc = (*theTabl 912 G4PenelopeOscillator* theOsc = (*theTable)[i]; 868 G4double ionEnergy = theOsc->GetIonisati 913 G4double ionEnergy = theOsc->GetIonisationEnergy(); 869 G4double tau=(energy-ionEnergy)/energy; 914 G4double tau=(energy-ionEnergy)/energy; 870 if (tau > t0) 915 if (tau > t0) 871 { 916 { 872 G4double csu = 0.5*eks*tau*tau+ek2*tau+ek1 << 917 G4double csu = 0.5*eks*tau*tau+ek2*tau+ek1*std::log(tau)-(1.0/tau); 873 G4double stre = theOsc->GetOscillatorStren 918 G4double stre = theOsc->GetOscillatorStrength(); 874 919 875 cs += stre*(csu-csl); 920 cs += stre*(csu-csl); 876 } 921 } 877 } 922 } >> 923 878 cs /= (ek*eks); 924 cs /= (ek*eks); 879 925 880 return cs; 926 return cs; 881 927 882 } 928 } 883 929 884 //....oooOO0OOooo........oooOO0OOooo........oo 930 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo... 885 931 886 void G4PenelopeComptonModel::SetParticle(const 932 void G4PenelopeComptonModel::SetParticle(const G4ParticleDefinition* p) 887 { 933 { 888 if(!fParticle) { 934 if(!fParticle) { 889 fParticle = p; << 935 fParticle = p; 890 } 936 } 891 } 937 } 892 938