Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4MicroElecCapture.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4MicroElecCapture.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4MicroElecCapture.cc (Version 9.3.p2)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // G4MicroElecCapture.cc,                         
 28 //                 2011/08/29 A.Valentin, M. R    
 29 //                 2020/05/20 P. Caron, C. Ing    
 30 //                            Q. Gibaru is wit    
 31 //                            M. Raine and D.     
 32 //                                                
 33 // A part of this work has been funded by the     
 34 // [a] CEA, DAM, DIF - 91297 ARPAJON, France      
 35 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 T    
 36 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CED    
 37 //                                                
 38 // Based on the following publications            
 39 // - A.Valentin, M. Raine,                        
 40 //   Inelastic cross-sections of low energy el    
 41 //   for the simulation of heavy ion tracks wi    
 42 //   NSS Conf. Record 2010, pp. 80-85             
 43 //   https://doi.org/10.1109/NSSMIC.2010.58737    
 44 //                                                
 45 // - A.Valentin, M. Raine, M.Gaillardin, P.Pai    
 46 //   Geant4 physics processes for microdosimet    
 47 //   very low energy electromagnetic models fo    
 48 //   https://doi.org/10.1016/j.nimb.2012.06.00    
 49 //   NIM B, vol. 288, pp. 66-73, 2012, part A     
 50 //   heavy ions in Si, NIM B, vol. 287, pp. 12    
 51 //   https://doi.org/10.1016/j.nimb.2012.07.02    
 52 //                                                
 53 // - M. Raine, M. Gaillardin, P. Paillet          
 54 //   Geant4 physics processes for silicon micr    
 55 //   Improvements and extension of the energy-    
 56 //   NIM B, vol. 325, pp. 97-100, 2014            
 57 //   https://doi.org/10.1016/j.nimb.2014.01.01    
 58 //                                                
 59 // - J. Pierron, C. Inguimbert, M. Belhaj, T.     
 60 //   Electron emission yield for low energy el    
 61 //   Monte Carlo simulation and experimental c    
 62 //   Journal of Applied Physics 121 (2017) 215    
 63 //   https://doi.org/10.1063/1.4984761            
 64 //                                                
 65 // - P. Caron,                                    
 66 //   Study of Electron-Induced Single-Event Up    
 67 //   PHD, 16th October 2019                       
 68 //                                                
 69 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine,    
 70 //   Geant4 physics processes for microdosimet    
 71 //   Extension of MicroElec to very low energi    
 72 //   NIM B, 2020, in review.                      
 73 //                                                
 74 //--------------------------------------------    
 75 //                                                
 76 // ClassName: G4MicroElecCapture derivated fro    
 77 //                                                
 78 // Description: The process to kill particles     
 79 //                                                
 80 // Author: C. Inguimbert 31 january 2022 deriv    
 81 //                                                
 82 //--------------------------------------------    
 83 //                                                
 84 //....oooOO0OOooo........oooOO0OOooo........oo    
 85                                                   
 86 #include "G4MicroElecCapture.hh"                  
 87 #include "G4SystemOfUnits.hh"                     
 88 #include "G4ParticleDefinition.hh"                
 89 #include "G4Step.hh"                              
 90 #include "G4PhysicalConstants.hh"                 
 91 #include "G4Track.hh"                             
 92 #include "G4Region.hh"                            
 93 #include "G4RegionStore.hh"                       
 94 #include "G4Electron.hh"                          
 95 #include "G4Pow.hh"                               
 96                                                   
 97 //....oooOO0OOooo........oooOO0OOooo........oo    
 98                                                   
 99 G4MicroElecCapture::G4MicroElecCapture(const G    
100   : G4VDiscreteProcess("MicroElecCapture", fEl    
101     regionName(regName), region(0)                
102 {                                                 
103   if(regName == "" || regName == "world")         
104   {                                               
105     regionName = "DefaultRegionForTheWorld";      
106   }                                               
107   isInitialised = false;                          
108   pParticleChange = &fParticleChange;             
109 }                                                 
110                                                   
111 //....oooOO0OOooo........oooOO0OOooo........oo    
112                                                   
113 G4MicroElecCapture::~G4MicroElecCapture()         
114 {                                                 
115   for (auto pos = tableWF.cbegin(); pos != tab    
116   {                                               
117     G4MicroElecMaterialStructure* table = pos-    
118     delete table;                                 
119   }                                               
120 }                                                 
121                                                   
122 //....oooOO0OOooo........oooOO0OOooo........oo    
123                                                   
124 void G4MicroElecCapture::SetKinEnergyLimit(G4d    
125 {                                                 
126   kinEnergyThreshold = val;                       
127 }                                                 
128 //....oooOO0OOooo........oooOO0OOooo........oo    
129                                                   
130 void G4MicroElecCapture::BuildPhysicsTable(con    
131 {                                                 
132   region = (G4RegionStore::GetInstance())->Get    
133  // if(region && verboseLevel > 0) {              
134   G4cout << "### G4MicroElecCapture: Tracking     
135          << kinEnergyThreshold/MeV << " is ass    
136          << G4endl;                               
137 }                                                 
138                                                   
139 //....oooOO0OOooo........oooOO0OOooo........oo    
140                                                   
141 G4bool G4MicroElecCapture::IsApplicable(const     
142 {                                                 
143   return true;                                    
144 }                                                 
145                                                   
146 void G4MicroElecCapture::Initialise()             
147 {                                                 
148   if (isInitialised) { return; }                  
149                                                   
150   G4ProductionCutsTable* theCoupleTable = G4Pr    
151   G4int numOfCouples = (G4int)theCoupleTable->    
152   G4cout << numOfCouples << G4endl;               
153                                                   
154   for (G4int i = 0; i < numOfCouples; ++i)        
155   {                                               
156     const G4Material* material = theCoupleTabl    
157                                                   
158     G4cout << "G4Capture, Material " << i + 1     
159            << numOfCouples << " : " << materia    
160     if (material->GetName() == "Vacuum")          
161     {                                             
162       tableWF[material->GetName()] = 0;           
163       continue;                                   
164     }                                             
165     G4String mat = material->GetName();           
166     G4MicroElecMaterialStructure* str = new G4    
167     tableWF[mat] = str;                           
168   }                                               
169   isInitialised = true;                           
170 }                                                 
171                                                   
172 //....oooOO0OOooo........oooOO0OOooo........oo    
173                                                   
174 G4VParticleChange* G4MicroElecCapture::PostSte    
175                                                   
176 {                                                 
177   if (!isInitialised) { Initialise(); }           
178                                                   
179   G4String mat = aTrack.GetMaterial()->GetName    
180   G4int Ztarget = ((*(aTrack.GetMaterial()->Ge    
181   G4int Atarget = ((*(aTrack.GetMaterial()->Ge    
182   G4double Nbelements = aTrack.GetMaterial()->    
183   G4double moleculeMass = aTrack.GetMaterial()    
184   auto FractionMass = aTrack.GetMaterial()->Ge    
185   G4int Zinc = aTrack.GetParticleDefinition()-    
186   G4int Ainc = aTrack.GetParticleDefinition()-    
187   G4String IncPartName = aTrack.GetParticleDef    
188   G4double NIEdep = 0.0;                          
189                                                   
190   for (G4int i = 0; i < Nbelements; ++i)          
191   {                                               
192     Ztarget = ((*(aTrack.GetMaterial()->GetEle    
193     Atarget = ((*(aTrack.GetMaterial()->GetEle    
194     NIEdep = NIEdep + moleculeMass*FractionMas    
195   }                                               
196                                                   
197   WorkFunctionTable::iterator matWF;              
198   matWF = tableWF.find(mat);                      
199                                                   
200   if (matWF == tableWF.end())                     
201   {                                               
202     G4String str = "Material ";                   
203     str += mat + " not found!";                   
204     G4Exception("G4MicroElecCapture::PostStepG    
205                 FatalException, str);             
206     return nullptr;                               
207   }                                               
208   else                                            
209   {                                               
210     G4MicroElecMaterialStructure* str = matWF-    
211     pParticleChange->Initialize(aTrack);          
212     pParticleChange->ProposeTrackStatus(fStopA    
213                                                   
214     G4double InitE = str->GetEnergyGap() + str    
215                                                   
216     if (IncPartName == "e-")                      
217     {                                             
218       // metals = Non ionizing deposited energ    
219       if (((str->GetEnergyGap()) / eV)<(0.001)    
220       {                                           
221         pParticleChange->ProposeNonIonizingEne    
222         pParticleChange->ProposeLocalEnergyDep    
223       }                                           
224       else // MicroElec materials Non ionizing    
225       {                                           
226         G4int c = (G4int)((aTrack.GetKineticEn    
227         pParticleChange->ProposeNonIonizingEne    
228         pParticleChange->ProposeLocalEnergyDep    
229       }                                           
230     }                                             
231     else                                          
232     {                                             
233       if ((IncPartName == "Genericion") || (In    
234        || (IncPartName == "He3") || (IncPartNa    
235        || (IncPartName == "triton") || (IncPar    
236       {                                           
237         pParticleChange->ProposeNonIonizingEne    
238         pParticleChange->ProposeLocalEnergyDep    
239       }                                           
240       else                                        
241       {                                           
242         pParticleChange->ProposeNonIonizingEne    
243         pParticleChange->ProposeLocalEnergyDep    
244       }                                           
245     }                                             
246   } // matWF == tableWF.end())                    
247                                                   
248   fParticleChange.SetProposedKineticEnergy(0.0    
249   return pParticleChange;                         
250 }                                                 
251                                                   
252 //....oooOO0OOooo........oooOO0OOooo........oo    
253                                                   
254 G4double G4MicroElecCapture::GetMeanFreePath(c    
255                                              G    
256 {                                                 
257   G4String material = aTrack.GetMaterial()->Ge    
258   // test particle type in order to applied th    
259   G4double mfp = DBL_MAX;                         
260   G4double ekin = aTrack.GetKineticEnergy();      
261                                                   
262   if (ekin < 500*eV && aTrack.GetParticleDefin    
263   {                                               
264     if (material != "G4_ALUMINUM_OXIDE" && mat    
265      && material != "G4_BORON_NITRIDE")           
266     {                                             
267       return DBL_MAX;                             
268     }                                             
269     G4double    S = 0;                            
270     G4double    y = 0;                            
271     if (material == "G4_ALUMINUM_OXIDE")          
272     {                                             
273       S = 1 * (1 / nm);                           
274       y = 0.25 * (1 / eV);                        
275     }                                             
276     if (material == "G4_SILICON_DIOXIDE")         
277     {                                             
278       S = 0.3 * (1 / nm);                         
279       y = 0.2 * (1 / eV);                         
280     }                                             
281     if (material == "G4_BORON_NITRIDE")           
282     {                                             
283       S = 0 * (1 / nm);                           
284       y = 1 * (1 / eV);                           
285     }                                             
286                                                   
287     // VI: added numerical protection against     
288     y *= ekin;                                    
289     if (S > 0.0 && y < 100.0) { mfp = G4Exp(y)    
290   }                                               
291   return mfp;                                     
292 }                                                 
293                                                   
294 //....oooOO0OOooo........oooOO0OOooo........oo    
295                                                   
296 G4double G4MicroElecCapture::G_Lindhard_Rob(G4    
297 {                                                 
298   G4double Lind =0.0;                             
299                                                   
300   if (Arecoil <= 0 || Zrecoil == 0)               
301   {                                               
302     Lind = 0.0;                                   
303   }                                               
304   else                                            
305   {                                               
306     G4double El = 30.724 * Zcible * Zrecoil       
307                 * std::pow((G4Pow::GetInstance    
308                 * (Arecoil + Acible) / Acible;    
309                                                   
310     // multiplication by 1e6 to change El from    
311     G4double e = Trecoil / (El * CLHEP::eV);      
312     G4double Fl = (0.0793 * G4Pow::GetInstance    
313                 / (std::pow((G4Pow::GetInstanc    
314                                                   
315     Lind = 1. / (1 + Fl * (3.4008 * std::pow(e    
316                                                   
317     // to get the energie that go into displac    
318     Lind = Lind * Trecoil;                        
319   }                                               
320   return Lind;                                    
321 }                                                 
322