Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4AdjointCSManager.cc 69844 2013-05-16 09:19:33Z gcosmo $ 26 // 27 // 27 28 >> 29 #include <fstream> >> 30 #include <iomanip> >> 31 28 #include "G4AdjointCSManager.hh" 32 #include "G4AdjointCSManager.hh" 29 33 >> 34 #include "G4PhysicalConstants.hh" >> 35 #include "G4SystemOfUnits.hh" 30 #include "G4AdjointCSMatrix.hh" 36 #include "G4AdjointCSMatrix.hh" 31 #include "G4AdjointElectron.hh" << 32 #include "G4AdjointGamma.hh" << 33 #include "G4AdjointInterpolator.hh" 37 #include "G4AdjointInterpolator.hh" 34 #include "G4AdjointProton.hh" << 38 #include "G4AdjointCSMatrix.hh" 35 #include "G4Electron.hh" << 39 #include "G4VEmAdjointModel.hh" 36 #include "G4Element.hh" << 37 #include "G4ElementTable.hh" 40 #include "G4ElementTable.hh" 38 #include "G4Gamma.hh" << 41 #include "G4Element.hh" 39 #include "G4ParticleDefinition.hh" 42 #include "G4ParticleDefinition.hh" 40 #include "G4PhysicalConstants.hh" << 43 #include "G4Element.hh" 41 #include "G4PhysicsLogVector.hh" << 42 #include "G4PhysicsTable.hh" << 43 #include "G4ProductionCutsTable.hh" << 44 #include "G4Proton.hh" << 45 #include "G4SystemOfUnits.hh" << 46 #include "G4VEmAdjointModel.hh" << 47 #include "G4VEmProcess.hh" 44 #include "G4VEmProcess.hh" 48 #include "G4VEnergyLossProcess.hh" 45 #include "G4VEnergyLossProcess.hh" >> 46 #include "G4PhysicsTable.hh" >> 47 #include "G4PhysicsLogVector.hh" >> 48 #include "G4PhysicsTableHelper.hh" >> 49 #include "G4Electron.hh" >> 50 #include "G4Gamma.hh" >> 51 #include "G4Proton.hh" >> 52 #include "G4AdjointElectron.hh" >> 53 #include "G4AdjointGamma.hh" >> 54 #include "G4AdjointProton.hh" >> 55 #include "G4ProductionCutsTable.hh" >> 56 #include "G4ProductionCutsTable.hh" 49 57 50 G4ThreadLocal G4AdjointCSManager* G4AdjointCSM << 58 G4AdjointCSManager* G4AdjointCSManager::theInstance = 0; 51 << 52 constexpr G4double G4AdjointCSManager::fTmin; << 53 constexpr G4double G4AdjointCSManager::fTmax; << 54 constexpr G4int G4AdjointCSManager::fNbins; << 55 << 56 ////////////////////////////////////////////// 59 /////////////////////////////////////////////////////// >> 60 // 57 G4AdjointCSManager* G4AdjointCSManager::GetAdj 61 G4AdjointCSManager* G4AdjointCSManager::GetAdjointCSManager() 58 { << 62 { if(theInstance == 0) { 59 if(fInstance == nullptr) << 63 static G4AdjointCSManager ins; 60 { << 64 theInstance = &ins; 61 static G4ThreadLocalSingleton<G4AdjointCSM << 62 fInstance = inst.Instance(); << 63 } 65 } 64 return fInstance; << 66 return theInstance; 65 } 67 } 66 68 67 ////////////////////////////////////////////// 69 /////////////////////////////////////////////////////// >> 70 // 68 G4AdjointCSManager::G4AdjointCSManager() 71 G4AdjointCSManager::G4AdjointCSManager() 69 { << 72 { CrossSectionMatrixesAreBuilt=false; >> 73 TotalSigmaTableAreBuilt=false; >> 74 theTotalForwardSigmaTableVector.clear(); >> 75 theTotalAdjointSigmaTableVector.clear(); >> 76 listOfForwardEmProcess.clear(); >> 77 listOfForwardEnergyLossProcess.clear(); >> 78 theListOfAdjointParticlesInAction.clear(); >> 79 EminForFwdSigmaTables.clear(); >> 80 EminForAdjSigmaTables.clear(); >> 81 EkinofFwdSigmaMax.clear(); >> 82 EkinofAdjSigmaMax.clear(); >> 83 listSigmaTableForAdjointModelScatProjToProj.clear(); >> 84 listSigmaTableForAdjointModelProdToProj.clear(); >> 85 Tmin=0.1*keV; >> 86 Tmax=100.*TeV; >> 87 nbins=320; //probably this should be decrease, that was choosen to avoid error in the CS value closed to CS jump.(For example at Tcut) >> 88 70 RegisterAdjointParticle(G4AdjointElectron::A 89 RegisterAdjointParticle(G4AdjointElectron::AdjointElectron()); 71 RegisterAdjointParticle(G4AdjointGamma::Adjo 90 RegisterAdjointParticle(G4AdjointGamma::AdjointGamma()); 72 RegisterAdjointParticle(G4AdjointProton::Adj 91 RegisterAdjointParticle(G4AdjointProton::AdjointProton()); 73 } << 92 >> 93 verbose = 1; >> 94 >> 95 lastPartDefForCS =0; >> 96 LastEkinForCS =0; >> 97 LastCSCorrectionFactor =1.; >> 98 >> 99 forward_CS_mode = true; >> 100 >> 101 currentParticleDef = 0; >> 102 currentCouple =0; >> 103 currentMaterial=0; >> 104 lastMaterial=0; >> 105 >> 106 >> 107 theAdjIon = 0; >> 108 theFwdIon = 0; >> 109 74 110 >> 111 >> 112 >> 113 } 75 ////////////////////////////////////////////// 114 /////////////////////////////////////////////////////// >> 115 // 76 G4AdjointCSManager::~G4AdjointCSManager() 116 G4AdjointCSManager::~G4AdjointCSManager() 77 { << 117 {; 78 for (auto& p : fAdjointCSMatricesForProdToPr << 79 for (auto p1 : p) { << 80 if (p1) { << 81 delete p1; << 82 p1 = nullptr; << 83 } << 84 } << 85 p.clear(); << 86 } << 87 fAdjointCSMatricesForProdToProj.clear(); << 88 << 89 for (auto& p : fAdjointCSMatricesForScatProj << 90 for (auto p1 : p) { << 91 if (p1) { << 92 delete p1; << 93 p1 = nullptr; << 94 } << 95 } << 96 p.clear(); << 97 } << 98 fAdjointCSMatricesForScatProjToProj.clear(); << 99 << 100 for (auto p : fAdjointModels) { << 101 if (p) { << 102 delete p; << 103 p = nullptr; << 104 } << 105 } << 106 fAdjointModels.clear(); << 107 << 108 for (auto p : fTotalAdjSigmaTable) { << 109 p->clearAndDestroy(); << 110 delete p; << 111 p = nullptr; << 112 } << 113 fTotalAdjSigmaTable.clear(); << 114 << 115 for (auto p : fSigmaTableForAdjointModelScat << 116 p->clearAndDestroy(); << 117 delete p; << 118 p = nullptr; << 119 } << 120 fSigmaTableForAdjointModelScatProjToProj.cle << 121 << 122 for (auto p : fSigmaTableForAdjointModelProd << 123 p->clearAndDestroy(); << 124 delete p; << 125 p = nullptr; << 126 } << 127 fSigmaTableForAdjointModelProdToProj.clear() << 128 << 129 for (auto p : fTotalFwdSigmaTable) { << 130 p->clearAndDestroy(); << 131 delete p; << 132 p = nullptr; << 133 } << 134 fTotalFwdSigmaTable.clear(); << 135 << 136 for (auto p : fForwardProcesses) { << 137 delete p; << 138 p = nullptr; << 139 } << 140 fForwardProcesses.clear(); << 141 << 142 for (auto p : fForwardLossProcesses) { << 143 delete p; << 144 p = nullptr; << 145 } << 146 fForwardLossProcesses.clear(); << 147 } 118 } 148 << 149 ////////////////////////////////////////////// 119 /////////////////////////////////////////////////////// 150 std::size_t G4AdjointCSManager::RegisterEmAdjo << 120 // 151 { << 121 size_t G4AdjointCSManager::RegisterEmAdjointModel(G4VEmAdjointModel* aModel) 152 fAdjointModels.push_back(aModel); << 122 {listOfAdjointEMModel.push_back(aModel); 153 fSigmaTableForAdjointModelScatProjToProj.pus << 123 listSigmaTableForAdjointModelScatProjToProj.push_back(new G4PhysicsTable); 154 fSigmaTableForAdjointModelProdToProj.push_ba << 124 listSigmaTableForAdjointModelProdToProj.push_back(new G4PhysicsTable); 155 return fAdjointModels.size() - 1; << 125 return listOfAdjointEMModel.size() -1; >> 126 156 } 127 } 157 << 158 ////////////////////////////////////////////// 128 /////////////////////////////////////////////////////// 159 void G4AdjointCSManager::RegisterEmProcess(G4V << 129 // 160 G4P << 130 void G4AdjointCSManager::RegisterEmProcess(G4VEmProcess* aProcess, G4ParticleDefinition* aFwdPartDef) 161 { << 131 { 162 G4ParticleDefinition* anAdjPartDef = << 132 G4ParticleDefinition* anAdjPartDef = GetAdjointParticleEquivalent(aFwdPartDef); 163 GetAdjointParticleEquivalent(aFwdPartDef); << 133 if (anAdjPartDef && aProcess){ 164 if(anAdjPartDef && aProcess) << 134 RegisterAdjointParticle(anAdjPartDef); 165 { << 135 G4int index=-1; 166 RegisterAdjointParticle(anAdjPartDef); << 136 167 << 137 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 168 for(std::size_t i = 0; i < fAdjointParticl << 138 if (anAdjPartDef->GetParticleName() == theListOfAdjointParticlesInAction[i]->GetParticleName()) index=i; 169 { << 139 } 170 if(anAdjPartDef->GetParticleName() == << 140 listOfForwardEmProcess[index]->push_back(aProcess); 171 fAdjointParticlesInAction[i]->GetPart << 172 fForwardProcesses[i]->push_back(aProce << 173 } << 174 } 141 } 175 } 142 } 176 << 177 ////////////////////////////////////////////// 143 /////////////////////////////////////////////////////// 178 void G4AdjointCSManager::RegisterEnergyLossPro << 144 // 179 G4VEnergyLossProcess* aProcess, G4ParticleDe << 145 void G4AdjointCSManager::RegisterEnergyLossProcess(G4VEnergyLossProcess* aProcess, G4ParticleDefinition* aFwdPartDef) 180 { 146 { 181 G4ParticleDefinition* anAdjPartDef = << 147 G4ParticleDefinition* anAdjPartDef = GetAdjointParticleEquivalent(aFwdPartDef); 182 GetAdjointParticleEquivalent(aFwdPartDef); << 148 if (anAdjPartDef && aProcess){ 183 if(anAdjPartDef && aProcess) << 149 RegisterAdjointParticle(anAdjPartDef); 184 { << 150 G4int index=-1; 185 RegisterAdjointParticle(anAdjPartDef); << 151 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 186 for(std::size_t i = 0; i < fAdjointParticl << 152 if (anAdjPartDef->GetParticleName() == theListOfAdjointParticlesInAction[i]->GetParticleName()) index=i; 187 { << 153 } 188 if(anAdjPartDef->GetParticleName() == << 154 listOfForwardEnergyLossProcess[index]->push_back(aProcess); 189 fAdjointParticlesInAction[i]->GetPart << 155 } 190 fForwardLossProc << 191 << 192 } << 193 } << 194 } 156 } 195 << 196 ////////////////////////////////////////////// 157 /////////////////////////////////////////////////////// >> 158 // 197 void G4AdjointCSManager::RegisterAdjointPartic 159 void G4AdjointCSManager::RegisterAdjointParticle(G4ParticleDefinition* aPartDef) 198 { << 160 { G4int index=-1; 199 G4bool found = false; << 161 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 200 for(auto p : fAdjointParticlesInAction) << 162 if (aPartDef->GetParticleName() == theListOfAdjointParticlesInAction[i]->GetParticleName()) index=i; 201 { << 163 } 202 if(p->GetParticleName() == aPartDef->GetPa << 164 203 { << 165 if (index ==-1){ 204 found = true; << 166 listOfForwardEnergyLossProcess.push_back(new std::vector<G4VEnergyLossProcess*>()); 205 } << 167 theTotalForwardSigmaTableVector.push_back(new G4PhysicsTable); 206 } << 168 theTotalAdjointSigmaTableVector.push_back(new G4PhysicsTable); 207 if(!found) << 169 listOfForwardEmProcess.push_back(new std::vector<G4VEmProcess*>()); 208 { << 170 theListOfAdjointParticlesInAction.push_back(aPartDef); 209 fForwardLossProcesses.push_back(new std::v << 171 EminForFwdSigmaTables.push_back(std::vector<G4double> ()); 210 fTotalFwdSigmaTable.push_back(new G4Physic << 172 EminForAdjSigmaTables.push_back(std::vector<G4double> ()); 211 fTotalAdjSigmaTable.push_back(new G4Physic << 173 EkinofFwdSigmaMax.push_back(std::vector<G4double> ()); 212 fForwardProcesses.push_back(new std::vecto << 174 EkinofAdjSigmaMax.push_back(std::vector<G4double> ()); 213 fAdjointParticlesInAction.push_back(aPartD << 175 214 fEminForFwdSigmaTables.push_back(std::vect << 176 } 215 fEminForAdjSigmaTables.push_back(std::vect << 216 fEkinofFwdSigmaMax.push_back(std::vector<G << 217 fEkinofAdjSigmaMax.push_back(std::vector<G << 218 } << 219 } 177 } 220 << 221 ////////////////////////////////////////////// 178 /////////////////////////////////////////////////////// >> 179 // 222 void G4AdjointCSManager::BuildCrossSectionMatr 180 void G4AdjointCSManager::BuildCrossSectionMatrices() 223 { << 181 { 224 if(fCSMatricesBuilt) << 182 if (CrossSectionMatrixesAreBuilt) return; 225 return; << 183 //Tcut, Tmax 226 // The Tcut and Tmax matrices will be comput << 184 //The matrices will be computed probably just once 227 // When Tcut changes, some PhysicsTable will << 185 //When Tcut will change some PhysicsTable will be recomputed 228 // for each MaterialCutCouple but not all th << 186 // for each MaterialCutCouple but not all the matrices 229 // The Tcut defines a lower limit in the ene << 187 //The Tcut defines a lower limit in the energy of the Projectile before the scattering 230 // scattering. In the Projectile to Scattere << 188 //In the Projectile to Scattered Projectile case we have 231 // E_ScatProj<E_Proj-Tcut << 189 // E_ScatProj<E_Proj-Tcut 232 // Therefore in the adjoint case we have << 190 //Therefore in the adjoint case we have 233 // Eproj> E_ScatProj+Tcut << 191 // Eproj> E_ScatProj+Tcut 234 // This implies that when computing the adjo << 192 //This implies that when computing the adjoint CS we should integrate over Epro 235 // Epro from E_ScatProj+Tcut to Emax << 193 // from E_ScatProj+Tcut to Emax 236 // In the Projectile to Secondary case Tcut << 194 //In the Projectile to Secondary case Tcut plays a role only in the fact that 237 // Esecond should be greater than Tcut to ha << 195 // Esecond should be greater than Tcut to have the possibility to have any adjoint 238 // adjoint process. << 196 //process 239 // To avoid recomputing matrices for all cha << 197 //To avoid to recompute the matrices for all changes of MaterialCutCouple 240 // we propose to compute the matrices only o << 198 //We propose to compute the matrices only once for the minimum possible Tcut and then 241 // and then to interpolate the probability f << 199 //to interpolate the probability for a new Tcut (implemented in G4VAdjointEmModel) 242 // G4VAdjointEmModel) << 200 243 << 201 244 fAdjointCSMatricesForScatProjToProj.clear(); << 202 theAdjointCSMatricesForScatProjToProj.clear(); 245 fAdjointCSMatricesForProdToProj.clear(); << 203 theAdjointCSMatricesForProdToProj.clear(); 246 const G4ElementTable* theElementTable = G4 << 204 const G4ElementTable* theElementTable = G4Element::GetElementTable(); 247 const G4MaterialTable* theMaterialTable = G4 << 205 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 248 << 206 249 G4cout << "========== Computation of cross s << 207 G4cout<<"========== Computation of cross section matrices for adjoint models =========="<<G4endl; 250 "models ==========" << 208 for (size_t i=0; i<listOfAdjointEMModel.size();i++){ 251 << G4endl; << 209 G4VEmAdjointModel* aModel =listOfAdjointEMModel[i]; 252 for(const auto& aModel : fAdjointModels) << 210 G4cout<<"Build adjoint cross section matrices for "<<aModel->GetName()<<G4endl; 253 { << 211 if (aModel->GetUseMatrix()){ 254 G4cout << "Build adjoint cross section mat << 212 std::vector<G4AdjointCSMatrix*>* aListOfMat1 = new std::vector<G4AdjointCSMatrix*>(); 255 << G4endl; << 213 std::vector<G4AdjointCSMatrix*>* aListOfMat2 = new std::vector<G4AdjointCSMatrix*>(); 256 if(aModel->GetUseMatrix()) << 214 aListOfMat1->clear(); 257 { << 215 aListOfMat2->clear(); 258 std::vector<G4AdjointCSMatrix*>* aListOf << 216 if (aModel->GetUseMatrixPerElement()){ 259 new std::vector<G4AdjointCSMatrix*>(); << 217 if (aModel->GetUseOnlyOneMatrixForAllElements()){ 260 std::vector<G4AdjointCSMatrix*>* aListOf << 218 std::vector<G4AdjointCSMatrix*> 261 new std::vector<G4AdjointCSMatrix*>(); << 219 two_matrices=BuildCrossSectionsMatricesForAGivenModelAndElement(aModel,1, 1, 80); 262 if(aModel->GetUseMatrixPerElement()) << 220 aListOfMat1->push_back(two_matrices[0]); 263 { << 221 aListOfMat2->push_back(two_matrices[1]); 264 if(aModel->GetUseOnlyOneMatrixForAllEl << 222 } 265 { << 223 else { 266 std::vector<G4AdjointCSMatrix*> two_ << 224 for (size_t j=0; j<theElementTable->size();j++){ 267 BuildCrossSectionsModelAndElement( << 225 G4Element* anElement=(*theElementTable)[j]; 268 aListOfMat1->push_back(two_matrices[ << 226 G4int Z = int(anElement->GetZ()); 269 aListOfMat2->push_back(two_matrices[ << 227 G4int A = int(anElement->GetA()); 270 } << 228 std::vector<G4AdjointCSMatrix*> 271 else << 229 two_matrices=BuildCrossSectionsMatricesForAGivenModelAndElement(aModel,Z, A, 40); 272 { << 230 aListOfMat1->push_back(two_matrices[0]); 273 for(const auto& anElement : *theElem << 231 aListOfMat2->push_back(two_matrices[1]); 274 { << 232 } 275 G4int Z = G4lrint(anElement->GetZ( << 233 } 276 G4int A = G4lrint(anElement->GetN( << 234 } 277 std::vector<G4AdjointCSMatrix*> tw << 235 else { //Per material case 278 BuildCrossSectionsModelAndElemen << 236 for (size_t j=0; j<theMaterialTable->size();j++){ 279 aListOfMat1->push_back(two_matrice << 237 G4Material* aMaterial=(*theMaterialTable)[j]; 280 aListOfMat2->push_back(two_matrice << 238 std::vector<G4AdjointCSMatrix*> 281 } << 239 two_matrices=BuildCrossSectionsMatricesForAGivenModelAndMaterial(aModel,aMaterial, 40); 282 } << 240 aListOfMat1->push_back(two_matrices[0]); 283 } << 241 aListOfMat2->push_back(two_matrices[1]); 284 else << 242 } 285 { // Per material case << 243 286 for(const auto& aMaterial : *theMateri << 244 } 287 { << 245 theAdjointCSMatricesForProdToProj.push_back(*aListOfMat1); 288 std::vector<G4AdjointCSMatrix*> two_ << 246 theAdjointCSMatricesForScatProjToProj.push_back(*aListOfMat2); 289 BuildCrossSectionsModelAndMaterial << 247 aModel->SetCSMatrices(aListOfMat1, aListOfMat2); 290 aListOfMat1->push_back(two_matrices[ << 248 } 291 aListOfMat2->push_back(two_matrices[ << 249 else { G4cout<<"The model "<<aModel->GetName()<<" does not use cross section matrices"<<G4endl; 292 } << 250 std::vector<G4AdjointCSMatrix*> two_empty_matrices; 293 } << 251 theAdjointCSMatricesForProdToProj.push_back(two_empty_matrices); 294 fAdjointCSMatricesForProdToProj.push_bac << 252 theAdjointCSMatricesForScatProjToProj.push_back(two_empty_matrices); 295 fAdjointCSMatricesForScatProjToProj.push << 253 296 aModel->SetCSMatrices(aListOfMat1, aList << 254 } 297 } << 255 } 298 else << 256 G4cout<<" All adjoint cross section matrices are computed!"<<G4endl; 299 { << 257 G4cout<<"======================================================================"<<G4endl; 300 G4cout << "The model " << aModel->GetNam << 258 301 << " does not use cross section m << 259 CrossSectionMatrixesAreBuilt = true; 302 std::vector<G4AdjointCSMatrix*> two_empt << 260 303 fAdjointCSMatricesForProdToProj.push_bac << 304 fAdjointCSMatricesForScatProjToProj.push << 305 } << 306 } << 307 G4cout << " All adjoint cross s << 308 << G4endl; << 309 G4cout << 310 << "====================================== << 311 << G4endl; << 312 261 313 fCSMatricesBuilt = true; << 314 } 262 } 315 263 >> 264 316 ////////////////////////////////////////////// 265 /////////////////////////////////////////////////////// >> 266 // 317 void G4AdjointCSManager::BuildTotalSigmaTables 267 void G4AdjointCSManager::BuildTotalSigmaTables() 318 { << 268 { if (TotalSigmaTableAreBuilt) return; 319 if(fSigmaTableBuilt) << 320 return; << 321 << 322 const G4ProductionCutsTable* theCoupleTable << 323 G4ProductionCutsTable::GetProductionCutsTa << 324 << 325 // Prepare the Sigma table for all AdjointEM << 326 for(std::size_t i = 0; i < fAdjointModels.si << 327 { << 328 fSigmaTableForAdjointModelScatProjToProj[i << 329 fSigmaTableForAdjointModelProdToProj[i]->c << 330 for(std::size_t j = 0; j < theCoupleTable- << 331 { << 332 fSigmaTableForAdjointModelScatProjToProj << 333 new G4PhysicsLogVector(fTmin, fTmax, f << 334 fSigmaTableForAdjointModelProdToProj[i]- << 335 new G4PhysicsLogVector(fTmin, fTmax, f << 336 } << 337 } << 338 << 339 for(std::size_t i = 0; i < fAdjointParticles << 340 { << 341 G4ParticleDefinition* thePartDef = fAdjoin << 342 DefineCurrentParticle(thePartDef); << 343 fTotalFwdSigmaTable[i]->clearAndDestroy(); << 344 fTotalAdjSigmaTable[i]->clearAndDestroy(); << 345 fEminForFwdSigmaTables[i].clear(); << 346 fEminForAdjSigmaTables[i].clear(); << 347 fEkinofFwdSigmaMax[i].clear(); << 348 fEkinofAdjSigmaMax[i].clear(); << 349 << 350 for(std::size_t j = 0; j < theCoupleTable- << 351 { << 352 const G4MaterialCutsCouple* couple = << 353 theCoupleTable->GetMaterialCutsCouple( << 354 << 355 // make first the total fwd CS table for << 356 G4PhysicsVector* aVector = new G4Physics << 357 G4bool Emin_found = false; << 358 G4double sigma_max = 0.; << 359 G4double e_sigma_max = 0.; << 360 for(std::size_t l = 0; l < fNbins; ++l) << 361 { << 362 G4double totCS = 0.; << 363 G4double e = aVector->Energy(l); << 364 for(std::size_t k = 0; k < fForwardPro << 365 { << 366 totCS += (*fForwardProcesses[i])[k]- << 367 } << 368 for(std::size_t k = 0; k < fForwardLos << 369 { << 370 if(thePartDef == fAdjIon) << 371 { // e is considered already as the << 372 std::size_t mat_index = couple->Ge << 373 G4VEmModel* currentModel = << 374 (*fForwardLossProcesses[i])[k]-> << 375 << 376 G4double chargeSqRatio = currentMo << 377 fFwdIon, couple->GetMaterial(), << 378 (*fForwardLossProcesses[i])[k]->Se << 379 << 380 } << 381 G4double e1 = e / fMassRatio; << 382 totCS += (*fForwardLossProcesses[i]) << 383 } << 384 aVector->PutValue(l, totCS); << 385 if(totCS > sigma_max) << 386 { << 387 sigma_max = totCS; << 388 e_sigma_max = e; << 389 } << 390 if(totCS > 0 && !Emin_found) << 391 { << 392 fEminForFwdSigmaTables[i].push_back( << 393 Emin_found = true; << 394 } << 395 } << 396 << 397 fEkinofFwdSigmaMax[i].push_back(e_sigma_ << 398 << 399 if(!Emin_found) << 400 fEminForFwdSigmaTables[i].push_back(fT << 401 << 402 fTotalFwdSigmaTable[i]->push_back(aVecto << 403 << 404 Emin_found = false; << 405 sigma_max = 0; << 406 e_sigma_max = 0.; << 407 G4PhysicsVector* aVector1 = new G4Physic << 408 for(std::size_t eindex = 0; eindex < fNb << 409 { << 410 G4double e = aVector1->Energy(eind << 411 G4double totCS = ComputeTotalAdjointCS << 412 couple, thePartDef, << 413 e * 0.9999999 / fMassRatio); // fMa << 414 aVector1->PutValue(eindex, totCS); << 415 if(totCS > sigma_max) << 416 { << 417 sigma_max = totCS; << 418 e_sigma_max = e; << 419 } << 420 if(totCS > 0 && !Emin_found) << 421 { << 422 fEminForAdjSigmaTables[i].push_back( << 423 Emin_found = true; << 424 } << 425 } << 426 fEkinofAdjSigmaMax[i].push_back(e_sigma_ << 427 if(!Emin_found) << 428 fEminForAdjSigmaTables[i].push_back(fT << 429 269 430 fTotalAdjSigmaTable[i]->push_back(aVecto << 270 431 } << 271 const G4ProductionCutsTable* theCoupleTable= G4ProductionCutsTable::GetProductionCutsTable(); >> 272 >> 273 >> 274 //Prepare the Sigma table for all AdjointEMModel, will be filled later on >> 275 for (size_t i=0; i<listOfAdjointEMModel.size();i++){ >> 276 listSigmaTableForAdjointModelScatProjToProj[i]->clearAndDestroy(); >> 277 listSigmaTableForAdjointModelProdToProj[i]->clearAndDestroy(); >> 278 for (size_t j=0;j<theCoupleTable->GetTableSize();j++){ >> 279 listSigmaTableForAdjointModelScatProjToProj[i]->push_back(new G4PhysicsLogVector(Tmin, Tmax, nbins)); >> 280 listSigmaTableForAdjointModelProdToProj[i]->push_back(new G4PhysicsLogVector(Tmin, Tmax, nbins)); >> 281 } >> 282 } >> 283 >> 284 >> 285 >> 286 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ >> 287 G4ParticleDefinition* thePartDef = theListOfAdjointParticlesInAction[i]; >> 288 DefineCurrentParticle(thePartDef); >> 289 theTotalForwardSigmaTableVector[i]->clearAndDestroy(); >> 290 theTotalAdjointSigmaTableVector[i]->clearAndDestroy(); >> 291 EminForFwdSigmaTables[i].clear(); >> 292 EminForAdjSigmaTables[i].clear(); >> 293 EkinofFwdSigmaMax[i].clear(); >> 294 EkinofAdjSigmaMax[i].clear(); >> 295 //G4cout<<thePartDef->GetParticleName(); >> 296 >> 297 for (size_t j=0;j<theCoupleTable->GetTableSize();j++){ >> 298 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j); >> 299 >> 300 /* >> 301 G4String file_name1=couple->GetMaterial()->GetName()+"_"+thePartDef->GetParticleName()+"_adj_totCS.txt"; >> 302 G4String file_name2=couple->GetMaterial()->GetName()+"_"+thePartDef->GetParticleName()+"_fwd_totCS.txt"; >> 303 >> 304 std::fstream FileOutputAdjCS(file_name1, std::ios::out); >> 305 std::fstream FileOutputFwdCS(file_name2, std::ios::out); >> 306 >> 307 >> 308 >> 309 FileOutputAdjCS<<std::setiosflags(std::ios::scientific); >> 310 FileOutputAdjCS<<std::setprecision(6); >> 311 FileOutputFwdCS<<std::setiosflags(std::ios::scientific); >> 312 FileOutputFwdCS<<std::setprecision(6); >> 313 */ >> 314 >> 315 >> 316 //make first the total fwd CS table for FwdProcess >> 317 G4PhysicsVector* aVector = new G4PhysicsLogVector(Tmin, Tmax, nbins); >> 318 G4bool Emin_found=false; >> 319 G4double sigma_max =0.; >> 320 G4double e_sigma_max =0.; >> 321 for(size_t l=0; l<aVector->GetVectorLength(); l++) { >> 322 G4double totCS=0.; >> 323 G4double e=aVector->GetLowEdgeEnergy(l); >> 324 for (size_t k=0; k<listOfForwardEmProcess[i]->size(); k++){ >> 325 totCS+=(*listOfForwardEmProcess[i])[k]->GetLambda(e, couple); >> 326 } >> 327 for (size_t k=0; k<listOfForwardEnergyLossProcess[i]->size(); k++){ >> 328 if (thePartDef == theAdjIon) { // e is considered already as the scaled energy >> 329 size_t mat_index = couple->GetIndex(); >> 330 G4VEmModel* currentModel = (*listOfForwardEnergyLossProcess[i])[k]->SelectModelForMaterial(e,mat_index); >> 331 G4double chargeSqRatio = currentModel->GetChargeSquareRatio(theFwdIon,couple->GetMaterial(),e/massRatio); >> 332 (*listOfForwardEnergyLossProcess[i])[k]->SetDynamicMassCharge(massRatio,chargeSqRatio); >> 333 } >> 334 G4double e1=e/massRatio; >> 335 totCS+=(*listOfForwardEnergyLossProcess[i])[k]->GetLambda(e1, couple); >> 336 } >> 337 aVector->PutValue(l,totCS); >> 338 if (totCS>sigma_max){ >> 339 sigma_max=totCS; >> 340 e_sigma_max = e; >> 341 >> 342 } >> 343 //FileOutputFwdCS<<e<<'\t'<<totCS<<G4endl; >> 344 >> 345 if (totCS>0 && !Emin_found) { >> 346 EminForFwdSigmaTables[i].push_back(e); >> 347 Emin_found=true; >> 348 } >> 349 >> 350 >> 351 } >> 352 //FileOutputFwdCS.close(); >> 353 >> 354 EkinofFwdSigmaMax[i].push_back(e_sigma_max); >> 355 >> 356 >> 357 if(!Emin_found) EminForFwdSigmaTables[i].push_back(Tmax); >> 358 >> 359 theTotalForwardSigmaTableVector[i]->push_back(aVector); >> 360 >> 361 >> 362 Emin_found=false; >> 363 sigma_max=0; >> 364 e_sigma_max =0.; >> 365 G4PhysicsVector* aVector1 = new G4PhysicsLogVector(Tmin, Tmax, nbins); >> 366 for(eindex=0; eindex<aVector->GetVectorLength(); eindex++) { >> 367 G4double e=aVector->GetLowEdgeEnergy(eindex); >> 368 G4double totCS =ComputeTotalAdjointCS(couple,thePartDef,e*0.9999999/massRatio); //massRatio needed for ions >> 369 aVector1->PutValue(eindex,totCS); >> 370 if (totCS>sigma_max){ >> 371 sigma_max=totCS; >> 372 e_sigma_max = e; >> 373 >> 374 } >> 375 //FileOutputAdjCS<<e<<'\t'<<totCS<<G4endl; >> 376 if (totCS>0 && !Emin_found) { >> 377 EminForAdjSigmaTables[i].push_back(e); >> 378 Emin_found=true; >> 379 } >> 380 >> 381 } >> 382 //FileOutputAdjCS.close(); >> 383 EkinofAdjSigmaMax[i].push_back(e_sigma_max); >> 384 if(!Emin_found) EminForAdjSigmaTables[i].push_back(Tmax); >> 385 >> 386 theTotalAdjointSigmaTableVector[i]->push_back(aVector1); >> 387 >> 388 } 432 } 389 } 433 fSigmaTableBuilt = true; << 390 TotalSigmaTableAreBuilt =true; 434 } << 391 435 << 436 ////////////////////////////////////////////// << 437 G4double G4AdjointCSManager::GetTotalAdjointCS << 438 G4ParticleDefinition* aPartDef, G4double Eki << 439 const G4MaterialCutsCouple* aCouple) << 440 { << 441 DefineCurrentMaterial(aCouple); << 442 DefineCurrentParticle(aPartDef); << 443 return (((*fTotalAdjSigmaTable[fCurrentParti << 444 ->Value(Ekin * fMassRatio)); << 445 } 392 } 446 << 447 ////////////////////////////////////////////// 393 /////////////////////////////////////////////////////// 448 G4double G4AdjointCSManager::GetTotalForwardCS << 394 // 449 G4ParticleDefinition* aPartDef, G4double Eki << 395 G4double G4AdjointCSManager::GetTotalAdjointCS(G4ParticleDefinition* aPartDef, G4double Ekin, 450 const G4MaterialCutsCouple* aCouple) << 396 const G4MaterialCutsCouple* aCouple) 451 { << 397 { DefineCurrentMaterial(aCouple); 452 DefineCurrentMaterial(aCouple); << 398 DefineCurrentParticle(aPartDef); >> 399 G4bool b; >> 400 return (((*theTotalAdjointSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(Ekin*massRatio, b)); >> 401 >> 402 >> 403 >> 404 } >> 405 /////////////////////////////////////////////////////// >> 406 // >> 407 G4double G4AdjointCSManager::GetTotalForwardCS(G4ParticleDefinition* aPartDef, G4double Ekin, >> 408 const G4MaterialCutsCouple* aCouple) >> 409 { DefineCurrentMaterial(aCouple); 453 DefineCurrentParticle(aPartDef); 410 DefineCurrentParticle(aPartDef); 454 return (((*fTotalFwdSigmaTable[fCurrentParti << 411 G4bool b; 455 ->Value(Ekin * fMassRatio)); << 412 return (((*theTotalForwardSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(Ekin*massRatio, b)); >> 413 >> 414 456 } 415 } 457 << 458 ////////////////////////////////////////////// 416 /////////////////////////////////////////////////////// 459 G4double G4AdjointCSManager::GetAdjointSigma( << 417 // 460 G4double Ekin_nuc, std::size_t index_model, << 418 G4double G4AdjointCSManager::GetAdjointSigma(G4double Ekin_nuc, size_t index_model,G4bool is_scat_proj_to_proj, 461 const G4MaterialCutsCouple* aCouple) << 419 const G4MaterialCutsCouple* aCouple) 462 { << 420 { DefineCurrentMaterial(aCouple); 463 DefineCurrentMaterial(aCouple); << 421 G4bool b; 464 if(is_scat_proj_to_proj) << 422 if (is_scat_proj_to_proj) return (((*listSigmaTableForAdjointModelScatProjToProj[index_model])[currentMatIndex])->GetValue(Ekin_nuc, b)); 465 return (((*fSigmaTableForAdjointModelScatP << 423 else return (((*listSigmaTableForAdjointModelProdToProj[index_model])[currentMatIndex])->GetValue(Ekin_nuc, b)); 466 [fCurrentMatIndex])->Value(Ekin << 424 } 467 else << 468 return ( << 469 ((*fSigmaTableForAdjointModelProdToProj[ << 470 ->Value(Ekin_nuc)); << 471 } << 472 << 473 ////////////////////////////////////////////// 425 /////////////////////////////////////////////////////// >> 426 // 474 void G4AdjointCSManager::GetEminForTotalCS(G4P 427 void G4AdjointCSManager::GetEminForTotalCS(G4ParticleDefinition* aPartDef, 475 con << 428 const G4MaterialCutsCouple* aCouple, G4double& emin_adj, G4double& emin_fwd) 476 G4d << 429 { DefineCurrentMaterial(aCouple); 477 G4d << 478 { << 479 DefineCurrentMaterial(aCouple); << 480 DefineCurrentParticle(aPartDef); 430 DefineCurrentParticle(aPartDef); 481 emin_adj = fEminForAdjSigmaTables[fCurrentPa << 431 emin_adj = EminForAdjSigmaTables[currentParticleIndex][currentMatIndex]/massRatio; 482 fMassRatio; << 432 emin_fwd = EminForFwdSigmaTables[currentParticleIndex][currentMatIndex]/massRatio; 483 emin_fwd = fEminForFwdSigmaTables[fCurrentPa << 433 484 fMassRatio; << 434 >> 435 485 } 436 } 486 << 487 ////////////////////////////////////////////// 437 /////////////////////////////////////////////////////// >> 438 // 488 void G4AdjointCSManager::GetMaxFwdTotalCS(G4Pa 439 void G4AdjointCSManager::GetMaxFwdTotalCS(G4ParticleDefinition* aPartDef, 489 cons << 440 const G4MaterialCutsCouple* aCouple, G4double& e_sigma_max, G4double& sigma_max) 490 G4do << 441 { DefineCurrentMaterial(aCouple); 491 G4do << 492 { << 493 DefineCurrentMaterial(aCouple); << 494 DefineCurrentParticle(aPartDef); 442 DefineCurrentParticle(aPartDef); 495 e_sigma_max = fEkinofFwdSigmaMax[fCurrentPar << 443 e_sigma_max = EkinofFwdSigmaMax[currentParticleIndex][currentMatIndex]; 496 sigma_max = ((*fTotalFwdSigmaTable[fCurrentP << 444 G4bool b; 497 ->Value(e_sigma_max); << 445 sigma_max =((*theTotalForwardSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(e_sigma_max, b); 498 e_sigma_max /= fMassRatio; << 446 e_sigma_max/=massRatio; >> 447 >> 448 499 } 449 } 500 << 501 ////////////////////////////////////////////// 450 /////////////////////////////////////////////////////// >> 451 // 502 void G4AdjointCSManager::GetMaxAdjTotalCS(G4Pa 452 void G4AdjointCSManager::GetMaxAdjTotalCS(G4ParticleDefinition* aPartDef, 503 cons << 453 const G4MaterialCutsCouple* aCouple, G4double& e_sigma_max, G4double& sigma_max) 504 G4do << 454 { DefineCurrentMaterial(aCouple); 505 G4do << 506 { << 507 DefineCurrentMaterial(aCouple); << 508 DefineCurrentParticle(aPartDef); 455 DefineCurrentParticle(aPartDef); 509 e_sigma_max = fEkinofAdjSigmaMax[fCurrentPar << 456 e_sigma_max = EkinofAdjSigmaMax[currentParticleIndex][currentMatIndex]; 510 sigma_max = ((*fTotalAdjSigmaTable[fCurrentP << 457 G4bool b; 511 ->Value(e_sigma_max); << 458 sigma_max =((*theTotalAdjointSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(e_sigma_max, b); 512 e_sigma_max /= fMassRatio; << 459 e_sigma_max/=massRatio; 513 } << 460 514 << 461 515 ////////////////////////////////////////////// << 462 } 516 G4double G4AdjointCSManager::GetCrossSectionCo << 463 /////////////////////////////////////////////////////// 517 G4ParticleDefinition* aPartDef, G4double Pre << 464 // 518 const G4MaterialCutsCouple* aCouple, G4bool& << 465 G4double G4AdjointCSManager::GetCrossSectionCorrection(G4ParticleDefinition* aPartDef,G4double PreStepEkin,const G4MaterialCutsCouple* aCouple, G4bool& fwd_is_used, 519 { << 466 G4double& fwd_TotCS) 520 static G4double lastEkin = 0.; << 467 { G4double corr_fac = 1.; 521 static G4ParticleDefinition* lastPartDef; << 468 if (forward_CS_mode) { 522 << 469 fwd_TotCS=PrefwdCS; 523 G4double corr_fac = 1.; << 470 if (LastEkinForCS != PreStepEkin || aPartDef != lastPartDefForCS || aCouple!=currentCouple) { 524 if(fForwardCSMode && aPartDef) << 471 DefineCurrentMaterial(aCouple); 525 { << 472 PreadjCS = GetTotalAdjointCS(aPartDef, PreStepEkin,aCouple); 526 if(lastEkin != PreStepEkin || aPartDef != << 473 PrefwdCS = GetTotalForwardCS(aPartDef, PreStepEkin,aCouple); 527 aCouple != fCurrentCouple) << 474 LastEkinForCS = PreStepEkin; 528 { << 475 lastPartDefForCS = aPartDef; 529 DefineCurrentMaterial(aCouple); << 476 if (PrefwdCS >0. && PreadjCS >0.) { 530 G4double preadjCS = GetTotalAdjointCS(aP << 477 forward_CS_is_used = true; 531 G4double prefwdCS = GetTotalForwardCS(aP << 478 LastCSCorrectionFactor = PrefwdCS/PreadjCS; 532 lastEkin = PreStepEkin; << 479 } 533 lastPartDef = aPartDef; << 480 else { 534 if(prefwdCS > 0. && preadjCS > 0.) << 481 forward_CS_is_used = false; 535 { << 482 LastCSCorrectionFactor = 1.; 536 fForwardCSUsed = true; << 483 537 fLastCSCorrectionFactor = prefwdCS / p << 484 } 538 } << 485 539 else << 486 } 540 { << 487 corr_fac =LastCSCorrectionFactor; 541 fForwardCSUsed = false; << 488 542 fLastCSCorrectionFactor = 1.; << 489 543 } << 490 544 } << 491 } 545 corr_fac = fLastCSCorrectionFactor; << 492 else { 546 } << 493 forward_CS_is_used = false; 547 else << 494 LastCSCorrectionFactor = 1.; 548 { << 495 } 549 fForwardCSUsed = false; << 496 fwd_TotCS=PrefwdCS; 550 fLastCSCorrectionFactor = 1.; << 497 fwd_is_used = forward_CS_is_used; 551 } << 498 return corr_fac; 552 fwd_is_used = fForwardCSUsed; << 499 } 553 return corr_fac; << 500 /////////////////////////////////////////////////////// 554 } << 501 // >> 502 G4double G4AdjointCSManager::GetContinuousWeightCorrection(G4ParticleDefinition* aPartDef, G4double PreStepEkin,G4double AfterStepEkin, >> 503 const G4MaterialCutsCouple* aCouple, G4double step_length) >> 504 { G4double corr_fac = 1.; >> 505 //return corr_fac; >> 506 //G4double after_adjCS = GetTotalAdjointCS(aPartDef, AfterStepEkin,aCouple); >> 507 G4double after_fwdCS = GetTotalForwardCS(aPartDef, AfterStepEkin,aCouple); >> 508 G4double pre_adjCS = GetTotalAdjointCS(aPartDef, PreStepEkin,aCouple); >> 509 if (!forward_CS_is_used || pre_adjCS ==0. || after_fwdCS==0.) { >> 510 forward_CS_is_used=false; >> 511 G4double pre_fwdCS = GetTotalForwardCS(aPartDef, PreStepEkin,aCouple); >> 512 corr_fac *=std::exp((pre_adjCS-pre_fwdCS)*step_length); >> 513 LastCSCorrectionFactor = 1.; >> 514 } >> 515 else { >> 516 LastCSCorrectionFactor = after_fwdCS/pre_adjCS; >> 517 } >> 518 555 519 >> 520 >> 521 return corr_fac; >> 522 } 556 ////////////////////////////////////////////// 523 /////////////////////////////////////////////////////// 557 G4double G4AdjointCSManager::GetContinuousWeig << 524 // 558 G4ParticleDefinition* aPartDef, G4double Pre << 525 G4double G4AdjointCSManager::GetPostStepWeightCorrection( ) 559 const G4MaterialCutsCouple* aCouple, G4doubl << 526 {//return 1.; 560 { << 527 return 1./LastCSCorrectionFactor; 561 G4double corr_fac = 1.; << 528 562 G4double after_fwdCS = GetTotalForwardCS(aPa << 529 } 563 G4double pre_adjCS = GetTotalAdjointCS(aPa << 564 if(!fForwardCSUsed || pre_adjCS == 0. || aft << 565 { << 566 G4double pre_fwdCS = GetTotalForwardCS(aPa << 567 corr_fac *= std::exp((pre_adjCS - pre_fwdC << 568 fLastCSCorrectionFactor = 1.; << 569 } << 570 else << 571 { << 572 fLastCSCorrectionFactor = after_fwdCS / pr << 573 } << 574 return corr_fac; << 575 } << 576 << 577 ////////////////////////////////////////////// 530 /////////////////////////////////////////////////////// 578 G4double G4AdjointCSManager::GetPostStepWeight << 531 // 579 { << 532 G4double G4AdjointCSManager::ComputeAdjointCS(G4Material* aMaterial, 580 return 1. / fLastCSCorrectionFactor; << 533 G4VEmAdjointModel* aModel, 581 } << 534 G4double PrimEnergy, 582 << 535 G4double Tcut, 583 ////////////////////////////////////////////// << 536 G4bool IsScatProjToProjCase, 584 G4double G4AdjointCSManager::ComputeAdjointCS( << 537 std::vector<G4double>& CS_Vs_Element) 585 G4Material* aMaterial, G4VEmAdjointModel* aM << 538 { 586 G4double Tcut, G4bool isScatProjToProj, std: << 539 587 { << 540 G4double EminSec=0; 588 G4double EminSec = 0.; << 541 G4double EmaxSec=0; 589 G4double EmaxSec = 0.; << 542 590 << 543 if (IsScatProjToProjCase){ 591 static G4double lastPrimaryEnergy = 0.; << 544 EminSec= aModel->GetSecondAdjEnergyMinForScatProjToProjCase(PrimEnergy,Tcut); 592 static G4double lastTcut = 0.; << 545 EmaxSec= aModel->GetSecondAdjEnergyMaxForScatProjToProjCase(PrimEnergy); 593 static G4Material* lastMaterial = nullptr; << 546 } 594 << 547 else if (PrimEnergy > Tcut || !aModel->GetApplyCutInRange()) { 595 if(isScatProjToProj) << 548 EminSec= aModel->GetSecondAdjEnergyMinForProdToProjCase(PrimEnergy); 596 { << 549 EmaxSec= aModel->GetSecondAdjEnergyMaxForProdToProjCase(PrimEnergy); 597 EminSec = aModel->GetSecondAdjEnergyMinFor << 550 } 598 EmaxSec = aModel->GetSecondAdjEnergyMaxFor << 551 if (EminSec >= EmaxSec) return 0.; 599 } << 552 600 else if(PrimEnergy > Tcut || !aModel->GetApp << 553 601 { << 554 G4bool need_to_compute=false; 602 EminSec = aModel->GetSecondAdjEnergyMinFor << 555 if ( aMaterial!= lastMaterial || PrimEnergy != lastPrimaryEnergy || Tcut != lastTcut){ 603 EmaxSec = aModel->GetSecondAdjEnergyMaxFor << 556 lastMaterial =aMaterial; 604 } << 557 lastPrimaryEnergy = PrimEnergy; 605 if(EminSec >= EmaxSec) << 558 lastTcut=Tcut; 606 return 0.; << 559 listOfIndexOfAdjointEMModelInAction.clear(); 607 << 560 listOfIsScatProjToProjCase.clear(); 608 G4bool need_to_compute = false; << 561 lastAdjointCSVsModelsAndElements.clear(); 609 if(aMaterial != lastMaterial || PrimEnergy ! << 562 need_to_compute=true; 610 Tcut != lastTcut) << 563 611 { << 564 } 612 lastMaterial = aMaterial; << 565 size_t ind=0; 613 lastPrimaryEnergy = PrimEnergy; << 566 if (!need_to_compute){ 614 lastTcut = Tcut; << 567 need_to_compute=true; 615 fIndexOfAdjointEMModelInAction.clear(); << 568 for (size_t i=0;i<listOfIndexOfAdjointEMModelInAction.size();i++){ 616 fIsScatProjToProj.clear(); << 569 size_t ind1=listOfIndexOfAdjointEMModelInAction[i]; 617 fLastAdjointCSVsModelsAndElements.clear(); << 570 if (aModel == listOfAdjointEMModel[ind1] && IsScatProjToProjCase == listOfIsScatProjToProjCase[i]){ 618 need_to_compute = true; << 571 need_to_compute=false; 619 } << 572 CS_Vs_Element = lastAdjointCSVsModelsAndElements[ind]; 620 << 573 } 621 std::size_t ind = 0; << 574 ind++; 622 if(!need_to_compute) << 575 } 623 { << 576 } 624 need_to_compute = true; << 577 625 for(std::size_t i = 0; i < fIndexOfAdjoint << 578 if (need_to_compute){ 626 { << 579 size_t ind_model=0; 627 std::size_t ind1 = fIndexOfAdjointEMMode << 580 for (size_t i=0;i<listOfAdjointEMModel.size();i++){ 628 if(aModel == fAdjointModels[ind1] && << 581 if (aModel == listOfAdjointEMModel[i]){ 629 isScatProjToProj == fIsScatProjToProj << 582 ind_model=i; 630 { << 583 break; 631 need_to_compute = false; << 584 } 632 CS_Vs_Element = fLastAdjointCSVsMode << 585 } 633 } << 586 G4double Tlow=Tcut; 634 ++ind; << 587 if (!listOfAdjointEMModel[ind_model]->GetApplyCutInRange()) Tlow =listOfAdjointEMModel[ind_model]->GetLowEnergyLimit(); 635 } << 588 listOfIndexOfAdjointEMModelInAction.push_back(ind_model); 636 } << 589 listOfIsScatProjToProjCase.push_back(IsScatProjToProjCase); 637 << 590 CS_Vs_Element.clear(); 638 if(need_to_compute) << 591 if (!aModel->GetUseMatrix()){ 639 { << 592 CS_Vs_Element.push_back(aModel->AdjointCrossSection(currentCouple,PrimEnergy,IsScatProjToProjCase)); 640 std::size_t ind_model = 0; << 593 641 for(std::size_t i = 0; i < fAdjointModels. << 594 642 { << 595 } 643 if(aModel == fAdjointModels[i]) << 596 else if (aModel->GetUseMatrixPerElement()){ 644 { << 597 size_t n_el = aMaterial->GetNumberOfElements(); 645 ind_model = i; << 598 if (aModel->GetUseOnlyOneMatrixForAllElements()){ 646 break; << 599 G4AdjointCSMatrix* theCSMatrix; 647 } << 600 if (IsScatProjToProjCase){ 648 } << 601 theCSMatrix=theAdjointCSMatricesForScatProjToProj[ind_model][0]; 649 G4double Tlow = Tcut; << 602 } 650 if(!fAdjointModels[ind_model]->GetApplyCut << 603 else theCSMatrix=theAdjointCSMatricesForProdToProj[ind_model][0]; 651 Tlow = fAdjointModels[ind_model]->GetLow << 604 G4double CS =0.; 652 fIndexOfAdjointEMModelInAction.push_back(i << 605 if (PrimEnergy > Tlow) 653 fIsScatProjToProj.push_back(isScatProjToPr << 606 CS = ComputeAdjointCS(PrimEnergy,theCSMatrix,Tlow); 654 CS_Vs_Element.clear(); << 607 G4double factor=0.; 655 if(!aModel->GetUseMatrix()) << 608 for (size_t i=0;i<n_el;i++){ //this could be computed only once 656 { << 609 //size_t ind_el = aMaterial->GetElement(i)->GetIndex(); 657 CS_Vs_Element.push_back(aModel->AdjointC << 610 factor+=aMaterial->GetElement(i)->GetZ()*aMaterial->GetVecNbOfAtomsPerVolume()[i]; 658 fCurrentCouple, PrimEnergy, isScatProj << 611 } 659 } << 612 CS *=factor; 660 else if(aModel->GetUseMatrixPerElement()) << 613 CS_Vs_Element.push_back(CS); 661 { << 614 662 std::size_t n_el = aMaterial->GetNumberO << 615 } 663 if(aModel->GetUseOnlyOneMatrixForAllElem << 616 else { 664 { << 617 for (size_t i=0;i<n_el;i++){ 665 G4AdjointCSMatrix* theCSMatrix; << 618 size_t ind_el = aMaterial->GetElement(i)->GetIndex(); 666 if(isScatProjToProj) << 619 //G4cout<<aMaterial->GetName()<<G4endl; 667 { << 620 G4AdjointCSMatrix* theCSMatrix; 668 theCSMatrix = fAdjointCSMatricesForS << 621 if (IsScatProjToProjCase){ 669 } << 622 theCSMatrix=theAdjointCSMatricesForScatProjToProj[ind_model][ind_el]; 670 else << 623 } 671 theCSMatrix = fAdjointCSMatricesForP << 624 else theCSMatrix=theAdjointCSMatricesForProdToProj[ind_model][ind_el]; 672 G4double CS = 0.; << 625 G4double CS =0.; 673 if(PrimEnergy > Tlow) << 626 if (PrimEnergy > Tlow) 674 CS = ComputeAdjointCS(PrimEnergy, th << 627 CS = ComputeAdjointCS(PrimEnergy,theCSMatrix,Tlow); 675 G4double factor = 0.; << 628 //G4cout<<CS<<G4endl; 676 for(G4int i = 0; i < (G4int)n_el; ++i) << 629 CS_Vs_Element.push_back(CS*(aMaterial->GetVecNbOfAtomsPerVolume()[i])); 677 { // this could be computed only once << 630 } 678 factor += aMaterial->GetElement(i)-> << 631 } 679 aMaterial->GetVecNbOfAtoms << 632 680 } << 633 } 681 CS *= factor; << 634 else { 682 CS_Vs_Element.push_back(CS); << 635 size_t ind_mat = aMaterial->GetIndex(); 683 } << 636 G4AdjointCSMatrix* theCSMatrix; 684 else << 637 if (IsScatProjToProjCase){ 685 { << 638 theCSMatrix=theAdjointCSMatricesForScatProjToProj[ind_model][ind_mat]; 686 for(G4int i = 0; i < (G4int)n_el; ++i) << 639 } 687 { << 640 else theCSMatrix=theAdjointCSMatricesForProdToProj[ind_model][ind_mat]; 688 std::size_t ind_el = aMaterial->GetE << 641 G4double CS =0.; 689 G4AdjointCSMatrix* theCSMatrix; << 642 if (PrimEnergy > Tlow) 690 if(isScatProjToProj) << 643 CS = ComputeAdjointCS(PrimEnergy,theCSMatrix,Tlow); 691 { << 644 CS_Vs_Element.push_back(CS); 692 theCSMatrix = << 645 693 fAdjointCSMatricesForScatProjToP << 646 694 } << 647 } 695 else << 648 lastAdjointCSVsModelsAndElements.push_back(CS_Vs_Element); 696 theCSMatrix = fAdjointCSMatricesFo << 649 697 G4double CS = 0.; << 650 } 698 if(PrimEnergy > Tlow) << 651 699 CS = ComputeAdjointCS(PrimEnergy, << 652 700 CS_Vs_Element.push_back(CS * << 653 G4double CS=0; 701 (aMaterial-> << 654 for (size_t i=0;i<CS_Vs_Element.size();i++){ 702 } << 655 CS+=CS_Vs_Element[i]; //We could put the progressive sum of the CS instead of the CS of an element itself 703 } << 656 704 } << 705 else << 706 { << 707 std::size_t ind_mat = aMaterial->GetInde << 708 G4AdjointCSMatrix* theCSMatrix; << 709 if(isScatProjToProj) << 710 { << 711 theCSMatrix = fAdjointCSMatricesForSca << 712 } << 713 else << 714 theCSMatrix = fAdjointCSMatricesForPro << 715 G4double CS = 0.; << 716 if(PrimEnergy > Tlow) << 717 CS = ComputeAdjointCS(PrimEnergy, theC << 718 CS_Vs_Element.push_back(CS); << 719 } << 720 fLastAdjointCSVsModelsAndElements.push_bac << 721 } << 722 << 723 G4double CS = 0.; << 724 for(const auto& cs_vs_el : CS_Vs_Element) << 725 { << 726 // We could put the progressive sum of the << 727 // element itself << 728 CS += cs_vs_el; << 729 } 657 } 730 return CS; 658 return CS; 731 } << 659 } 732 << 733 ////////////////////////////////////////////// 660 /////////////////////////////////////////////////////// 734 G4Element* G4AdjointCSManager::SampleElementFr << 661 // 735 G4Material* aMaterial, G4VEmAdjointModel* aM << 662 G4Element* G4AdjointCSManager::SampleElementFromCSMatrices(G4Material* aMaterial, 736 G4double Tcut, G4bool isScatProjToProj) << 663 G4VEmAdjointModel* aModel, 737 { << 664 G4double PrimEnergy, 738 std::vector<G4double> CS_Vs_Element; << 665 G4double Tcut, 739 G4double CS = ComputeAdjointCS(aMaterial, << 666 G4bool IsScatProjToProjCase) 740 isScatProjToP << 667 { std::vector<G4double> CS_Vs_Element; 741 G4double SumCS = 0.; << 668 G4double CS = ComputeAdjointCS(aMaterial,aModel,PrimEnergy,Tcut,IsScatProjToProjCase,CS_Vs_Element); 742 std::size_t ind = 0; << 669 G4double rand_var= G4UniformRand(); 743 for(std::size_t i = 0; i < CS_Vs_Element.siz << 670 G4double SumCS=0.; 744 { << 671 size_t ind=0; 745 SumCS += CS_Vs_Element[i]; << 672 for (size_t i=0;i<CS_Vs_Element.size();i++){ 746 if(G4UniformRand() <= SumCS / CS) << 673 SumCS+=CS_Vs_Element[i]; 747 { << 674 if (rand_var<=SumCS/CS){ 748 ind = i; << 675 ind=i; 749 break; << 676 break; 750 } << 677 } 751 } 678 } 752 << 679 753 return const_cast<G4Element*>(aMaterial->Get << 680 return const_cast<G4Element*>(aMaterial->GetElement(ind)); 754 } << 681 755 << 682 >> 683 >> 684 } 756 ////////////////////////////////////////////// 685 /////////////////////////////////////////////////////// 757 G4double G4AdjointCSManager::ComputeTotalAdjoi << 686 // 758 const G4MaterialCutsCouple* aCouple, G4Parti << 687 G4double G4AdjointCSManager::ComputeTotalAdjointCS(const G4MaterialCutsCouple* aCouple, 759 G4double Ekin) << 688 G4ParticleDefinition* aPartDef, 760 { << 689 G4double Ekin) 761 G4double TotalCS = 0.; << 690 { 762 << 691 G4double TotalCS=0.; 763 DefineCurrentMaterial(aCouple); << 692 764 << 693 DefineCurrentMaterial(aCouple); 765 std::vector<G4double> CS_Vs_Element; << 694 766 G4double CS; << 695 767 G4VEmAdjointModel* adjModel = nullptr; << 696 std::vector<G4double> CS_Vs_Element; 768 for(std::size_t i = 0; i < fAdjointModels.si << 697 G4double CS; 769 { << 698 for (size_t i=0; i<listOfAdjointEMModel.size();i++){ 770 G4double Tlow = 0.; << 699 771 adjModel = fAdjointModels[i]; << 700 G4double Tlow=0; 772 if(!adjModel->GetApplyCutInRange()) << 701 if (!listOfAdjointEMModel[i]->GetApplyCutInRange()) Tlow =listOfAdjointEMModel[i]->GetLowEnergyLimit(); 773 Tlow = adjModel->GetLowEnergyLimit(); << 702 else { 774 else << 703 G4ParticleDefinition* theDirSecondPartDef = 775 { << 704 GetForwardParticleEquivalent(listOfAdjointEMModel[i]->GetAdjointEquivalentOfDirectSecondaryParticleDefinition()); 776 G4ParticleDefinition* theDirSecondPartDe << 705 size_t idx=56; 777 adjModel->GetAdjointEquivalentOfDirect << 706 if (theDirSecondPartDef->GetParticleName() == "gamma") idx = 0; 778 std::size_t idx = 56; << 707 else if (theDirSecondPartDef->GetParticleName() == "e-") idx = 1; 779 if(theDirSecondPartDef->GetParticleName( << 708 else if (theDirSecondPartDef->GetParticleName() == "e+") idx = 2; 780 idx = 0; << 709 if (idx <56) { 781 else if(theDirSecondPartDef->GetParticle << 710 const std::vector<G4double>* aVec = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(idx); 782 idx = 1; << 711 Tlow =(*aVec)[aCouple->GetIndex()]; 783 else if(theDirSecondPartDef->GetParticle << 712 } 784 idx = 2; << 713 785 if(idx < 56) << 714 786 { << 715 } 787 const std::vector<G4double>* aVec = << 716 if ( Ekin<=listOfAdjointEMModel[i]->GetHighEnergyLimit() && Ekin>=listOfAdjointEMModel[i]->GetLowEnergyLimit()){ 788 G4ProductionCutsTable::GetProduction << 717 if (aPartDef == listOfAdjointEMModel[i]->GetAdjointEquivalentOfDirectPrimaryParticleDefinition()){ 789 idx); << 718 CS=ComputeAdjointCS(currentMaterial, 790 Tlow = (*aVec)[aCouple->GetIndex()]; << 719 listOfAdjointEMModel[i], 791 } << 720 Ekin, Tlow,true,CS_Vs_Element); 792 } << 721 TotalCS += CS; 793 if(Ekin <= adjModel->GetHighEnergyLimit() << 722 (*listSigmaTableForAdjointModelScatProjToProj[i])[currentMatIndex]->PutValue(eindex,CS); 794 Ekin >= adjModel->GetLowEnergyLimit()) << 723 } 795 { << 724 if (aPartDef == listOfAdjointEMModel[i]->GetAdjointEquivalentOfDirectSecondaryParticleDefinition()){ 796 if(aPartDef == << 725 CS = ComputeAdjointCS(currentMaterial, 797 adjModel->GetAdjointEquivalentOfDirec << 726 listOfAdjointEMModel[i], 798 { << 727 Ekin, Tlow,false, CS_Vs_Element); 799 CS = ComputeAdjointCS(fCurrentMaterial << 728 TotalCS += CS; 800 CS_Vs_Element); << 729 (*listSigmaTableForAdjointModelProdToProj[i])[currentMatIndex]->PutValue(eindex,CS); 801 TotalCS += CS; << 730 } 802 (*fSigmaTableForAdjointModelScatProjTo << 731 803 ->PutValue(fNbins, CS); << 732 } 804 } << 733 else { 805 if(aPartDef == << 734 (*listSigmaTableForAdjointModelScatProjToProj[i])[currentMatIndex]->PutValue(eindex,0.); 806 adjModel->GetAdjointEquivalentOfDirec << 735 (*listSigmaTableForAdjointModelProdToProj[i])[currentMatIndex]->PutValue(eindex,0.); 807 { << 736 808 CS = ComputeAdjointCS(fCurrentMaterial << 737 } 809 CS_Vs_Element); << 738 } 810 TotalCS += CS; << 739 return TotalCS; 811 (*fSigmaTableForAdjointModelProdToProj << 740 812 fNbins, CS); << 741 813 } << 742 } 814 } << 815 else << 816 { << 817 (*fSigmaTableForAdjointModelScatProjToPr << 818 ->PutValue(fNbins, 0.); << 819 (*fSigmaTableForAdjointModelProdToProj[i << 820 fNbins, 0.); << 821 } << 822 } << 823 return TotalCS; << 824 } << 825 << 826 ////////////////////////////////////////////// 743 /////////////////////////////////////////////////////// >> 744 // 827 std::vector<G4AdjointCSMatrix*> 745 std::vector<G4AdjointCSMatrix*> 828 G4AdjointCSManager::BuildCrossSectionsModelAnd << 746 G4AdjointCSManager::BuildCrossSectionsMatricesForAGivenModelAndElement(G4VEmAdjointModel* aModel,G4int Z,G4int A, 829 << 747 G4int nbin_pro_decade) 830 << 748 { 831 { << 749 G4AdjointCSMatrix* theCSMatForProdToProjBackwardScattering = new G4AdjointCSMatrix(false); 832 G4AdjointCSMatrix* theCSMatForProdToProjBack << 750 G4AdjointCSMatrix* theCSMatForScatProjToProjBackwardScattering = new G4AdjointCSMatrix(true); 833 new G4AdjointCSMatrix(false); << 751 834 G4AdjointCSMatrix* theCSMatForScatProjToProj << 752 835 new G4AdjointCSMatrix(true); << 753 //make the vector of primary energy of the adjoint particle, could try to make this just once ? 836 << 754 837 // make the vector of primary energy of the << 755 G4double EkinMin =aModel->GetLowEnergyLimit(); 838 G4double EkinMin = aModel->GetLowEner << 756 G4double EkinMaxForScat =aModel->GetHighEnergyLimit()*0.999; 839 G4double EkinMaxForScat = aModel->GetHighEne << 757 G4double EkinMaxForProd =aModel->GetHighEnergyLimit()*0.999; 840 G4double EkinMaxForProd = aModel->GetHighEne << 758 if (aModel->GetSecondPartOfSameType() )EkinMaxForProd =EkinMaxForProd/2.; 841 if(aModel->GetSecondPartOfSameType()) << 759 842 EkinMaxForProd = EkinMaxForProd / 2.; << 760 843 << 761 //Product to projectile backward scattering 844 // Product to projectile backward scattering << 762 //----------------------------------------- 845 G4double dE = std::pow(10., 1. / nbin_pro_de << 763 G4double fE=std::pow(10.,1./nbin_pro_decade); 846 G4double E2 = << 764 G4double E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 847 std::pow(10., double(int(std::log10(EkinMi << 765 G4double E1=EkinMin; 848 nbin_pro_decade) / dE; << 766 while (E1 <EkinMaxForProd){ 849 G4double E1 = EkinMin; << 767 E1=std::max(EkinMin,E2); 850 // Loop checking, 07-Aug-2015, Vladimir Ivan << 768 E1=std::min(EkinMaxForProd,E1); 851 while(E1 < EkinMaxForProd) << 769 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerAtomForSecond(E1,Z,A,nbin_pro_decade); 852 { << 770 if (aMat.size()>=2) { 853 E1 = std::max(EkinMin, E2); << 771 std::vector< double>* log_ESecVec=aMat[0]; 854 E1 = std::min(EkinMaxForProd, E1); << 772 std::vector< double>* log_CSVec=aMat[1]; 855 std::vector<std::vector<double>*> aMat = << 773 G4double log_adjointCS=log_CSVec->back(); 856 aModel->ComputeAdjointCrossSectionVector << 774 //normalise CSVec such that it becomes a probability vector 857 << 775 for (size_t j=0;j<log_CSVec->size();j++) { 858 if(aMat.size() >= 2) << 776 if (j==0) (*log_CSVec)[j] = 0.; 859 { << 777 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS) +1e-50); 860 std::vector<double>* log_ESecVec = aMat[ << 778 } 861 std::vector<double>* log_CSVec = aMat[ << 779 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 862 G4double log_adjointCS = log_C << 780 theCSMatForProdToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 863 // normalise CSVec such that it becomes << 781 } 864 for(std::size_t j = 0; j < log_CSVec->si << 782 E1=E2; 865 { << 783 E2*=fE; 866 if(j == 0) << 784 } 867 (*log_CSVec)[j] = 0.; << 785 868 else << 786 //Scattered projectile to projectile backward scattering 869 (*log_CSVec)[j] = << 787 //----------------------------------------- 870 std::log(1. - std::exp((*log_CSVec << 788 871 } << 789 E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 872 (*log_CSVec)[log_CSVec->size() - 1] = << 790 E1=EkinMin; 873 (*log_CSVec)[log_CSVec->size() - 2] - << 791 while (E1 <EkinMaxForScat){ 874 theCSMatForProdToProjBackwardScattering- << 792 E1=std::max(EkinMin,E2); 875 std::log(E1), log_adjointCS, log_ESecV << 793 E1=std::min(EkinMaxForScat,E1); 876 } << 794 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerAtomForScatProj(E1,Z,A,nbin_pro_decade); 877 E1 = E2; << 795 if (aMat.size()>=2) { 878 E2 *= dE; << 796 std::vector< double>* log_ESecVec=aMat[0]; 879 } << 797 std::vector< double>* log_CSVec=aMat[1]; 880 << 798 G4double log_adjointCS=log_CSVec->back(); 881 // Scattered projectile to projectile backwa << 799 //normalise CSVec such that it becomes a probability vector 882 E2 = std::pow(10., G4double(int(std::log10(E << 800 for (size_t j=0;j<log_CSVec->size();j++) { 883 nbin_pro_decade) / dE; << 801 if (j==0) (*log_CSVec)[j] = 0.; 884 E1 = EkinMin; << 802 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS)+1e-50); 885 // Loop checking, 07-Aug-2015, Vladimir Ivan << 803 } 886 while(E1 < EkinMaxForScat) << 804 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 887 { << 805 theCSMatForScatProjToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 888 E1 = std::max(EkinMin, E2); << 806 } 889 E1 = std::min(EkinMaxForScat, E1); << 807 E1=E2; 890 std::vector<std::vector<G4double>*> aMat = << 808 E2*=fE; 891 aModel->ComputeAdjointCrossSectionVector << 809 } 892 E1, Z, A, nbin_pro_decade); << 810 893 if(aMat.size() >= 2) << 811 894 { << 895 std::vector<G4double>* log_ESecVec = aMa << 896 std::vector<G4double>* log_CSVec = aMa << 897 G4double log_adjointCS = log << 898 // normalise CSVec such that it becomes << 899 for(std::size_t j = 0; j < log_CSVec->si << 900 { << 901 if(j == 0) << 902 (*log_CSVec)[j] = 0.; << 903 else << 904 (*log_CSVec)[j] = << 905 std::log(1. - std::exp((*log_CSVec << 906 } << 907 (*log_CSVec)[log_CSVec->size() - 1] = << 908 (*log_CSVec)[log_CSVec->size() - 2] - << 909 theCSMatForScatProjToProjBackwardScatter << 910 std::log(E1), log_adjointCS, log_ESecV << 911 } << 912 E1 = E2; << 913 E2 *= dE; << 914 } << 915 << 916 std::vector<G4AdjointCSMatrix*> res; 812 std::vector<G4AdjointCSMatrix*> res; >> 813 res.clear(); 917 res.push_back(theCSMatForProdToProjBackwardS 814 res.push_back(theCSMatForProdToProjBackwardScattering); 918 res.push_back(theCSMatForScatProjToProjBackw 815 res.push_back(theCSMatForScatProjToProjBackwardScattering); >> 816 >> 817 >> 818 /* >> 819 G4String file_name; >> 820 std::stringstream astream; >> 821 G4String str_Z; >> 822 astream<<Z; >> 823 astream>>str_Z; >> 824 theCSMatForProdToProjBackwardScattering->Write(aModel->GetName()+G4String("_CSMat_Z")+str_Z+"_ProdToProj.txt"); >> 825 theCSMatForScatProjToProjBackwardScattering->Write(aModel->GetName()+G4String("_CSMat_Z")+str_Z+"_ScatProjToProj.txt"); >> 826 >> 827 */ 919 828 >> 829 920 return res; 830 return res; >> 831 >> 832 921 } 833 } 922 << 923 ////////////////////////////////////////////// 834 /////////////////////////////////////////////////////// >> 835 // 924 std::vector<G4AdjointCSMatrix*> 836 std::vector<G4AdjointCSMatrix*> 925 G4AdjointCSManager::BuildCrossSectionsModelAnd << 837 G4AdjointCSManager::BuildCrossSectionsMatricesForAGivenModelAndMaterial(G4VEmAdjointModel* aModel, 926 G4VEmAdjointModel* aModel, G4Material* aMate << 838 G4Material* aMaterial, 927 { << 839 G4int nbin_pro_decade) 928 G4AdjointCSMatrix* theCSMatForProdToProjBack << 840 { 929 new G4AdjointCSMatrix(false); << 841 G4AdjointCSMatrix* theCSMatForProdToProjBackwardScattering = new G4AdjointCSMatrix(false); 930 G4AdjointCSMatrix* theCSMatForScatProjToProj << 842 G4AdjointCSMatrix* theCSMatForScatProjToProjBackwardScattering = new G4AdjointCSMatrix(true); 931 new G4AdjointCSMatrix(true); << 843 932 << 844 933 G4double EkinMin = aModel->GetLowEner << 845 //make the vector of primary energy of the adjoint particle, could try to make this just once ? 934 G4double EkinMaxForScat = aModel->GetHighEne << 846 935 G4double EkinMaxForProd = aModel->GetHighEne << 847 G4double EkinMin =aModel->GetLowEnergyLimit(); 936 if(aModel->GetSecondPartOfSameType()) << 848 G4double EkinMaxForScat =aModel->GetHighEnergyLimit()*0.999; 937 EkinMaxForProd /= 2.; << 849 G4double EkinMaxForProd =aModel->GetHighEnergyLimit()*0.999; 938 << 850 if (aModel->GetSecondPartOfSameType() )EkinMaxForProd =EkinMaxForProd/2.; 939 // Product to projectile backward scattering << 851 940 G4double dE = std::pow(10., 1. / nbin_pro_de << 852 941 G4double E2 = << 853 942 std::pow(10., double(int(std::log10(EkinMi << 854 943 nbin_pro_decade) / dE; << 855 944 G4double E1 = EkinMin; << 856 945 // Loop checking, 07-Aug-2015, Vladimir Ivan << 857 946 while(E1 < EkinMaxForProd) << 858 //Product to projectile backward scattering 947 { << 859 //----------------------------------------- 948 E1 = std::max(EkinMin, E2); << 860 G4double fE=std::pow(10.,1./nbin_pro_decade); 949 E1 = std::min(EkinMaxForProd, E1); << 861 G4double E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 950 std::vector<std::vector<G4double>*> aMat = << 862 G4double E1=EkinMin; 951 aModel->ComputeAdjointCrossSectionVector << 863 while (E1 <EkinMaxForProd){ 952 aMaterial, E1, nbin_pro_decade); << 864 E1=std::max(EkinMin,E2); 953 if(aMat.size() >= 2) << 865 E1=std::min(EkinMaxForProd,E1); 954 { << 866 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerVolumeForSecond(aMaterial,E1,nbin_pro_decade); 955 std::vector<G4double>* log_ESecVec = aMa << 867 if (aMat.size()>=2) { 956 std::vector<G4double>* log_CSVec = aMa << 868 std::vector< double>* log_ESecVec=aMat[0]; 957 G4double log_adjointCS = log << 869 std::vector< double>* log_CSVec=aMat[1]; 958 << 870 G4double log_adjointCS=log_CSVec->back(); 959 // normalise CSVec such that it becomes << 871 960 for(std::size_t j = 0; j < log_CSVec->si << 872 //normalise CSVec such that it becomes a probability vector 961 { << 873 for (size_t j=0;j<log_CSVec->size();j++) { 962 if(j == 0) << 874 //G4cout<<"CSMan1 "<<(*log_CSVec)[j]<<G4endl; 963 (*log_CSVec)[j] = 0.; << 875 if (j==0) (*log_CSVec)[j] = 0.; 964 else << 876 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS)); 965 (*log_CSVec)[j] = << 877 //G4cout<<"CSMan2 "<<(*log_CSVec)[j]<<G4endl; 966 std::log(1. - std::exp((*log_CSVec << 878 } 967 } << 879 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 968 (*log_CSVec)[log_CSVec->size() - 1] = << 880 theCSMatForProdToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 969 (*log_CSVec)[log_CSVec->size() - 2] - << 881 } 970 theCSMatForProdToProjBackwardScattering- << 882 971 std::log(E1), log_adjointCS, log_ESecV << 883 972 } << 884 973 << 885 E1=E2; 974 E1 = E2; << 886 E2*=fE; 975 E2 *= dE; << 887 } 976 } << 888 977 << 889 //Scattered projectile to projectile backward scattering 978 // Scattered projectile to projectile backwa << 890 //----------------------------------------- 979 E2 = << 891 980 std::pow(10., G4double(G4int(std::log10(Ek << 892 E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 981 nbin_pro_decade) / << 893 E1=EkinMin; 982 dE; << 894 while (E1 <EkinMaxForScat){ 983 E1 = EkinMin; << 895 E1=std::max(EkinMin,E2); 984 while(E1 < EkinMaxForScat) << 896 E1=std::min(EkinMaxForScat,E1); 985 { << 897 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerVolumeForScatProj(aMaterial,E1,nbin_pro_decade); 986 E1 = std::max(EkinMin, E2); << 898 if (aMat.size()>=2) { 987 E1 = std::min(EkinMaxForScat, E1); << 899 std::vector< double>* log_ESecVec=aMat[0]; 988 std::vector<std::vector<G4double>*> aMat = << 900 std::vector< double>* log_CSVec=aMat[1]; 989 aModel->ComputeAdjointCrossSectionVector << 901 G4double log_adjointCS=log_CSVec->back(); 990 aMaterial, E1, nbin_pro_decade); << 902 991 if(aMat.size() >= 2) << 903 for (size_t j=0;j<log_CSVec->size();j++) { 992 { << 904 //G4cout<<"CSMan1 "<<(*log_CSVec)[j]<<G4endl; 993 std::vector<G4double>* log_ESecVec = aMa << 905 if (j==0) (*log_CSVec)[j] = 0.; 994 std::vector<G4double>* log_CSVec = aMa << 906 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS)); 995 G4double log_adjointCS = log << 907 //G4cout<<"CSMan2 "<<(*log_CSVec)[j]<<G4endl;if (theAdjPartDef->GetParticleName() == "adj_gamma") return G4Gamma::Gamma(); 996 << 908 997 for(std::size_t j = 0; j < log_CSVec->si << 909 } 998 { << 910 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 999 if(j == 0) << 911 1000 (*log_CSVec)[j] = 0.; << 912 theCSMatForScatProjToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 1001 else << 913 } 1002 (*log_CSVec)[j] = << 914 E1=E2; 1003 std::log(1. - std::exp((*log_CSVe << 915 E2*=fE; 1004 } << 916 } 1005 (*log_CSVec)[log_CSVec->size() - 1] = << 917 1006 (*log_CSVec)[log_CSVec->size() - 2] - << 918 1007 << 919 1008 theCSMatForScatProjToProjBackwardScatte << 920 1009 std::log(E1), log_adjointCS, log_ESec << 921 1010 } << 922 1011 E1 = E2; << 923 1012 E2 *= dE; << 1013 } << 1014 << 1015 std::vector<G4AdjointCSMatrix*> res; 924 std::vector<G4AdjointCSMatrix*> res; >> 925 res.clear(); >> 926 1016 res.push_back(theCSMatForProdToProjBackward 927 res.push_back(theCSMatForProdToProjBackwardScattering); 1017 res.push_back(theCSMatForScatProjToProjBack << 928 res.push_back(theCSMatForScatProjToProjBackwardScattering); >> 929 >> 930 /* >> 931 theCSMatForProdToProjBackwardScattering->Write(aModel->GetName()+"_CSMat_"+aMaterial->GetName()+"_ProdToProj.txt"); >> 932 theCSMatForScatProjToProjBackwardScattering->Write(aModel->GetName()+"_CSMat_"+aMaterial->GetName()+"_ScatProjToProj.txt"); >> 933 */ >> 934 1018 935 1019 return res; 936 return res; >> 937 >> 938 1020 } 939 } 1021 940 1022 ///////////////////////////////////////////// 941 /////////////////////////////////////////////////////// 1023 G4ParticleDefinition* G4AdjointCSManager::Get << 942 // 1024 G4ParticleDefinition* theFwdPartDef) << 943 G4ParticleDefinition* G4AdjointCSManager::GetAdjointParticleEquivalent(G4ParticleDefinition* theFwdPartDef) 1025 { 944 { 1026 if(theFwdPartDef->GetParticleName() == "e-" << 945 if (theFwdPartDef->GetParticleName() == "e-") return G4AdjointElectron::AdjointElectron(); 1027 return G4AdjointElectron::AdjointElectron << 946 else if (theFwdPartDef->GetParticleName() == "gamma") return G4AdjointGamma::AdjointGamma(); 1028 else if(theFwdPartDef->GetParticleName() == << 947 else if (theFwdPartDef->GetParticleName() == "proton") return G4AdjointProton::AdjointProton(); 1029 return G4AdjointGamma::AdjointGamma(); << 948 else if (theFwdPartDef ==theFwdIon) return theAdjIon; 1030 else if(theFwdPartDef->GetParticleName() == << 949 1031 return G4AdjointProton::AdjointProton(); << 950 return 0; 1032 else if(theFwdPartDef == fFwdIon) << 1033 return fAdjIon; << 1034 return nullptr; << 1035 } 951 } 1036 << 1037 ///////////////////////////////////////////// 952 /////////////////////////////////////////////////////// 1038 G4ParticleDefinition* G4AdjointCSManager::Get << 953 // 1039 G4ParticleDefinition* theAdjPartDef) << 954 G4ParticleDefinition* G4AdjointCSManager::GetForwardParticleEquivalent(G4ParticleDefinition* theAdjPartDef) 1040 { 955 { 1041 if(theAdjPartDef->GetParticleName() == "adj << 956 if (theAdjPartDef->GetParticleName() == "adj_e-") return G4Electron::Electron(); 1042 return G4Electron::Electron(); << 957 else if (theAdjPartDef->GetParticleName() == "adj_gamma") return G4Gamma::Gamma(); 1043 else if(theAdjPartDef->GetParticleName() == << 958 else if (theAdjPartDef->GetParticleName() == "adj_proton") return G4Proton::Proton(); 1044 return G4Gamma::Gamma(); << 959 else if (theAdjPartDef == theAdjIon) return theFwdIon; 1045 else if(theAdjPartDef->GetParticleName() == << 960 return 0; 1046 return G4Proton::Proton(); << 1047 else if(theAdjPartDef == fAdjIon) << 1048 return fFwdIon; << 1049 return nullptr; << 1050 } 961 } 1051 << 1052 ///////////////////////////////////////////// 962 /////////////////////////////////////////////////////// 1053 void G4AdjointCSManager::DefineCurrentMateria << 963 // 1054 const G4MaterialCutsCouple* couple) << 964 void G4AdjointCSManager::DefineCurrentMaterial(const G4MaterialCutsCouple* couple) 1055 { 965 { 1056 if(couple != fCurrentCouple) << 966 if(couple != currentCouple) { 1057 { << 967 currentCouple = const_cast<G4MaterialCutsCouple*> (couple); 1058 fCurrentCouple = const_cast<G4Ma << 968 currentMaterial = const_cast<G4Material*> (couple->GetMaterial()); 1059 fCurrentMaterial = const_cast<G4Ma << 969 currentMatIndex = couple->GetIndex(); 1060 fCurrentMatIndex = couple->GetInde << 970 lastPartDefForCS =0; 1061 fLastCSCorrectionFactor = 1.; << 971 LastEkinForCS =0; 1062 } << 972 LastCSCorrectionFactor =1.; >> 973 } 1063 } 974 } 1064 975 1065 ///////////////////////////////////////////// 976 /////////////////////////////////////////////////////// 1066 void G4AdjointCSManager::DefineCurrentParticl << 977 // 1067 const G4ParticleDefinition* aPartDef) << 978 void G4AdjointCSManager::DefineCurrentParticle(const G4ParticleDefinition* aPartDef) 1068 { 979 { 1069 << 980 if(aPartDef != currentParticleDef) { 1070 if(aPartDef != fCurrentParticleDef) << 981 1071 { << 982 currentParticleDef= const_cast< G4ParticleDefinition* > (aPartDef); 1072 fCurrentParticleDef = const_cast<G4Partic << 983 massRatio=1; 1073 fMassRatio = 1.; << 984 if (aPartDef == theAdjIon) massRatio = proton_mass_c2/aPartDef->GetPDGMass(); 1074 if(aPartDef == fAdjIon) << 985 currentParticleIndex=1000000; 1075 fMassRatio = proton_mass_c2 / aPartDef- << 986 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 1076 fCurrentParticleIndex = 1000000; << 987 if (aPartDef == theListOfAdjointParticlesInAction[i]) currentParticleIndex=i; 1077 for(std::size_t i = 0; i < fAdjointPartic << 988 } 1078 { << 989 1079 if(aPartDef == fAdjointParticlesInActio << 990 } 1080 fCurrentParticleIndex = i; << 1081 } << 1082 } << 1083 } 991 } 1084 992 1085 ///////////////////////////////////////////// << 1086 G4double G4AdjointCSManager::ComputeAdjointCS << 1087 G4double aPrimEnergy, G4AdjointCSMatrix* an << 1088 { << 1089 std::vector<double>* theLogPrimEnergyVector << 1090 anAdjointCSMatrix->GetLogPrimEnergyVector << 1091 if(theLogPrimEnergyVector->empty()) << 1092 { << 1093 G4cout << "No data are contained in the g << 1094 return 0.; << 1095 } << 1096 G4double log_Tcut = std::log(Tcut); << 1097 G4double log_E = std::log(aPrimEnergy); << 1098 << 1099 if(aPrimEnergy <= Tcut || log_E > theLogPri << 1100 return 0.; << 1101 993 1102 G4AdjointInterpolator* theInterpolator = G4 << 1103 994 1104 std::size_t ind = << 995 ///////////////////////////////////////////////////////////////////////////////////////////////// 1105 theInterpolator->FindPositionForLogVector << 996 // 1106 G4double aLogPrimEnergy1, aLogPrimEnergy2; << 997 G4double G4AdjointCSManager::ComputeAdjointCS(G4double aPrimEnergy,G4AdjointCSMatrix* 1107 G4double aLogCS1, aLogCS2; << 998 anAdjointCSMatrix,G4double Tcut) 1108 G4double log01, log02; << 999 { 1109 std::vector<G4double>* aLogSecondEnergyVect << 1000 std::vector< double> *theLogPrimEnergyVector = anAdjointCSMatrix->GetLogPrimEnergyVector(); 1110 std::vector<G4double>* aLogSecondEnergyVect << 1001 if (theLogPrimEnergyVector->size() ==0){ 1111 std::vector<G4double>* aLogProbVector1 << 1002 G4cout<<"No data are contained in the given AdjointCSMatrix!"<<G4endl; 1112 std::vector<G4double>* aLogProbVector2 << 1003 G4cout<<"The s"<<G4endl; 1113 std::vector<std::size_t>* aLogProbVectorInd << 1004 return 0.; 1114 std::vector<std::size_t>* aLogProbVectorInd << 1005 1115 << 1116 anAdjointCSMatrix->GetData((G4int)ind, aLog << 1117 aLogSecondEnergy << 1118 aLogProbVectorIn << 1119 anAdjointCSMatrix->GetData(G4int(ind + 1), << 1120 aLogSecondEnergy << 1121 aLogProbVectorIn << 1122 if (! (aLogProbVector1 && aLogProbVector2 & << 1123 aLogSecondEnergyVector1 && aLogS << 1124 return 0.; << 1125 } 1006 } >> 1007 G4double log_Tcut = std::log(Tcut); >> 1008 G4double log_E =std::log(aPrimEnergy); >> 1009 >> 1010 if (aPrimEnergy <= Tcut || log_E > theLogPrimEnergyVector->back()) return 0.; >> 1011 >> 1012 1126 1013 1127 if(anAdjointCSMatrix->IsScatProjToProj()) << 1014 G4AdjointInterpolator* theInterpolator=G4AdjointInterpolator::GetInstance(); 1128 { // case where the Tcut plays a role << 1015 1129 G4double log_minimum_prob1, log_minimum_p << 1016 size_t ind =theInterpolator->FindPositionForLogVector(log_E,*theLogPrimEnergyVector); 1130 log_minimum_prob1 = theInterpolator->Inte << 1017 G4double aLogPrimEnergy1,aLogPrimEnergy2; 1131 log_Tcut, *aLogSecondEnergyVector1, *aL << 1018 G4double aLogCS1,aLogCS2; 1132 log_minimum_prob2 = theInterpolator->Inte << 1019 G4double log01,log02; 1133 log_Tcut, *aLogSecondEnergyVector2, *aL << 1020 std::vector< double>* aLogSecondEnergyVector1 =0; 1134 aLogCS1 += log_minimum_prob1; << 1021 std::vector< double>* aLogSecondEnergyVector2 =0; 1135 aLogCS2 += log_minimum_prob2; << 1022 std::vector< double>* aLogProbVector1=0; >> 1023 std::vector< double>* aLogProbVector2=0; >> 1024 std::vector< size_t>* aLogProbVectorIndex1=0; >> 1025 std::vector< size_t>* aLogProbVectorIndex2=0; >> 1026 >> 1027 >> 1028 anAdjointCSMatrix->GetData(ind, aLogPrimEnergy1,aLogCS1,log01, aLogSecondEnergyVector1,aLogProbVector1,aLogProbVectorIndex1); >> 1029 anAdjointCSMatrix->GetData(ind+1, aLogPrimEnergy2,aLogCS2,log02, aLogSecondEnergyVector2,aLogProbVector2,aLogProbVectorIndex2); >> 1030 if (anAdjointCSMatrix->IsScatProjToProjCase()){ //case where the Tcut plays a role >> 1031 G4double log_minimum_prob1, log_minimum_prob2; >> 1032 log_minimum_prob1=theInterpolator->InterpolateForLogVector(log_Tcut,*aLogSecondEnergyVector1,*aLogProbVector1); >> 1033 log_minimum_prob2=theInterpolator->InterpolateForLogVector(log_Tcut,*aLogSecondEnergyVector2,*aLogProbVector2); >> 1034 aLogCS1+= log_minimum_prob1; >> 1035 aLogCS2+= log_minimum_prob2; 1136 } 1036 } 1137 << 1037 1138 G4double log_adjointCS = theInterpolator->L << 1038 G4double log_adjointCS = theInterpolator->LinearInterpolation(log_E,aLogPrimEnergy1,aLogPrimEnergy2,aLogCS1,aLogCS2); 1139 log_E, aLogPrimEnergy1, aLogPrimEnergy2, << 1039 return std::exp(log_adjointCS); 1140 return std::exp(log_adjointCS); << 1040 1141 } << 1041 >> 1042 } 1142 1043