Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4AdjointCSManager.cc 93569 2015-10-26 14:53:21Z gcosmo $ 26 // 27 // 27 28 >> 29 #include <fstream> >> 30 #include <iomanip> >> 31 28 #include "G4AdjointCSManager.hh" 32 #include "G4AdjointCSManager.hh" 29 33 >> 34 #include "G4PhysicalConstants.hh" >> 35 #include "G4SystemOfUnits.hh" 30 #include "G4AdjointCSMatrix.hh" 36 #include "G4AdjointCSMatrix.hh" 31 #include "G4AdjointElectron.hh" << 32 #include "G4AdjointGamma.hh" << 33 #include "G4AdjointInterpolator.hh" 37 #include "G4AdjointInterpolator.hh" 34 #include "G4AdjointProton.hh" << 38 #include "G4AdjointCSMatrix.hh" 35 #include "G4Electron.hh" << 39 #include "G4VEmAdjointModel.hh" 36 #include "G4Element.hh" << 37 #include "G4ElementTable.hh" 40 #include "G4ElementTable.hh" 38 #include "G4Gamma.hh" << 41 #include "G4Element.hh" 39 #include "G4ParticleDefinition.hh" 42 #include "G4ParticleDefinition.hh" 40 #include "G4PhysicalConstants.hh" << 43 #include "G4Element.hh" 41 #include "G4PhysicsLogVector.hh" << 42 #include "G4PhysicsTable.hh" << 43 #include "G4ProductionCutsTable.hh" << 44 #include "G4Proton.hh" << 45 #include "G4SystemOfUnits.hh" << 46 #include "G4VEmAdjointModel.hh" << 47 #include "G4VEmProcess.hh" 44 #include "G4VEmProcess.hh" 48 #include "G4VEnergyLossProcess.hh" 45 #include "G4VEnergyLossProcess.hh" >> 46 #include "G4PhysicsTable.hh" >> 47 #include "G4PhysicsLogVector.hh" >> 48 #include "G4PhysicsTableHelper.hh" >> 49 #include "G4Electron.hh" >> 50 #include "G4Gamma.hh" >> 51 #include "G4Proton.hh" >> 52 #include "G4AdjointElectron.hh" >> 53 #include "G4AdjointGamma.hh" >> 54 #include "G4AdjointProton.hh" >> 55 #include "G4ProductionCutsTable.hh" >> 56 #include "G4ProductionCutsTable.hh" 49 57 50 G4ThreadLocal G4AdjointCSManager* G4AdjointCSM << 58 G4ThreadLocal G4AdjointCSManager* G4AdjointCSManager::theInstance = nullptr; 51 << 52 constexpr G4double G4AdjointCSManager::fTmin; << 53 constexpr G4double G4AdjointCSManager::fTmax; << 54 constexpr G4int G4AdjointCSManager::fNbins; << 55 << 56 ////////////////////////////////////////////// 59 /////////////////////////////////////////////////////// >> 60 // 57 G4AdjointCSManager* G4AdjointCSManager::GetAdj 61 G4AdjointCSManager* G4AdjointCSManager::GetAdjointCSManager() 58 { << 62 { 59 if(fInstance == nullptr) << 63 if(theInstance == nullptr) { 60 { << 61 static G4ThreadLocalSingleton<G4AdjointCSM 64 static G4ThreadLocalSingleton<G4AdjointCSManager> inst; 62 fInstance = inst.Instance(); << 65 theInstance = inst.Instance(); 63 } 66 } 64 return fInstance; << 67 return theInstance; 65 } 68 } 66 69 67 ////////////////////////////////////////////// 70 /////////////////////////////////////////////////////// >> 71 // 68 G4AdjointCSManager::G4AdjointCSManager() 72 G4AdjointCSManager::G4AdjointCSManager() 69 { << 73 { CrossSectionMatrixesAreBuilt=false; >> 74 TotalSigmaTableAreBuilt=false; >> 75 theTotalForwardSigmaTableVector.clear(); >> 76 theTotalAdjointSigmaTableVector.clear(); >> 77 listOfForwardEmProcess.clear(); >> 78 listOfForwardEnergyLossProcess.clear(); >> 79 theListOfAdjointParticlesInAction.clear(); >> 80 EminForFwdSigmaTables.clear(); >> 81 EminForAdjSigmaTables.clear(); >> 82 EkinofFwdSigmaMax.clear(); >> 83 EkinofAdjSigmaMax.clear(); >> 84 listSigmaTableForAdjointModelScatProjToProj.clear(); >> 85 listSigmaTableForAdjointModelProdToProj.clear(); >> 86 Tmin=0.1*keV; >> 87 Tmax=100.*TeV; >> 88 nbins=320; //probably this should be decrease, that was choosen to avoid error in the CS value closed to CS jump.(For example at Tcut) >> 89 70 RegisterAdjointParticle(G4AdjointElectron::A 90 RegisterAdjointParticle(G4AdjointElectron::AdjointElectron()); 71 RegisterAdjointParticle(G4AdjointGamma::Adjo 91 RegisterAdjointParticle(G4AdjointGamma::AdjointGamma()); 72 RegisterAdjointParticle(G4AdjointProton::Adj 92 RegisterAdjointParticle(G4AdjointProton::AdjointProton()); 73 } << 93 >> 94 verbose = 1; >> 95 currentParticleIndex = 0; >> 96 currentMatIndex = 0; >> 97 eindex = 0; >> 98 >> 99 lastPartDefForCS = nullptr; >> 100 LastEkinForCS = lastPrimaryEnergy = lastTcut = 0.; >> 101 LastCSCorrectionFactor = massRatio = 1.; >> 102 >> 103 forward_CS_is_used = true; >> 104 forward_CS_mode = true; >> 105 >> 106 currentParticleDef = nullptr; >> 107 currentCouple =nullptr; >> 108 currentMaterial=nullptr; >> 109 lastMaterial=nullptr; 74 110 >> 111 theAdjIon = nullptr; >> 112 theFwdIon = nullptr; >> 113 >> 114 PreadjCS = PostadjCS = PrefwdCS = PostfwdCS = 0.0; >> 115 } 75 ////////////////////////////////////////////// 116 /////////////////////////////////////////////////////// >> 117 // 76 G4AdjointCSManager::~G4AdjointCSManager() 118 G4AdjointCSManager::~G4AdjointCSManager() 77 { << 119 {; 78 for (auto& p : fAdjointCSMatricesForProdToPr << 79 for (auto p1 : p) { << 80 if (p1) { << 81 delete p1; << 82 p1 = nullptr; << 83 } << 84 } << 85 p.clear(); << 86 } << 87 fAdjointCSMatricesForProdToProj.clear(); << 88 << 89 for (auto& p : fAdjointCSMatricesForScatProj << 90 for (auto p1 : p) { << 91 if (p1) { << 92 delete p1; << 93 p1 = nullptr; << 94 } << 95 } << 96 p.clear(); << 97 } << 98 fAdjointCSMatricesForScatProjToProj.clear(); << 99 << 100 for (auto p : fAdjointModels) { << 101 if (p) { << 102 delete p; << 103 p = nullptr; << 104 } << 105 } << 106 fAdjointModels.clear(); << 107 << 108 for (auto p : fTotalAdjSigmaTable) { << 109 p->clearAndDestroy(); << 110 delete p; << 111 p = nullptr; << 112 } << 113 fTotalAdjSigmaTable.clear(); << 114 << 115 for (auto p : fSigmaTableForAdjointModelScat << 116 p->clearAndDestroy(); << 117 delete p; << 118 p = nullptr; << 119 } << 120 fSigmaTableForAdjointModelScatProjToProj.cle << 121 << 122 for (auto p : fSigmaTableForAdjointModelProd << 123 p->clearAndDestroy(); << 124 delete p; << 125 p = nullptr; << 126 } << 127 fSigmaTableForAdjointModelProdToProj.clear() << 128 << 129 for (auto p : fTotalFwdSigmaTable) { << 130 p->clearAndDestroy(); << 131 delete p; << 132 p = nullptr; << 133 } << 134 fTotalFwdSigmaTable.clear(); << 135 << 136 for (auto p : fForwardProcesses) { << 137 delete p; << 138 p = nullptr; << 139 } << 140 fForwardProcesses.clear(); << 141 << 142 for (auto p : fForwardLossProcesses) { << 143 delete p; << 144 p = nullptr; << 145 } << 146 fForwardLossProcesses.clear(); << 147 } 120 } 148 << 149 ////////////////////////////////////////////// 121 /////////////////////////////////////////////////////// 150 std::size_t G4AdjointCSManager::RegisterEmAdjo << 122 // 151 { << 123 size_t G4AdjointCSManager::RegisterEmAdjointModel(G4VEmAdjointModel* aModel) 152 fAdjointModels.push_back(aModel); << 124 {listOfAdjointEMModel.push_back(aModel); 153 fSigmaTableForAdjointModelScatProjToProj.pus << 125 listSigmaTableForAdjointModelScatProjToProj.push_back(new G4PhysicsTable); 154 fSigmaTableForAdjointModelProdToProj.push_ba << 126 listSigmaTableForAdjointModelProdToProj.push_back(new G4PhysicsTable); 155 return fAdjointModels.size() - 1; << 127 return listOfAdjointEMModel.size() -1; >> 128 156 } 129 } 157 << 158 ////////////////////////////////////////////// 130 /////////////////////////////////////////////////////// 159 void G4AdjointCSManager::RegisterEmProcess(G4V << 131 // 160 G4P << 132 void G4AdjointCSManager::RegisterEmProcess(G4VEmProcess* aProcess, G4ParticleDefinition* aFwdPartDef) 161 { << 133 { 162 G4ParticleDefinition* anAdjPartDef = << 134 G4ParticleDefinition* anAdjPartDef = GetAdjointParticleEquivalent(aFwdPartDef); 163 GetAdjointParticleEquivalent(aFwdPartDef); << 135 if (anAdjPartDef && aProcess){ 164 if(anAdjPartDef && aProcess) << 136 RegisterAdjointParticle(anAdjPartDef); 165 { << 137 G4int index=-1; 166 RegisterAdjointParticle(anAdjPartDef); << 138 167 << 139 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 168 for(std::size_t i = 0; i < fAdjointParticl << 140 if (anAdjPartDef->GetParticleName() == theListOfAdjointParticlesInAction[i]->GetParticleName()) index=i; 169 { << 141 } 170 if(anAdjPartDef->GetParticleName() == << 142 listOfForwardEmProcess[index]->push_back(aProcess); 171 fAdjointParticlesInAction[i]->GetPart << 172 fForwardProcesses[i]->push_back(aProce << 173 } << 174 } 143 } 175 } 144 } 176 << 177 ////////////////////////////////////////////// 145 /////////////////////////////////////////////////////// 178 void G4AdjointCSManager::RegisterEnergyLossPro << 146 // 179 G4VEnergyLossProcess* aProcess, G4ParticleDe << 147 void G4AdjointCSManager::RegisterEnergyLossProcess(G4VEnergyLossProcess* aProcess, G4ParticleDefinition* aFwdPartDef) 180 { 148 { 181 G4ParticleDefinition* anAdjPartDef = << 149 G4ParticleDefinition* anAdjPartDef = GetAdjointParticleEquivalent(aFwdPartDef); 182 GetAdjointParticleEquivalent(aFwdPartDef); << 150 if (anAdjPartDef && aProcess){ 183 if(anAdjPartDef && aProcess) << 151 RegisterAdjointParticle(anAdjPartDef); 184 { << 152 G4int index=-1; 185 RegisterAdjointParticle(anAdjPartDef); << 153 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 186 for(std::size_t i = 0; i < fAdjointParticl << 154 if (anAdjPartDef->GetParticleName() == theListOfAdjointParticlesInAction[i]->GetParticleName()) index=i; 187 { << 155 } 188 if(anAdjPartDef->GetParticleName() == << 156 listOfForwardEnergyLossProcess[index]->push_back(aProcess); 189 fAdjointParticlesInAction[i]->GetPart << 157 } 190 fForwardLossProc << 191 << 192 } << 193 } << 194 } 158 } 195 << 196 ////////////////////////////////////////////// 159 /////////////////////////////////////////////////////// >> 160 // 197 void G4AdjointCSManager::RegisterAdjointPartic 161 void G4AdjointCSManager::RegisterAdjointParticle(G4ParticleDefinition* aPartDef) 198 { << 162 { G4int index=-1; 199 G4bool found = false; << 163 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 200 for(auto p : fAdjointParticlesInAction) << 164 if (aPartDef->GetParticleName() == theListOfAdjointParticlesInAction[i]->GetParticleName()) index=i; 201 { << 165 } 202 if(p->GetParticleName() == aPartDef->GetPa << 166 203 { << 167 if (index ==-1){ 204 found = true; << 168 listOfForwardEnergyLossProcess.push_back(new std::vector<G4VEnergyLossProcess*>()); 205 } << 169 theTotalForwardSigmaTableVector.push_back(new G4PhysicsTable); 206 } << 170 theTotalAdjointSigmaTableVector.push_back(new G4PhysicsTable); 207 if(!found) << 171 listOfForwardEmProcess.push_back(new std::vector<G4VEmProcess*>()); 208 { << 172 theListOfAdjointParticlesInAction.push_back(aPartDef); 209 fForwardLossProcesses.push_back(new std::v << 173 EminForFwdSigmaTables.push_back(std::vector<G4double> ()); 210 fTotalFwdSigmaTable.push_back(new G4Physic << 174 EminForAdjSigmaTables.push_back(std::vector<G4double> ()); 211 fTotalAdjSigmaTable.push_back(new G4Physic << 175 EkinofFwdSigmaMax.push_back(std::vector<G4double> ()); 212 fForwardProcesses.push_back(new std::vecto << 176 EkinofAdjSigmaMax.push_back(std::vector<G4double> ()); 213 fAdjointParticlesInAction.push_back(aPartD << 177 214 fEminForFwdSigmaTables.push_back(std::vect << 178 } 215 fEminForAdjSigmaTables.push_back(std::vect << 216 fEkinofFwdSigmaMax.push_back(std::vector<G << 217 fEkinofAdjSigmaMax.push_back(std::vector<G << 218 } << 219 } 179 } 220 << 221 ////////////////////////////////////////////// 180 /////////////////////////////////////////////////////// >> 181 // 222 void G4AdjointCSManager::BuildCrossSectionMatr 182 void G4AdjointCSManager::BuildCrossSectionMatrices() 223 { << 183 { 224 if(fCSMatricesBuilt) << 184 if (CrossSectionMatrixesAreBuilt) return; 225 return; << 185 //Tcut, Tmax 226 // The Tcut and Tmax matrices will be comput << 186 //The matrices will be computed probably just once 227 // When Tcut changes, some PhysicsTable will << 187 //When Tcut will change some PhysicsTable will be recomputed 228 // for each MaterialCutCouple but not all th << 188 // for each MaterialCutCouple but not all the matrices 229 // The Tcut defines a lower limit in the ene << 189 //The Tcut defines a lower limit in the energy of the Projectile before the scattering 230 // scattering. In the Projectile to Scattere << 190 //In the Projectile to Scattered Projectile case we have 231 // E_ScatProj<E_Proj-Tcut << 191 // E_ScatProj<E_Proj-Tcut 232 // Therefore in the adjoint case we have << 192 //Therefore in the adjoint case we have 233 // Eproj> E_ScatProj+Tcut << 193 // Eproj> E_ScatProj+Tcut 234 // This implies that when computing the adjo << 194 //This implies that when computing the adjoint CS we should integrate over Epro 235 // Epro from E_ScatProj+Tcut to Emax << 195 // from E_ScatProj+Tcut to Emax 236 // In the Projectile to Secondary case Tcut << 196 //In the Projectile to Secondary case Tcut plays a role only in the fact that 237 // Esecond should be greater than Tcut to ha << 197 // Esecond should be greater than Tcut to have the possibility to have any adjoint 238 // adjoint process. << 198 //process 239 // To avoid recomputing matrices for all cha << 199 //To avoid to recompute the matrices for all changes of MaterialCutCouple 240 // we propose to compute the matrices only o << 200 //We propose to compute the matrices only once for the minimum possible Tcut and then 241 // and then to interpolate the probability f << 201 //to interpolate the probability for a new Tcut (implemented in G4VAdjointEmModel) 242 // G4VAdjointEmModel) << 202 243 << 203 244 fAdjointCSMatricesForScatProjToProj.clear(); << 204 theAdjointCSMatricesForScatProjToProj.clear(); 245 fAdjointCSMatricesForProdToProj.clear(); << 205 theAdjointCSMatricesForProdToProj.clear(); 246 const G4ElementTable* theElementTable = G4 << 206 const G4ElementTable* theElementTable = G4Element::GetElementTable(); 247 const G4MaterialTable* theMaterialTable = G4 << 207 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 248 << 208 249 G4cout << "========== Computation of cross s << 209 G4cout<<"========== Computation of cross section matrices for adjoint models =========="<<G4endl; 250 "models ==========" << 210 for (size_t i=0; i<listOfAdjointEMModel.size();i++){ 251 << G4endl; << 211 G4VEmAdjointModel* aModel =listOfAdjointEMModel[i]; 252 for(const auto& aModel : fAdjointModels) << 212 G4cout<<"Build adjoint cross section matrices for "<<aModel->GetName()<<G4endl; 253 { << 213 if (aModel->GetUseMatrix()){ 254 G4cout << "Build adjoint cross section mat << 214 std::vector<G4AdjointCSMatrix*>* aListOfMat1 = new std::vector<G4AdjointCSMatrix*>(); 255 << G4endl; << 215 std::vector<G4AdjointCSMatrix*>* aListOfMat2 = new std::vector<G4AdjointCSMatrix*>(); 256 if(aModel->GetUseMatrix()) << 216 aListOfMat1->clear(); 257 { << 217 aListOfMat2->clear(); 258 std::vector<G4AdjointCSMatrix*>* aListOf << 218 if (aModel->GetUseMatrixPerElement()){ 259 new std::vector<G4AdjointCSMatrix*>(); << 219 if (aModel->GetUseOnlyOneMatrixForAllElements()){ 260 std::vector<G4AdjointCSMatrix*>* aListOf << 220 std::vector<G4AdjointCSMatrix*> 261 new std::vector<G4AdjointCSMatrix*>(); << 221 two_matrices=BuildCrossSectionsMatricesForAGivenModelAndElement(aModel,1, 1, 80); 262 if(aModel->GetUseMatrixPerElement()) << 222 aListOfMat1->push_back(two_matrices[0]); 263 { << 223 aListOfMat2->push_back(two_matrices[1]); 264 if(aModel->GetUseOnlyOneMatrixForAllEl << 224 } 265 { << 225 else { 266 std::vector<G4AdjointCSMatrix*> two_ << 226 for (size_t j=0; j<theElementTable->size();j++){ 267 BuildCrossSectionsModelAndElement( << 227 G4Element* anElement=(*theElementTable)[j]; 268 aListOfMat1->push_back(two_matrices[ << 228 G4int Z = G4lrint(anElement->GetZ()); 269 aListOfMat2->push_back(two_matrices[ << 229 G4int A = G4lrint(anElement->GetN()); 270 } << 230 std::vector<G4AdjointCSMatrix*> 271 else << 231 two_matrices=BuildCrossSectionsMatricesForAGivenModelAndElement(aModel,Z, A, 40); 272 { << 232 aListOfMat1->push_back(two_matrices[0]); 273 for(const auto& anElement : *theElem << 233 aListOfMat2->push_back(two_matrices[1]); 274 { << 234 } 275 G4int Z = G4lrint(anElement->GetZ( << 235 } 276 G4int A = G4lrint(anElement->GetN( << 236 } 277 std::vector<G4AdjointCSMatrix*> tw << 237 else { //Per material case 278 BuildCrossSectionsModelAndElemen << 238 for (size_t j=0; j<theMaterialTable->size();j++){ 279 aListOfMat1->push_back(two_matrice << 239 G4Material* aMaterial=(*theMaterialTable)[j]; 280 aListOfMat2->push_back(two_matrice << 240 std::vector<G4AdjointCSMatrix*> 281 } << 241 two_matrices=BuildCrossSectionsMatricesForAGivenModelAndMaterial(aModel,aMaterial, 40); 282 } << 242 aListOfMat1->push_back(two_matrices[0]); 283 } << 243 aListOfMat2->push_back(two_matrices[1]); 284 else << 244 } 285 { // Per material case << 245 286 for(const auto& aMaterial : *theMateri << 246 } 287 { << 247 theAdjointCSMatricesForProdToProj.push_back(*aListOfMat1); 288 std::vector<G4AdjointCSMatrix*> two_ << 248 theAdjointCSMatricesForScatProjToProj.push_back(*aListOfMat2); 289 BuildCrossSectionsModelAndMaterial << 249 aModel->SetCSMatrices(aListOfMat1, aListOfMat2); 290 aListOfMat1->push_back(two_matrices[ << 250 } 291 aListOfMat2->push_back(two_matrices[ << 251 else { G4cout<<"The model "<<aModel->GetName()<<" does not use cross section matrices"<<G4endl; 292 } << 252 std::vector<G4AdjointCSMatrix*> two_empty_matrices; 293 } << 253 theAdjointCSMatricesForProdToProj.push_back(two_empty_matrices); 294 fAdjointCSMatricesForProdToProj.push_bac << 254 theAdjointCSMatricesForScatProjToProj.push_back(two_empty_matrices); 295 fAdjointCSMatricesForScatProjToProj.push << 255 296 aModel->SetCSMatrices(aListOfMat1, aList << 256 } 297 } << 257 } 298 else << 258 G4cout<<" All adjoint cross section matrices are computed!"<<G4endl; 299 { << 259 G4cout<<"======================================================================"<<G4endl; 300 G4cout << "The model " << aModel->GetNam << 260 301 << " does not use cross section m << 261 CrossSectionMatrixesAreBuilt = true; 302 std::vector<G4AdjointCSMatrix*> two_empt << 262 303 fAdjointCSMatricesForProdToProj.push_bac << 304 fAdjointCSMatricesForScatProjToProj.push << 305 } << 306 } << 307 G4cout << " All adjoint cross s << 308 << G4endl; << 309 G4cout << 310 << "====================================== << 311 << G4endl; << 312 263 313 fCSMatricesBuilt = true; << 314 } 264 } 315 265 >> 266 316 ////////////////////////////////////////////// 267 /////////////////////////////////////////////////////// >> 268 // 317 void G4AdjointCSManager::BuildTotalSigmaTables 269 void G4AdjointCSManager::BuildTotalSigmaTables() 318 { << 270 { if (TotalSigmaTableAreBuilt) return; 319 if(fSigmaTableBuilt) << 320 return; << 321 << 322 const G4ProductionCutsTable* theCoupleTable << 323 G4ProductionCutsTable::GetProductionCutsTa << 324 << 325 // Prepare the Sigma table for all AdjointEM << 326 for(std::size_t i = 0; i < fAdjointModels.si << 327 { << 328 fSigmaTableForAdjointModelScatProjToProj[i << 329 fSigmaTableForAdjointModelProdToProj[i]->c << 330 for(std::size_t j = 0; j < theCoupleTable- << 331 { << 332 fSigmaTableForAdjointModelScatProjToProj << 333 new G4PhysicsLogVector(fTmin, fTmax, f << 334 fSigmaTableForAdjointModelProdToProj[i]- << 335 new G4PhysicsLogVector(fTmin, fTmax, f << 336 } << 337 } << 338 << 339 for(std::size_t i = 0; i < fAdjointParticles << 340 { << 341 G4ParticleDefinition* thePartDef = fAdjoin << 342 DefineCurrentParticle(thePartDef); << 343 fTotalFwdSigmaTable[i]->clearAndDestroy(); << 344 fTotalAdjSigmaTable[i]->clearAndDestroy(); << 345 fEminForFwdSigmaTables[i].clear(); << 346 fEminForAdjSigmaTables[i].clear(); << 347 fEkinofFwdSigmaMax[i].clear(); << 348 fEkinofAdjSigmaMax[i].clear(); << 349 << 350 for(std::size_t j = 0; j < theCoupleTable- << 351 { << 352 const G4MaterialCutsCouple* couple = << 353 theCoupleTable->GetMaterialCutsCouple( << 354 << 355 // make first the total fwd CS table for << 356 G4PhysicsVector* aVector = new G4Physics << 357 G4bool Emin_found = false; << 358 G4double sigma_max = 0.; << 359 G4double e_sigma_max = 0.; << 360 for(std::size_t l = 0; l < fNbins; ++l) << 361 { << 362 G4double totCS = 0.; << 363 G4double e = aVector->Energy(l); << 364 for(std::size_t k = 0; k < fForwardPro << 365 { << 366 totCS += (*fForwardProcesses[i])[k]- << 367 } << 368 for(std::size_t k = 0; k < fForwardLos << 369 { << 370 if(thePartDef == fAdjIon) << 371 { // e is considered already as the << 372 std::size_t mat_index = couple->Ge << 373 G4VEmModel* currentModel = << 374 (*fForwardLossProcesses[i])[k]-> << 375 << 376 G4double chargeSqRatio = currentMo << 377 fFwdIon, couple->GetMaterial(), << 378 (*fForwardLossProcesses[i])[k]->Se << 379 << 380 } << 381 G4double e1 = e / fMassRatio; << 382 totCS += (*fForwardLossProcesses[i]) << 383 } << 384 aVector->PutValue(l, totCS); << 385 if(totCS > sigma_max) << 386 { << 387 sigma_max = totCS; << 388 e_sigma_max = e; << 389 } << 390 if(totCS > 0 && !Emin_found) << 391 { << 392 fEminForFwdSigmaTables[i].push_back( << 393 Emin_found = true; << 394 } << 395 } << 396 << 397 fEkinofFwdSigmaMax[i].push_back(e_sigma_ << 398 << 399 if(!Emin_found) << 400 fEminForFwdSigmaTables[i].push_back(fT << 401 << 402 fTotalFwdSigmaTable[i]->push_back(aVecto << 403 << 404 Emin_found = false; << 405 sigma_max = 0; << 406 e_sigma_max = 0.; << 407 G4PhysicsVector* aVector1 = new G4Physic << 408 for(std::size_t eindex = 0; eindex < fNb << 409 { << 410 G4double e = aVector1->Energy(eind << 411 G4double totCS = ComputeTotalAdjointCS << 412 couple, thePartDef, << 413 e * 0.9999999 / fMassRatio); // fMa << 414 aVector1->PutValue(eindex, totCS); << 415 if(totCS > sigma_max) << 416 { << 417 sigma_max = totCS; << 418 e_sigma_max = e; << 419 } << 420 if(totCS > 0 && !Emin_found) << 421 { << 422 fEminForAdjSigmaTables[i].push_back( << 423 Emin_found = true; << 424 } << 425 } << 426 fEkinofAdjSigmaMax[i].push_back(e_sigma_ << 427 if(!Emin_found) << 428 fEminForAdjSigmaTables[i].push_back(fT << 429 271 430 fTotalAdjSigmaTable[i]->push_back(aVecto << 272 431 } << 273 const G4ProductionCutsTable* theCoupleTable= G4ProductionCutsTable::GetProductionCutsTable(); >> 274 >> 275 >> 276 //Prepare the Sigma table for all AdjointEMModel, will be filled later on >> 277 for (size_t i=0; i<listOfAdjointEMModel.size();i++){ >> 278 listSigmaTableForAdjointModelScatProjToProj[i]->clearAndDestroy(); >> 279 listSigmaTableForAdjointModelProdToProj[i]->clearAndDestroy(); >> 280 for (size_t j=0;j<theCoupleTable->GetTableSize();j++){ >> 281 listSigmaTableForAdjointModelScatProjToProj[i]->push_back(new G4PhysicsLogVector(Tmin, Tmax, nbins)); >> 282 listSigmaTableForAdjointModelProdToProj[i]->push_back(new G4PhysicsLogVector(Tmin, Tmax, nbins)); >> 283 } >> 284 } >> 285 >> 286 >> 287 >> 288 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ >> 289 G4ParticleDefinition* thePartDef = theListOfAdjointParticlesInAction[i]; >> 290 DefineCurrentParticle(thePartDef); >> 291 theTotalForwardSigmaTableVector[i]->clearAndDestroy(); >> 292 theTotalAdjointSigmaTableVector[i]->clearAndDestroy(); >> 293 EminForFwdSigmaTables[i].clear(); >> 294 EminForAdjSigmaTables[i].clear(); >> 295 EkinofFwdSigmaMax[i].clear(); >> 296 EkinofAdjSigmaMax[i].clear(); >> 297 //G4cout<<thePartDef->GetParticleName(); >> 298 >> 299 for (size_t j=0;j<theCoupleTable->GetTableSize();j++){ >> 300 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j); >> 301 >> 302 /* >> 303 G4String file_name1=couple->GetMaterial()->GetName()+"_"+thePartDef->GetParticleName()+"_adj_totCS.txt"; >> 304 G4String file_name2=couple->GetMaterial()->GetName()+"_"+thePartDef->GetParticleName()+"_fwd_totCS.txt"; >> 305 >> 306 std::fstream FileOutputAdjCS(file_name1, std::ios::out); >> 307 std::fstream FileOutputFwdCS(file_name2, std::ios::out); >> 308 >> 309 >> 310 >> 311 FileOutputAdjCS<<std::setiosflags(std::ios::scientific); >> 312 FileOutputAdjCS<<std::setprecision(6); >> 313 FileOutputFwdCS<<std::setiosflags(std::ios::scientific); >> 314 FileOutputFwdCS<<std::setprecision(6); >> 315 */ >> 316 >> 317 >> 318 //make first the total fwd CS table for FwdProcess >> 319 G4PhysicsVector* aVector = new G4PhysicsLogVector(Tmin, Tmax, nbins); >> 320 G4bool Emin_found=false; >> 321 G4double sigma_max =0.; >> 322 G4double e_sigma_max =0.; >> 323 for(size_t l=0; l<aVector->GetVectorLength(); l++) { >> 324 G4double totCS=0.; >> 325 G4double e=aVector->GetLowEdgeEnergy(l); >> 326 for (size_t k=0; k<listOfForwardEmProcess[i]->size(); k++){ >> 327 totCS+=(*listOfForwardEmProcess[i])[k]->GetLambda(e, couple); >> 328 } >> 329 for (size_t k=0; k<listOfForwardEnergyLossProcess[i]->size(); k++){ >> 330 if (thePartDef == theAdjIon) { // e is considered already as the scaled energy >> 331 size_t mat_index = couple->GetIndex(); >> 332 G4VEmModel* currentModel = (*listOfForwardEnergyLossProcess[i])[k]->SelectModelForMaterial(e,mat_index); >> 333 G4double chargeSqRatio = currentModel->GetChargeSquareRatio(theFwdIon,couple->GetMaterial(),e/massRatio); >> 334 (*listOfForwardEnergyLossProcess[i])[k]->SetDynamicMassCharge(massRatio,chargeSqRatio); >> 335 } >> 336 G4double e1=e/massRatio; >> 337 totCS+=(*listOfForwardEnergyLossProcess[i])[k]->GetLambda(e1, couple); >> 338 } >> 339 aVector->PutValue(l,totCS); >> 340 if (totCS>sigma_max){ >> 341 sigma_max=totCS; >> 342 e_sigma_max = e; >> 343 >> 344 } >> 345 //FileOutputFwdCS<<e<<'\t'<<totCS<<G4endl; >> 346 >> 347 if (totCS>0 && !Emin_found) { >> 348 EminForFwdSigmaTables[i].push_back(e); >> 349 Emin_found=true; >> 350 } >> 351 >> 352 >> 353 } >> 354 //FileOutputFwdCS.close(); >> 355 >> 356 EkinofFwdSigmaMax[i].push_back(e_sigma_max); >> 357 >> 358 >> 359 if(!Emin_found) EminForFwdSigmaTables[i].push_back(Tmax); >> 360 >> 361 theTotalForwardSigmaTableVector[i]->push_back(aVector); >> 362 >> 363 >> 364 Emin_found=false; >> 365 sigma_max=0; >> 366 e_sigma_max =0.; >> 367 G4PhysicsVector* aVector1 = new G4PhysicsLogVector(Tmin, Tmax, nbins); >> 368 for(eindex=0; eindex<aVector->GetVectorLength(); eindex++) { >> 369 G4double e=aVector->GetLowEdgeEnergy(eindex); >> 370 G4double totCS =ComputeTotalAdjointCS(couple,thePartDef,e*0.9999999/massRatio); //massRatio needed for ions >> 371 aVector1->PutValue(eindex,totCS); >> 372 if (totCS>sigma_max){ >> 373 sigma_max=totCS; >> 374 e_sigma_max = e; >> 375 >> 376 } >> 377 //FileOutputAdjCS<<e<<'\t'<<totCS<<G4endl; >> 378 if (totCS>0 && !Emin_found) { >> 379 EminForAdjSigmaTables[i].push_back(e); >> 380 Emin_found=true; >> 381 } >> 382 >> 383 } >> 384 //FileOutputAdjCS.close(); >> 385 EkinofAdjSigmaMax[i].push_back(e_sigma_max); >> 386 if(!Emin_found) EminForAdjSigmaTables[i].push_back(Tmax); >> 387 >> 388 theTotalAdjointSigmaTableVector[i]->push_back(aVector1); >> 389 >> 390 } 432 } 391 } 433 fSigmaTableBuilt = true; << 392 TotalSigmaTableAreBuilt =true; 434 } << 393 435 << 436 ////////////////////////////////////////////// << 437 G4double G4AdjointCSManager::GetTotalAdjointCS << 438 G4ParticleDefinition* aPartDef, G4double Eki << 439 const G4MaterialCutsCouple* aCouple) << 440 { << 441 DefineCurrentMaterial(aCouple); << 442 DefineCurrentParticle(aPartDef); << 443 return (((*fTotalAdjSigmaTable[fCurrentParti << 444 ->Value(Ekin * fMassRatio)); << 445 } 394 } 446 << 447 ////////////////////////////////////////////// 395 /////////////////////////////////////////////////////// 448 G4double G4AdjointCSManager::GetTotalForwardCS << 396 // 449 G4ParticleDefinition* aPartDef, G4double Eki << 397 G4double G4AdjointCSManager::GetTotalAdjointCS(G4ParticleDefinition* aPartDef, G4double Ekin, 450 const G4MaterialCutsCouple* aCouple) << 398 const G4MaterialCutsCouple* aCouple) 451 { << 399 { DefineCurrentMaterial(aCouple); 452 DefineCurrentMaterial(aCouple); << 400 DefineCurrentParticle(aPartDef); >> 401 G4bool b; >> 402 return (((*theTotalAdjointSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(Ekin*massRatio, b)); >> 403 >> 404 >> 405 >> 406 } >> 407 /////////////////////////////////////////////////////// >> 408 // >> 409 G4double G4AdjointCSManager::GetTotalForwardCS(G4ParticleDefinition* aPartDef, G4double Ekin, >> 410 const G4MaterialCutsCouple* aCouple) >> 411 { DefineCurrentMaterial(aCouple); 453 DefineCurrentParticle(aPartDef); 412 DefineCurrentParticle(aPartDef); 454 return (((*fTotalFwdSigmaTable[fCurrentParti << 413 G4bool b; 455 ->Value(Ekin * fMassRatio)); << 414 return (((*theTotalForwardSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(Ekin*massRatio, b)); >> 415 >> 416 456 } 417 } 457 << 458 ////////////////////////////////////////////// 418 /////////////////////////////////////////////////////// 459 G4double G4AdjointCSManager::GetAdjointSigma( << 419 // 460 G4double Ekin_nuc, std::size_t index_model, << 420 G4double G4AdjointCSManager::GetAdjointSigma(G4double Ekin_nuc, size_t index_model,G4bool is_scat_proj_to_proj, 461 const G4MaterialCutsCouple* aCouple) << 421 const G4MaterialCutsCouple* aCouple) 462 { << 422 { DefineCurrentMaterial(aCouple); 463 DefineCurrentMaterial(aCouple); << 423 G4bool b; 464 if(is_scat_proj_to_proj) << 424 if (is_scat_proj_to_proj) return (((*listSigmaTableForAdjointModelScatProjToProj[index_model])[currentMatIndex])->GetValue(Ekin_nuc, b)); 465 return (((*fSigmaTableForAdjointModelScatP << 425 else return (((*listSigmaTableForAdjointModelProdToProj[index_model])[currentMatIndex])->GetValue(Ekin_nuc, b)); 466 [fCurrentMatIndex])->Value(Ekin << 426 } 467 else << 468 return ( << 469 ((*fSigmaTableForAdjointModelProdToProj[ << 470 ->Value(Ekin_nuc)); << 471 } << 472 << 473 ////////////////////////////////////////////// 427 /////////////////////////////////////////////////////// >> 428 // 474 void G4AdjointCSManager::GetEminForTotalCS(G4P 429 void G4AdjointCSManager::GetEminForTotalCS(G4ParticleDefinition* aPartDef, 475 con << 430 const G4MaterialCutsCouple* aCouple, G4double& emin_adj, G4double& emin_fwd) 476 G4d << 431 { DefineCurrentMaterial(aCouple); 477 G4d << 478 { << 479 DefineCurrentMaterial(aCouple); << 480 DefineCurrentParticle(aPartDef); 432 DefineCurrentParticle(aPartDef); 481 emin_adj = fEminForAdjSigmaTables[fCurrentPa << 433 emin_adj = EminForAdjSigmaTables[currentParticleIndex][currentMatIndex]/massRatio; 482 fMassRatio; << 434 emin_fwd = EminForFwdSigmaTables[currentParticleIndex][currentMatIndex]/massRatio; 483 emin_fwd = fEminForFwdSigmaTables[fCurrentPa << 435 484 fMassRatio; << 436 >> 437 485 } 438 } 486 << 487 ////////////////////////////////////////////// 439 /////////////////////////////////////////////////////// >> 440 // 488 void G4AdjointCSManager::GetMaxFwdTotalCS(G4Pa 441 void G4AdjointCSManager::GetMaxFwdTotalCS(G4ParticleDefinition* aPartDef, 489 cons << 442 const G4MaterialCutsCouple* aCouple, G4double& e_sigma_max, G4double& sigma_max) 490 G4do << 443 { DefineCurrentMaterial(aCouple); 491 G4do << 492 { << 493 DefineCurrentMaterial(aCouple); << 494 DefineCurrentParticle(aPartDef); 444 DefineCurrentParticle(aPartDef); 495 e_sigma_max = fEkinofFwdSigmaMax[fCurrentPar << 445 e_sigma_max = EkinofFwdSigmaMax[currentParticleIndex][currentMatIndex]; 496 sigma_max = ((*fTotalFwdSigmaTable[fCurrentP << 446 G4bool b; 497 ->Value(e_sigma_max); << 447 sigma_max =((*theTotalForwardSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(e_sigma_max, b); 498 e_sigma_max /= fMassRatio; << 448 e_sigma_max/=massRatio; >> 449 >> 450 499 } 451 } 500 << 501 ////////////////////////////////////////////// 452 /////////////////////////////////////////////////////// >> 453 // 502 void G4AdjointCSManager::GetMaxAdjTotalCS(G4Pa 454 void G4AdjointCSManager::GetMaxAdjTotalCS(G4ParticleDefinition* aPartDef, 503 cons << 455 const G4MaterialCutsCouple* aCouple, G4double& e_sigma_max, G4double& sigma_max) 504 G4do << 456 { DefineCurrentMaterial(aCouple); 505 G4do << 506 { << 507 DefineCurrentMaterial(aCouple); << 508 DefineCurrentParticle(aPartDef); 457 DefineCurrentParticle(aPartDef); 509 e_sigma_max = fEkinofAdjSigmaMax[fCurrentPar << 458 e_sigma_max = EkinofAdjSigmaMax[currentParticleIndex][currentMatIndex]; 510 sigma_max = ((*fTotalAdjSigmaTable[fCurrentP << 459 G4bool b; 511 ->Value(e_sigma_max); << 460 sigma_max =((*theTotalAdjointSigmaTableVector[currentParticleIndex])[currentMatIndex])->GetValue(e_sigma_max, b); 512 e_sigma_max /= fMassRatio; << 461 e_sigma_max/=massRatio; 513 } << 462 514 << 463 515 ////////////////////////////////////////////// << 464 } 516 G4double G4AdjointCSManager::GetCrossSectionCo << 465 /////////////////////////////////////////////////////// 517 G4ParticleDefinition* aPartDef, G4double Pre << 466 // 518 const G4MaterialCutsCouple* aCouple, G4bool& << 467 G4double G4AdjointCSManager::GetCrossSectionCorrection(G4ParticleDefinition* aPartDef,G4double PreStepEkin,const G4MaterialCutsCouple* aCouple, G4bool& fwd_is_used, 519 { << 468 G4double& fwd_TotCS) 520 static G4double lastEkin = 0.; << 469 { G4double corr_fac = 1.; 521 static G4ParticleDefinition* lastPartDef; << 470 if (forward_CS_mode && aPartDef ) { 522 << 471 fwd_TotCS=PrefwdCS; 523 G4double corr_fac = 1.; << 472 if (LastEkinForCS != PreStepEkin || aPartDef != lastPartDefForCS || aCouple!=currentCouple) { 524 if(fForwardCSMode && aPartDef) << 473 DefineCurrentMaterial(aCouple); 525 { << 474 PreadjCS = GetTotalAdjointCS(aPartDef, PreStepEkin,aCouple); 526 if(lastEkin != PreStepEkin || aPartDef != << 475 PrefwdCS = GetTotalForwardCS(aPartDef, PreStepEkin,aCouple); 527 aCouple != fCurrentCouple) << 476 LastEkinForCS = PreStepEkin; 528 { << 477 lastPartDefForCS = aPartDef; 529 DefineCurrentMaterial(aCouple); << 478 if (PrefwdCS >0. && PreadjCS >0.) { 530 G4double preadjCS = GetTotalAdjointCS(aP << 479 forward_CS_is_used = true; 531 G4double prefwdCS = GetTotalForwardCS(aP << 480 LastCSCorrectionFactor = PrefwdCS/PreadjCS; 532 lastEkin = PreStepEkin; << 481 } 533 lastPartDef = aPartDef; << 482 else { 534 if(prefwdCS > 0. && preadjCS > 0.) << 483 forward_CS_is_used = false; 535 { << 484 LastCSCorrectionFactor = 1.; 536 fForwardCSUsed = true; << 485 537 fLastCSCorrectionFactor = prefwdCS / p << 486 } 538 } << 487 539 else << 488 } 540 { << 489 corr_fac =LastCSCorrectionFactor; 541 fForwardCSUsed = false; << 490 542 fLastCSCorrectionFactor = 1.; << 491 543 } << 492 544 } << 493 } 545 corr_fac = fLastCSCorrectionFactor; << 494 else { 546 } << 495 forward_CS_is_used = false; 547 else << 496 LastCSCorrectionFactor = 1.; 548 { << 497 } 549 fForwardCSUsed = false; << 498 fwd_TotCS=PrefwdCS; 550 fLastCSCorrectionFactor = 1.; << 499 fwd_is_used = forward_CS_is_used; 551 } << 500 return corr_fac; 552 fwd_is_used = fForwardCSUsed; << 501 } 553 return corr_fac; << 502 /////////////////////////////////////////////////////// 554 } << 503 // 555 << 504 G4double G4AdjointCSManager::GetContinuousWeightCorrection(G4ParticleDefinition* aPartDef, G4double PreStepEkin,G4double AfterStepEkin, 556 ////////////////////////////////////////////// << 505 const G4MaterialCutsCouple* aCouple, G4double step_length) 557 G4double G4AdjointCSManager::GetContinuousWeig << 506 { G4double corr_fac = 1.; 558 G4ParticleDefinition* aPartDef, G4double Pre << 507 //return corr_fac; 559 const G4MaterialCutsCouple* aCouple, G4doubl << 508 //G4double after_adjCS = GetTotalAdjointCS(aPartDef, AfterStepEkin,aCouple); 560 { << 509 G4double after_fwdCS = GetTotalForwardCS(aPartDef, AfterStepEkin,aCouple); 561 G4double corr_fac = 1.; << 510 G4double pre_adjCS = GetTotalAdjointCS(aPartDef, PreStepEkin,aCouple); 562 G4double after_fwdCS = GetTotalForwardCS(aPa << 511 if (!forward_CS_is_used || pre_adjCS ==0. || after_fwdCS==0.) { 563 G4double pre_adjCS = GetTotalAdjointCS(aPa << 512 forward_CS_is_used=false; 564 if(!fForwardCSUsed || pre_adjCS == 0. || aft << 513 G4double pre_fwdCS = GetTotalForwardCS(aPartDef, PreStepEkin,aCouple); 565 { << 514 corr_fac *=std::exp((pre_adjCS-pre_fwdCS)*step_length); 566 G4double pre_fwdCS = GetTotalForwardCS(aPa << 515 LastCSCorrectionFactor = 1.; 567 corr_fac *= std::exp((pre_adjCS - pre_fwdC << 516 } 568 fLastCSCorrectionFactor = 1.; << 517 else { 569 } << 518 LastCSCorrectionFactor = after_fwdCS/pre_adjCS; 570 else << 519 } 571 { << 520 572 fLastCSCorrectionFactor = after_fwdCS / pr << 573 } << 574 return corr_fac; << 575 } << 576 521 >> 522 >> 523 return corr_fac; >> 524 } 577 ////////////////////////////////////////////// 525 /////////////////////////////////////////////////////// 578 G4double G4AdjointCSManager::GetPostStepWeight << 526 // 579 { << 527 G4double G4AdjointCSManager::GetPostStepWeightCorrection( ) 580 return 1. / fLastCSCorrectionFactor; << 528 {//return 1.; 581 } << 529 return 1./LastCSCorrectionFactor; 582 << 530 >> 531 } 583 ////////////////////////////////////////////// 532 /////////////////////////////////////////////////////// 584 G4double G4AdjointCSManager::ComputeAdjointCS( << 533 // 585 G4Material* aMaterial, G4VEmAdjointModel* aM << 534 G4double G4AdjointCSManager::ComputeAdjointCS(G4Material* aMaterial, 586 G4double Tcut, G4bool isScatProjToProj, std: << 535 G4VEmAdjointModel* aModel, 587 { << 536 G4double PrimEnergy, 588 G4double EminSec = 0.; << 537 G4double Tcut, 589 G4double EmaxSec = 0.; << 538 G4bool IsScatProjToProjCase, 590 << 539 std::vector<G4double>& CS_Vs_Element) 591 static G4double lastPrimaryEnergy = 0.; << 540 { 592 static G4double lastTcut = 0.; << 541 593 static G4Material* lastMaterial = nullptr; << 542 G4double EminSec=0; 594 << 543 G4double EmaxSec=0; 595 if(isScatProjToProj) << 544 596 { << 545 if (IsScatProjToProjCase){ 597 EminSec = aModel->GetSecondAdjEnergyMinFor << 546 EminSec= aModel->GetSecondAdjEnergyMinForScatProjToProjCase(PrimEnergy,Tcut); 598 EmaxSec = aModel->GetSecondAdjEnergyMaxFor << 547 EmaxSec= aModel->GetSecondAdjEnergyMaxForScatProjToProjCase(PrimEnergy); 599 } << 548 } 600 else if(PrimEnergy > Tcut || !aModel->GetApp << 549 else if (PrimEnergy > Tcut || !aModel->GetApplyCutInRange()) { 601 { << 550 EminSec= aModel->GetSecondAdjEnergyMinForProdToProjCase(PrimEnergy); 602 EminSec = aModel->GetSecondAdjEnergyMinFor << 551 EmaxSec= aModel->GetSecondAdjEnergyMaxForProdToProjCase(PrimEnergy); 603 EmaxSec = aModel->GetSecondAdjEnergyMaxFor << 552 } 604 } << 553 if (EminSec >= EmaxSec) return 0.; 605 if(EminSec >= EmaxSec) << 554 606 return 0.; << 555 607 << 556 G4bool need_to_compute=false; 608 G4bool need_to_compute = false; << 557 if ( aMaterial!= lastMaterial || PrimEnergy != lastPrimaryEnergy || Tcut != lastTcut){ 609 if(aMaterial != lastMaterial || PrimEnergy ! << 558 lastMaterial =aMaterial; 610 Tcut != lastTcut) << 559 lastPrimaryEnergy = PrimEnergy; 611 { << 560 lastTcut=Tcut; 612 lastMaterial = aMaterial; << 561 listOfIndexOfAdjointEMModelInAction.clear(); 613 lastPrimaryEnergy = PrimEnergy; << 562 listOfIsScatProjToProjCase.clear(); 614 lastTcut = Tcut; << 563 lastAdjointCSVsModelsAndElements.clear(); 615 fIndexOfAdjointEMModelInAction.clear(); << 564 need_to_compute=true; 616 fIsScatProjToProj.clear(); << 565 617 fLastAdjointCSVsModelsAndElements.clear(); << 566 } 618 need_to_compute = true; << 567 size_t ind=0; 619 } << 568 if (!need_to_compute){ 620 << 569 need_to_compute=true; 621 std::size_t ind = 0; << 570 for (size_t i=0;i<listOfIndexOfAdjointEMModelInAction.size();i++){ 622 if(!need_to_compute) << 571 size_t ind1=listOfIndexOfAdjointEMModelInAction[i]; 623 { << 572 if (aModel == listOfAdjointEMModel[ind1] && IsScatProjToProjCase == listOfIsScatProjToProjCase[i]){ 624 need_to_compute = true; << 573 need_to_compute=false; 625 for(std::size_t i = 0; i < fIndexOfAdjoint << 574 CS_Vs_Element = lastAdjointCSVsModelsAndElements[ind]; 626 { << 575 } 627 std::size_t ind1 = fIndexOfAdjointEMMode << 576 ind++; 628 if(aModel == fAdjointModels[ind1] && << 577 } 629 isScatProjToProj == fIsScatProjToProj << 578 } 630 { << 579 631 need_to_compute = false; << 580 if (need_to_compute){ 632 CS_Vs_Element = fLastAdjointCSVsMode << 581 size_t ind_model=0; 633 } << 582 for (size_t i=0;i<listOfAdjointEMModel.size();i++){ 634 ++ind; << 583 if (aModel == listOfAdjointEMModel[i]){ 635 } << 584 ind_model=i; 636 } << 585 break; 637 << 586 } 638 if(need_to_compute) << 587 } 639 { << 588 G4double Tlow=Tcut; 640 std::size_t ind_model = 0; << 589 if (!listOfAdjointEMModel[ind_model]->GetApplyCutInRange()) Tlow =listOfAdjointEMModel[ind_model]->GetLowEnergyLimit(); 641 for(std::size_t i = 0; i < fAdjointModels. << 590 listOfIndexOfAdjointEMModelInAction.push_back(ind_model); 642 { << 591 listOfIsScatProjToProjCase.push_back(IsScatProjToProjCase); 643 if(aModel == fAdjointModels[i]) << 592 CS_Vs_Element.clear(); 644 { << 593 if (!aModel->GetUseMatrix()){ 645 ind_model = i; << 594 CS_Vs_Element.push_back(aModel->AdjointCrossSection(currentCouple,PrimEnergy,IsScatProjToProjCase)); 646 break; << 595 647 } << 596 648 } << 597 } 649 G4double Tlow = Tcut; << 598 else if (aModel->GetUseMatrixPerElement()){ 650 if(!fAdjointModels[ind_model]->GetApplyCut << 599 size_t n_el = aMaterial->GetNumberOfElements(); 651 Tlow = fAdjointModels[ind_model]->GetLow << 600 if (aModel->GetUseOnlyOneMatrixForAllElements()){ 652 fIndexOfAdjointEMModelInAction.push_back(i << 601 G4AdjointCSMatrix* theCSMatrix; 653 fIsScatProjToProj.push_back(isScatProjToPr << 602 if (IsScatProjToProjCase){ 654 CS_Vs_Element.clear(); << 603 theCSMatrix=theAdjointCSMatricesForScatProjToProj[ind_model][0]; 655 if(!aModel->GetUseMatrix()) << 604 } 656 { << 605 else theCSMatrix=theAdjointCSMatricesForProdToProj[ind_model][0]; 657 CS_Vs_Element.push_back(aModel->AdjointC << 606 G4double CS =0.; 658 fCurrentCouple, PrimEnergy, isScatProj << 607 if (PrimEnergy > Tlow) 659 } << 608 CS = ComputeAdjointCS(PrimEnergy,theCSMatrix,Tlow); 660 else if(aModel->GetUseMatrixPerElement()) << 609 G4double factor=0.; 661 { << 610 for (size_t i=0;i<n_el;i++){ //this could be computed only once 662 std::size_t n_el = aMaterial->GetNumberO << 611 //size_t ind_el = aMaterial->GetElement(i)->GetIndex(); 663 if(aModel->GetUseOnlyOneMatrixForAllElem << 612 factor+=aMaterial->GetElement(i)->GetZ()*aMaterial->GetVecNbOfAtomsPerVolume()[i]; 664 { << 613 } 665 G4AdjointCSMatrix* theCSMatrix; << 614 CS *=factor; 666 if(isScatProjToProj) << 615 CS_Vs_Element.push_back(CS); 667 { << 616 668 theCSMatrix = fAdjointCSMatricesForS << 617 } 669 } << 618 else { 670 else << 619 for (size_t i=0;i<n_el;i++){ 671 theCSMatrix = fAdjointCSMatricesForP << 620 size_t ind_el = aMaterial->GetElement(i)->GetIndex(); 672 G4double CS = 0.; << 621 //G4cout<<aMaterial->GetName()<<G4endl; 673 if(PrimEnergy > Tlow) << 622 G4AdjointCSMatrix* theCSMatrix; 674 CS = ComputeAdjointCS(PrimEnergy, th << 623 if (IsScatProjToProjCase){ 675 G4double factor = 0.; << 624 theCSMatrix=theAdjointCSMatricesForScatProjToProj[ind_model][ind_el]; 676 for(G4int i = 0; i < (G4int)n_el; ++i) << 625 } 677 { // this could be computed only once << 626 else theCSMatrix=theAdjointCSMatricesForProdToProj[ind_model][ind_el]; 678 factor += aMaterial->GetElement(i)-> << 627 G4double CS =0.; 679 aMaterial->GetVecNbOfAtoms << 628 if (PrimEnergy > Tlow) 680 } << 629 CS = ComputeAdjointCS(PrimEnergy,theCSMatrix,Tlow); 681 CS *= factor; << 630 //G4cout<<CS<<G4endl; 682 CS_Vs_Element.push_back(CS); << 631 CS_Vs_Element.push_back(CS*(aMaterial->GetVecNbOfAtomsPerVolume()[i])); 683 } << 632 } 684 else << 633 } 685 { << 634 686 for(G4int i = 0; i < (G4int)n_el; ++i) << 635 } 687 { << 636 else { 688 std::size_t ind_el = aMaterial->GetE << 637 size_t ind_mat = aMaterial->GetIndex(); 689 G4AdjointCSMatrix* theCSMatrix; << 638 G4AdjointCSMatrix* theCSMatrix; 690 if(isScatProjToProj) << 639 if (IsScatProjToProjCase){ 691 { << 640 theCSMatrix=theAdjointCSMatricesForScatProjToProj[ind_model][ind_mat]; 692 theCSMatrix = << 641 } 693 fAdjointCSMatricesForScatProjToP << 642 else theCSMatrix=theAdjointCSMatricesForProdToProj[ind_model][ind_mat]; 694 } << 643 G4double CS =0.; 695 else << 644 if (PrimEnergy > Tlow) 696 theCSMatrix = fAdjointCSMatricesFo << 645 CS = ComputeAdjointCS(PrimEnergy,theCSMatrix,Tlow); 697 G4double CS = 0.; << 646 CS_Vs_Element.push_back(CS); 698 if(PrimEnergy > Tlow) << 647 699 CS = ComputeAdjointCS(PrimEnergy, << 648 700 CS_Vs_Element.push_back(CS * << 649 } 701 (aMaterial-> << 650 lastAdjointCSVsModelsAndElements.push_back(CS_Vs_Element); 702 } << 651 703 } << 652 } 704 } << 653 705 else << 654 706 { << 655 G4double CS=0; 707 std::size_t ind_mat = aMaterial->GetInde << 656 for (size_t i=0;i<CS_Vs_Element.size();i++){ 708 G4AdjointCSMatrix* theCSMatrix; << 657 CS+=CS_Vs_Element[i]; //We could put the progressive sum of the CS instead of the CS of an element itself 709 if(isScatProjToProj) << 658 710 { << 711 theCSMatrix = fAdjointCSMatricesForSca << 712 } << 713 else << 714 theCSMatrix = fAdjointCSMatricesForPro << 715 G4double CS = 0.; << 716 if(PrimEnergy > Tlow) << 717 CS = ComputeAdjointCS(PrimEnergy, theC << 718 CS_Vs_Element.push_back(CS); << 719 } << 720 fLastAdjointCSVsModelsAndElements.push_bac << 721 } << 722 << 723 G4double CS = 0.; << 724 for(const auto& cs_vs_el : CS_Vs_Element) << 725 { << 726 // We could put the progressive sum of the << 727 // element itself << 728 CS += cs_vs_el; << 729 } 659 } 730 return CS; 660 return CS; 731 } << 661 } 732 << 733 ////////////////////////////////////////////// 662 /////////////////////////////////////////////////////// 734 G4Element* G4AdjointCSManager::SampleElementFr << 663 // 735 G4Material* aMaterial, G4VEmAdjointModel* aM << 664 G4Element* G4AdjointCSManager::SampleElementFromCSMatrices(G4Material* aMaterial, 736 G4double Tcut, G4bool isScatProjToProj) << 665 G4VEmAdjointModel* aModel, 737 { << 666 G4double PrimEnergy, 738 std::vector<G4double> CS_Vs_Element; << 667 G4double Tcut, 739 G4double CS = ComputeAdjointCS(aMaterial, << 668 G4bool IsScatProjToProjCase) 740 isScatProjToP << 669 { std::vector<G4double> CS_Vs_Element; 741 G4double SumCS = 0.; << 670 G4double CS = ComputeAdjointCS(aMaterial,aModel,PrimEnergy,Tcut,IsScatProjToProjCase,CS_Vs_Element); 742 std::size_t ind = 0; << 671 G4double rand_var= G4UniformRand(); 743 for(std::size_t i = 0; i < CS_Vs_Element.siz << 672 G4double SumCS=0.; 744 { << 673 size_t ind=0; 745 SumCS += CS_Vs_Element[i]; << 674 for (size_t i=0;i<CS_Vs_Element.size();i++){ 746 if(G4UniformRand() <= SumCS / CS) << 675 SumCS+=CS_Vs_Element[i]; 747 { << 676 if (rand_var<=SumCS/CS){ 748 ind = i; << 677 ind=i; 749 break; << 678 break; 750 } << 679 } 751 } 680 } 752 << 681 753 return const_cast<G4Element*>(aMaterial->Get << 682 return const_cast<G4Element*>(aMaterial->GetElement(ind)); 754 } << 683 755 << 684 >> 685 >> 686 } 756 ////////////////////////////////////////////// 687 /////////////////////////////////////////////////////// 757 G4double G4AdjointCSManager::ComputeTotalAdjoi << 688 // 758 const G4MaterialCutsCouple* aCouple, G4Parti << 689 G4double G4AdjointCSManager::ComputeTotalAdjointCS(const G4MaterialCutsCouple* aCouple, 759 G4double Ekin) << 690 G4ParticleDefinition* aPartDef, 760 { << 691 G4double Ekin) 761 G4double TotalCS = 0.; << 692 { 762 << 693 G4double TotalCS=0.; 763 DefineCurrentMaterial(aCouple); << 694 764 << 695 DefineCurrentMaterial(aCouple); 765 std::vector<G4double> CS_Vs_Element; << 696 766 G4double CS; << 697 767 G4VEmAdjointModel* adjModel = nullptr; << 698 std::vector<G4double> CS_Vs_Element; 768 for(std::size_t i = 0; i < fAdjointModels.si << 699 G4double CS; 769 { << 700 for (size_t i=0; i<listOfAdjointEMModel.size();i++){ 770 G4double Tlow = 0.; << 701 771 adjModel = fAdjointModels[i]; << 702 G4double Tlow=0; 772 if(!adjModel->GetApplyCutInRange()) << 703 if (!listOfAdjointEMModel[i]->GetApplyCutInRange()) Tlow =listOfAdjointEMModel[i]->GetLowEnergyLimit(); 773 Tlow = adjModel->GetLowEnergyLimit(); << 704 else { 774 else << 705 G4ParticleDefinition* theDirSecondPartDef = 775 { << 706 GetForwardParticleEquivalent(listOfAdjointEMModel[i]->GetAdjointEquivalentOfDirectSecondaryParticleDefinition()); 776 G4ParticleDefinition* theDirSecondPartDe << 707 size_t idx=56; 777 adjModel->GetAdjointEquivalentOfDirect << 708 if (theDirSecondPartDef->GetParticleName() == "gamma") idx = 0; 778 std::size_t idx = 56; << 709 else if (theDirSecondPartDef->GetParticleName() == "e-") idx = 1; 779 if(theDirSecondPartDef->GetParticleName( << 710 else if (theDirSecondPartDef->GetParticleName() == "e+") idx = 2; 780 idx = 0; << 711 if (idx <56) { 781 else if(theDirSecondPartDef->GetParticle << 712 const std::vector<G4double>* aVec = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(idx); 782 idx = 1; << 713 Tlow =(*aVec)[aCouple->GetIndex()]; 783 else if(theDirSecondPartDef->GetParticle << 714 } 784 idx = 2; << 715 785 if(idx < 56) << 716 786 { << 717 } 787 const std::vector<G4double>* aVec = << 718 if ( Ekin<=listOfAdjointEMModel[i]->GetHighEnergyLimit() && Ekin>=listOfAdjointEMModel[i]->GetLowEnergyLimit()){ 788 G4ProductionCutsTable::GetProduction << 719 if (aPartDef == listOfAdjointEMModel[i]->GetAdjointEquivalentOfDirectPrimaryParticleDefinition()){ 789 idx); << 720 CS=ComputeAdjointCS(currentMaterial, 790 Tlow = (*aVec)[aCouple->GetIndex()]; << 721 listOfAdjointEMModel[i], 791 } << 722 Ekin, Tlow,true,CS_Vs_Element); 792 } << 723 TotalCS += CS; 793 if(Ekin <= adjModel->GetHighEnergyLimit() << 724 (*listSigmaTableForAdjointModelScatProjToProj[i])[currentMatIndex]->PutValue(eindex,CS); 794 Ekin >= adjModel->GetLowEnergyLimit()) << 725 } 795 { << 726 if (aPartDef == listOfAdjointEMModel[i]->GetAdjointEquivalentOfDirectSecondaryParticleDefinition()){ 796 if(aPartDef == << 727 CS = ComputeAdjointCS(currentMaterial, 797 adjModel->GetAdjointEquivalentOfDirec << 728 listOfAdjointEMModel[i], 798 { << 729 Ekin, Tlow,false, CS_Vs_Element); 799 CS = ComputeAdjointCS(fCurrentMaterial << 730 TotalCS += CS; 800 CS_Vs_Element); << 731 (*listSigmaTableForAdjointModelProdToProj[i])[currentMatIndex]->PutValue(eindex,CS); 801 TotalCS += CS; << 732 } 802 (*fSigmaTableForAdjointModelScatProjTo << 733 803 ->PutValue(fNbins, CS); << 734 } 804 } << 735 else { 805 if(aPartDef == << 736 (*listSigmaTableForAdjointModelScatProjToProj[i])[currentMatIndex]->PutValue(eindex,0.); 806 adjModel->GetAdjointEquivalentOfDirec << 737 (*listSigmaTableForAdjointModelProdToProj[i])[currentMatIndex]->PutValue(eindex,0.); 807 { << 738 808 CS = ComputeAdjointCS(fCurrentMaterial << 739 } 809 CS_Vs_Element); << 740 } 810 TotalCS += CS; << 741 return TotalCS; 811 (*fSigmaTableForAdjointModelProdToProj << 742 812 fNbins, CS); << 743 813 } << 744 } 814 } << 815 else << 816 { << 817 (*fSigmaTableForAdjointModelScatProjToPr << 818 ->PutValue(fNbins, 0.); << 819 (*fSigmaTableForAdjointModelProdToProj[i << 820 fNbins, 0.); << 821 } << 822 } << 823 return TotalCS; << 824 } << 825 << 826 ////////////////////////////////////////////// 745 /////////////////////////////////////////////////////// >> 746 // 827 std::vector<G4AdjointCSMatrix*> 747 std::vector<G4AdjointCSMatrix*> 828 G4AdjointCSManager::BuildCrossSectionsModelAnd << 748 G4AdjointCSManager::BuildCrossSectionsMatricesForAGivenModelAndElement(G4VEmAdjointModel* aModel,G4int Z,G4int A, 829 << 749 G4int nbin_pro_decade) 830 << 750 { 831 { << 751 G4AdjointCSMatrix* theCSMatForProdToProjBackwardScattering = new G4AdjointCSMatrix(false); 832 G4AdjointCSMatrix* theCSMatForProdToProjBack << 752 G4AdjointCSMatrix* theCSMatForScatProjToProjBackwardScattering = new G4AdjointCSMatrix(true); 833 new G4AdjointCSMatrix(false); << 753 834 G4AdjointCSMatrix* theCSMatForScatProjToProj << 754 835 new G4AdjointCSMatrix(true); << 755 //make the vector of primary energy of the adjoint particle, could try to make this just once ? 836 << 756 837 // make the vector of primary energy of the << 757 G4double EkinMin =aModel->GetLowEnergyLimit(); 838 G4double EkinMin = aModel->GetLowEner << 758 G4double EkinMaxForScat =aModel->GetHighEnergyLimit()*0.999; 839 G4double EkinMaxForScat = aModel->GetHighEne << 759 G4double EkinMaxForProd =aModel->GetHighEnergyLimit()*0.999; 840 G4double EkinMaxForProd = aModel->GetHighEne << 760 if (aModel->GetSecondPartOfSameType() )EkinMaxForProd =EkinMaxForProd/2.; 841 if(aModel->GetSecondPartOfSameType()) << 761 842 EkinMaxForProd = EkinMaxForProd / 2.; << 762 843 << 763 //Product to projectile backward scattering 844 // Product to projectile backward scattering << 764 //----------------------------------------- 845 G4double dE = std::pow(10., 1. / nbin_pro_de << 765 G4double fE=std::pow(10.,1./nbin_pro_decade); 846 G4double E2 = << 766 G4double E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 847 std::pow(10., double(int(std::log10(EkinMi << 767 G4double E1=EkinMin; 848 nbin_pro_decade) / dE; << 768 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko 849 G4double E1 = EkinMin; << 769 while (E1 <EkinMaxForProd){ 850 // Loop checking, 07-Aug-2015, Vladimir Ivan << 770 E1=std::max(EkinMin,E2); 851 while(E1 < EkinMaxForProd) << 771 E1=std::min(EkinMaxForProd,E1); 852 { << 772 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerAtomForSecond(E1,Z,A,nbin_pro_decade); 853 E1 = std::max(EkinMin, E2); << 773 if (aMat.size()>=2) { 854 E1 = std::min(EkinMaxForProd, E1); << 774 std::vector< double>* log_ESecVec=aMat[0]; 855 std::vector<std::vector<double>*> aMat = << 775 std::vector< double>* log_CSVec=aMat[1]; 856 aModel->ComputeAdjointCrossSectionVector << 776 G4double log_adjointCS=log_CSVec->back(); 857 << 777 //normalise CSVec such that it becomes a probability vector 858 if(aMat.size() >= 2) << 778 for (size_t j=0;j<log_CSVec->size();j++) { 859 { << 779 if (j==0) (*log_CSVec)[j] = 0.; 860 std::vector<double>* log_ESecVec = aMat[ << 780 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS) +1e-50); 861 std::vector<double>* log_CSVec = aMat[ << 781 } 862 G4double log_adjointCS = log_C << 782 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 863 // normalise CSVec such that it becomes << 783 theCSMatForProdToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 864 for(std::size_t j = 0; j < log_CSVec->si << 784 } 865 { << 785 E1=E2; 866 if(j == 0) << 786 E2*=fE; 867 (*log_CSVec)[j] = 0.; << 787 } 868 else << 788 869 (*log_CSVec)[j] = << 789 //Scattered projectile to projectile backward scattering 870 std::log(1. - std::exp((*log_CSVec << 790 //----------------------------------------- 871 } << 791 872 (*log_CSVec)[log_CSVec->size() - 1] = << 792 E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 873 (*log_CSVec)[log_CSVec->size() - 2] - << 793 E1=EkinMin; 874 theCSMatForProdToProjBackwardScattering- << 794 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko 875 std::log(E1), log_adjointCS, log_ESecV << 795 while (E1 <EkinMaxForScat){ 876 } << 796 E1=std::max(EkinMin,E2); 877 E1 = E2; << 797 E1=std::min(EkinMaxForScat,E1); 878 E2 *= dE; << 798 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerAtomForScatProj(E1,Z,A,nbin_pro_decade); 879 } << 799 if (aMat.size()>=2) { 880 << 800 std::vector< double>* log_ESecVec=aMat[0]; 881 // Scattered projectile to projectile backwa << 801 std::vector< double>* log_CSVec=aMat[1]; 882 E2 = std::pow(10., G4double(int(std::log10(E << 802 G4double log_adjointCS=log_CSVec->back(); 883 nbin_pro_decade) / dE; << 803 //normalise CSVec such that it becomes a probability vector 884 E1 = EkinMin; << 804 for (size_t j=0;j<log_CSVec->size();j++) { 885 // Loop checking, 07-Aug-2015, Vladimir Ivan << 805 if (j==0) (*log_CSVec)[j] = 0.; 886 while(E1 < EkinMaxForScat) << 806 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS)+1e-50); 887 { << 807 } 888 E1 = std::max(EkinMin, E2); << 808 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 889 E1 = std::min(EkinMaxForScat, E1); << 809 theCSMatForScatProjToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 890 std::vector<std::vector<G4double>*> aMat = << 810 } 891 aModel->ComputeAdjointCrossSectionVector << 811 E1=E2; 892 E1, Z, A, nbin_pro_decade); << 812 E2*=fE; 893 if(aMat.size() >= 2) << 813 } 894 { << 814 895 std::vector<G4double>* log_ESecVec = aMa << 815 896 std::vector<G4double>* log_CSVec = aMa << 897 G4double log_adjointCS = log << 898 // normalise CSVec such that it becomes << 899 for(std::size_t j = 0; j < log_CSVec->si << 900 { << 901 if(j == 0) << 902 (*log_CSVec)[j] = 0.; << 903 else << 904 (*log_CSVec)[j] = << 905 std::log(1. - std::exp((*log_CSVec << 906 } << 907 (*log_CSVec)[log_CSVec->size() - 1] = << 908 (*log_CSVec)[log_CSVec->size() - 2] - << 909 theCSMatForScatProjToProjBackwardScatter << 910 std::log(E1), log_adjointCS, log_ESecV << 911 } << 912 E1 = E2; << 913 E2 *= dE; << 914 } << 915 << 916 std::vector<G4AdjointCSMatrix*> res; 816 std::vector<G4AdjointCSMatrix*> res; >> 817 res.clear(); 917 res.push_back(theCSMatForProdToProjBackwardS 818 res.push_back(theCSMatForProdToProjBackwardScattering); 918 res.push_back(theCSMatForScatProjToProjBackw 819 res.push_back(theCSMatForScatProjToProjBackwardScattering); >> 820 >> 821 >> 822 /* >> 823 G4String file_name; >> 824 std::stringstream astream; >> 825 G4String str_Z; >> 826 astream<<Z; >> 827 astream>>str_Z; >> 828 theCSMatForProdToProjBackwardScattering->Write(aModel->GetName()+G4String("_CSMat_Z")+str_Z+"_ProdToProj.txt"); >> 829 theCSMatForScatProjToProjBackwardScattering->Write(aModel->GetName()+G4String("_CSMat_Z")+str_Z+"_ScatProjToProj.txt"); >> 830 >> 831 */ 919 832 >> 833 920 return res; 834 return res; >> 835 >> 836 921 } 837 } 922 << 923 ////////////////////////////////////////////// 838 /////////////////////////////////////////////////////// >> 839 // 924 std::vector<G4AdjointCSMatrix*> 840 std::vector<G4AdjointCSMatrix*> 925 G4AdjointCSManager::BuildCrossSectionsModelAnd << 841 G4AdjointCSManager::BuildCrossSectionsMatricesForAGivenModelAndMaterial(G4VEmAdjointModel* aModel, 926 G4VEmAdjointModel* aModel, G4Material* aMate << 842 G4Material* aMaterial, 927 { << 843 G4int nbin_pro_decade) 928 G4AdjointCSMatrix* theCSMatForProdToProjBack << 844 { 929 new G4AdjointCSMatrix(false); << 845 G4AdjointCSMatrix* theCSMatForProdToProjBackwardScattering = new G4AdjointCSMatrix(false); 930 G4AdjointCSMatrix* theCSMatForScatProjToProj << 846 G4AdjointCSMatrix* theCSMatForScatProjToProjBackwardScattering = new G4AdjointCSMatrix(true); 931 new G4AdjointCSMatrix(true); << 847 932 << 848 933 G4double EkinMin = aModel->GetLowEner << 849 //make the vector of primary energy of the adjoint particle, could try to make this just once ? 934 G4double EkinMaxForScat = aModel->GetHighEne << 850 935 G4double EkinMaxForProd = aModel->GetHighEne << 851 G4double EkinMin =aModel->GetLowEnergyLimit(); 936 if(aModel->GetSecondPartOfSameType()) << 852 G4double EkinMaxForScat =aModel->GetHighEnergyLimit()*0.999; 937 EkinMaxForProd /= 2.; << 853 G4double EkinMaxForProd =aModel->GetHighEnergyLimit()*0.999; 938 << 854 if (aModel->GetSecondPartOfSameType() )EkinMaxForProd =EkinMaxForProd/2.; 939 // Product to projectile backward scattering << 855 940 G4double dE = std::pow(10., 1. / nbin_pro_de << 856 941 G4double E2 = << 857 942 std::pow(10., double(int(std::log10(EkinMi << 858 943 nbin_pro_decade) / dE; << 859 944 G4double E1 = EkinMin; << 860 945 // Loop checking, 07-Aug-2015, Vladimir Ivan << 861 946 while(E1 < EkinMaxForProd) << 862 //Product to projectile backward scattering 947 { << 863 //----------------------------------------- 948 E1 = std::max(EkinMin, E2); << 864 G4double fE=std::pow(10.,1./nbin_pro_decade); 949 E1 = std::min(EkinMaxForProd, E1); << 865 G4double E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 950 std::vector<std::vector<G4double>*> aMat = << 866 G4double E1=EkinMin; 951 aModel->ComputeAdjointCrossSectionVector << 867 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko 952 aMaterial, E1, nbin_pro_decade); << 868 while (E1 <EkinMaxForProd){ 953 if(aMat.size() >= 2) << 869 E1=std::max(EkinMin,E2); 954 { << 870 E1=std::min(EkinMaxForProd,E1); 955 std::vector<G4double>* log_ESecVec = aMa << 871 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerVolumeForSecond(aMaterial,E1,nbin_pro_decade); 956 std::vector<G4double>* log_CSVec = aMa << 872 if (aMat.size()>=2) { 957 G4double log_adjointCS = log << 873 std::vector< double>* log_ESecVec=aMat[0]; 958 << 874 std::vector< double>* log_CSVec=aMat[1]; 959 // normalise CSVec such that it becomes << 875 G4double log_adjointCS=log_CSVec->back(); 960 for(std::size_t j = 0; j < log_CSVec->si << 876 961 { << 877 //normalise CSVec such that it becomes a probability vector 962 if(j == 0) << 878 for (size_t j=0;j<log_CSVec->size();j++) { 963 (*log_CSVec)[j] = 0.; << 879 //G4cout<<"CSMan1 "<<(*log_CSVec)[j]<<G4endl; 964 else << 880 if (j==0) (*log_CSVec)[j] = 0.; 965 (*log_CSVec)[j] = << 881 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS)); 966 std::log(1. - std::exp((*log_CSVec << 882 //G4cout<<"CSMan2 "<<(*log_CSVec)[j]<<G4endl; 967 } << 883 } 968 (*log_CSVec)[log_CSVec->size() - 1] = << 884 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 969 (*log_CSVec)[log_CSVec->size() - 2] - << 885 theCSMatForProdToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 970 theCSMatForProdToProjBackwardScattering- << 886 } 971 std::log(E1), log_adjointCS, log_ESecV << 887 972 } << 888 973 << 889 974 E1 = E2; << 890 E1=E2; 975 E2 *= dE; << 891 E2*=fE; 976 } << 892 } 977 << 893 978 // Scattered projectile to projectile backwa << 894 //Scattered projectile to projectile backward scattering 979 E2 = << 895 //----------------------------------------- 980 std::pow(10., G4double(G4int(std::log10(Ek << 896 981 nbin_pro_decade) / << 897 E2=std::pow(10.,double( int(std::log10(EkinMin)*nbin_pro_decade)+1)/nbin_pro_decade)/fE; 982 dE; << 898 E1=EkinMin; 983 E1 = EkinMin; << 899 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko 984 while(E1 < EkinMaxForScat) << 900 while (E1 <EkinMaxForScat){ 985 { << 901 E1=std::max(EkinMin,E2); 986 E1 = std::max(EkinMin, E2); << 902 E1=std::min(EkinMaxForScat,E1); 987 E1 = std::min(EkinMaxForScat, E1); << 903 std::vector< std::vector< double>* > aMat= aModel->ComputeAdjointCrossSectionVectorPerVolumeForScatProj(aMaterial,E1,nbin_pro_decade); 988 std::vector<std::vector<G4double>*> aMat = << 904 if (aMat.size()>=2) { 989 aModel->ComputeAdjointCrossSectionVector << 905 std::vector< double>* log_ESecVec=aMat[0]; 990 aMaterial, E1, nbin_pro_decade); << 906 std::vector< double>* log_CSVec=aMat[1]; 991 if(aMat.size() >= 2) << 907 G4double log_adjointCS=log_CSVec->back(); 992 { << 908 993 std::vector<G4double>* log_ESecVec = aMa << 909 for (size_t j=0;j<log_CSVec->size();j++) { 994 std::vector<G4double>* log_CSVec = aMa << 910 //G4cout<<"CSMan1 "<<(*log_CSVec)[j]<<G4endl; 995 G4double log_adjointCS = log << 911 if (j==0) (*log_CSVec)[j] = 0.; 996 << 912 else (*log_CSVec)[j]=std::log(1.-std::exp((*log_CSVec)[j]-log_adjointCS)); 997 for(std::size_t j = 0; j < log_CSVec->si << 913 //G4cout<<"CSMan2 "<<(*log_CSVec)[j]<<G4endl;if (theAdjPartDef->GetParticleName() == "adj_gamma") return G4Gamma::Gamma(); 998 { << 914 999 if(j == 0) << 915 } 1000 (*log_CSVec)[j] = 0.; << 916 (*log_CSVec)[log_CSVec->size()-1]=(*log_CSVec)[log_CSVec->size()-2]-std::log(1000.); 1001 else << 917 1002 (*log_CSVec)[j] = << 918 theCSMatForScatProjToProjBackwardScattering->AddData(std::log(E1),log_adjointCS,log_ESecVec,log_CSVec,0); 1003 std::log(1. - std::exp((*log_CSVe << 919 } 1004 } << 920 E1=E2; 1005 (*log_CSVec)[log_CSVec->size() - 1] = << 921 E2*=fE; 1006 (*log_CSVec)[log_CSVec->size() - 2] - << 922 } 1007 << 923 1008 theCSMatForScatProjToProjBackwardScatte << 924 1009 std::log(E1), log_adjointCS, log_ESec << 925 1010 } << 926 1011 E1 = E2; << 927 1012 E2 *= dE; << 928 1013 } << 929 1014 << 1015 std::vector<G4AdjointCSMatrix*> res; 930 std::vector<G4AdjointCSMatrix*> res; >> 931 res.clear(); >> 932 1016 res.push_back(theCSMatForProdToProjBackward 933 res.push_back(theCSMatForProdToProjBackwardScattering); 1017 res.push_back(theCSMatForScatProjToProjBack << 934 res.push_back(theCSMatForScatProjToProjBackwardScattering); >> 935 >> 936 /* >> 937 theCSMatForProdToProjBackwardScattering->Write(aModel->GetName()+"_CSMat_"+aMaterial->GetName()+"_ProdToProj.txt"); >> 938 theCSMatForScatProjToProjBackwardScattering->Write(aModel->GetName()+"_CSMat_"+aMaterial->GetName()+"_ScatProjToProj.txt"); >> 939 */ >> 940 1018 941 1019 return res; 942 return res; >> 943 >> 944 1020 } 945 } 1021 946 1022 ///////////////////////////////////////////// 947 /////////////////////////////////////////////////////// 1023 G4ParticleDefinition* G4AdjointCSManager::Get << 948 // 1024 G4ParticleDefinition* theFwdPartDef) << 949 G4ParticleDefinition* G4AdjointCSManager::GetAdjointParticleEquivalent(G4ParticleDefinition* theFwdPartDef) 1025 { 950 { 1026 if(theFwdPartDef->GetParticleName() == "e-" << 951 if (theFwdPartDef->GetParticleName() == "e-") return G4AdjointElectron::AdjointElectron(); 1027 return G4AdjointElectron::AdjointElectron << 952 else if (theFwdPartDef->GetParticleName() == "gamma") return G4AdjointGamma::AdjointGamma(); 1028 else if(theFwdPartDef->GetParticleName() == << 953 else if (theFwdPartDef->GetParticleName() == "proton") return G4AdjointProton::AdjointProton(); 1029 return G4AdjointGamma::AdjointGamma(); << 954 else if (theFwdPartDef ==theFwdIon) return theAdjIon; 1030 else if(theFwdPartDef->GetParticleName() == << 955 1031 return G4AdjointProton::AdjointProton(); << 956 return 0; 1032 else if(theFwdPartDef == fFwdIon) << 1033 return fAdjIon; << 1034 return nullptr; << 1035 } 957 } 1036 << 1037 ///////////////////////////////////////////// 958 /////////////////////////////////////////////////////// 1038 G4ParticleDefinition* G4AdjointCSManager::Get << 959 // 1039 G4ParticleDefinition* theAdjPartDef) << 960 G4ParticleDefinition* G4AdjointCSManager::GetForwardParticleEquivalent(G4ParticleDefinition* theAdjPartDef) 1040 { 961 { 1041 if(theAdjPartDef->GetParticleName() == "adj << 962 if (theAdjPartDef->GetParticleName() == "adj_e-") return G4Electron::Electron(); 1042 return G4Electron::Electron(); << 963 else if (theAdjPartDef->GetParticleName() == "adj_gamma") return G4Gamma::Gamma(); 1043 else if(theAdjPartDef->GetParticleName() == << 964 else if (theAdjPartDef->GetParticleName() == "adj_proton") return G4Proton::Proton(); 1044 return G4Gamma::Gamma(); << 965 else if (theAdjPartDef == theAdjIon) return theFwdIon; 1045 else if(theAdjPartDef->GetParticleName() == << 966 return 0; 1046 return G4Proton::Proton(); << 1047 else if(theAdjPartDef == fAdjIon) << 1048 return fFwdIon; << 1049 return nullptr; << 1050 } 967 } 1051 << 1052 ///////////////////////////////////////////// 968 /////////////////////////////////////////////////////// 1053 void G4AdjointCSManager::DefineCurrentMateria << 969 // 1054 const G4MaterialCutsCouple* couple) << 970 void G4AdjointCSManager::DefineCurrentMaterial(const G4MaterialCutsCouple* couple) 1055 { 971 { 1056 if(couple != fCurrentCouple) << 972 if(couple != currentCouple) { 1057 { << 973 currentCouple = const_cast<G4MaterialCutsCouple*> (couple); 1058 fCurrentCouple = const_cast<G4Ma << 974 currentMaterial = const_cast<G4Material*> (couple->GetMaterial()); 1059 fCurrentMaterial = const_cast<G4Ma << 975 currentMatIndex = couple->GetIndex(); 1060 fCurrentMatIndex = couple->GetInde << 976 lastPartDefForCS =0; 1061 fLastCSCorrectionFactor = 1.; << 977 LastEkinForCS =0; 1062 } << 978 LastCSCorrectionFactor =1.; >> 979 } 1063 } 980 } 1064 981 1065 ///////////////////////////////////////////// 982 /////////////////////////////////////////////////////// 1066 void G4AdjointCSManager::DefineCurrentParticl << 983 // 1067 const G4ParticleDefinition* aPartDef) << 984 void G4AdjointCSManager::DefineCurrentParticle(const G4ParticleDefinition* aPartDef) 1068 { 985 { 1069 << 986 if(aPartDef != currentParticleDef) { 1070 if(aPartDef != fCurrentParticleDef) << 987 1071 { << 988 currentParticleDef= const_cast< G4ParticleDefinition* > (aPartDef); 1072 fCurrentParticleDef = const_cast<G4Partic << 989 massRatio=1; 1073 fMassRatio = 1.; << 990 if (aPartDef == theAdjIon) massRatio = proton_mass_c2/aPartDef->GetPDGMass(); 1074 if(aPartDef == fAdjIon) << 991 currentParticleIndex=1000000; 1075 fMassRatio = proton_mass_c2 / aPartDef- << 992 for (size_t i=0;i<theListOfAdjointParticlesInAction.size();i++){ 1076 fCurrentParticleIndex = 1000000; << 993 if (aPartDef == theListOfAdjointParticlesInAction[i]) currentParticleIndex=i; 1077 for(std::size_t i = 0; i < fAdjointPartic << 994 } 1078 { << 995 1079 if(aPartDef == fAdjointParticlesInActio << 996 } 1080 fCurrentParticleIndex = i; << 1081 } << 1082 } << 1083 } 997 } 1084 998 1085 ///////////////////////////////////////////// << 1086 G4double G4AdjointCSManager::ComputeAdjointCS << 1087 G4double aPrimEnergy, G4AdjointCSMatrix* an << 1088 { << 1089 std::vector<double>* theLogPrimEnergyVector << 1090 anAdjointCSMatrix->GetLogPrimEnergyVector << 1091 if(theLogPrimEnergyVector->empty()) << 1092 { << 1093 G4cout << "No data are contained in the g << 1094 return 0.; << 1095 } << 1096 G4double log_Tcut = std::log(Tcut); << 1097 G4double log_E = std::log(aPrimEnergy); << 1098 << 1099 if(aPrimEnergy <= Tcut || log_E > theLogPri << 1100 return 0.; << 1101 999 1102 G4AdjointInterpolator* theInterpolator = G4 << 1103 1000 1104 std::size_t ind = << 1001 ///////////////////////////////////////////////////////////////////////////////////////////////// 1105 theInterpolator->FindPositionForLogVector << 1002 // 1106 G4double aLogPrimEnergy1, aLogPrimEnergy2; << 1003 G4double G4AdjointCSManager::ComputeAdjointCS(G4double aPrimEnergy,G4AdjointCSMatrix* 1107 G4double aLogCS1, aLogCS2; << 1004 anAdjointCSMatrix,G4double Tcut) 1108 G4double log01, log02; << 1005 { 1109 std::vector<G4double>* aLogSecondEnergyVect << 1006 std::vector< double> *theLogPrimEnergyVector = anAdjointCSMatrix->GetLogPrimEnergyVector(); 1110 std::vector<G4double>* aLogSecondEnergyVect << 1007 if (theLogPrimEnergyVector->size() ==0){ 1111 std::vector<G4double>* aLogProbVector1 << 1008 G4cout<<"No data are contained in the given AdjointCSMatrix!"<<G4endl; 1112 std::vector<G4double>* aLogProbVector2 << 1009 G4cout<<"The s"<<G4endl; 1113 std::vector<std::size_t>* aLogProbVectorInd << 1010 return 0.; 1114 std::vector<std::size_t>* aLogProbVectorInd << 1011 1115 << 1116 anAdjointCSMatrix->GetData((G4int)ind, aLog << 1117 aLogSecondEnergy << 1118 aLogProbVectorIn << 1119 anAdjointCSMatrix->GetData(G4int(ind + 1), << 1120 aLogSecondEnergy << 1121 aLogProbVectorIn << 1122 if (! (aLogProbVector1 && aLogProbVector2 & << 1123 aLogSecondEnergyVector1 && aLogS << 1124 return 0.; << 1125 } 1012 } >> 1013 G4double log_Tcut = std::log(Tcut); >> 1014 G4double log_E =std::log(aPrimEnergy); >> 1015 >> 1016 if (aPrimEnergy <= Tcut || log_E > theLogPrimEnergyVector->back()) return 0.; >> 1017 >> 1018 1126 1019 1127 if(anAdjointCSMatrix->IsScatProjToProj()) << 1020 G4AdjointInterpolator* theInterpolator=G4AdjointInterpolator::GetInstance(); 1128 { // case where the Tcut plays a role << 1021 1129 G4double log_minimum_prob1, log_minimum_p << 1022 size_t ind =theInterpolator->FindPositionForLogVector(log_E,*theLogPrimEnergyVector); 1130 log_minimum_prob1 = theInterpolator->Inte << 1023 G4double aLogPrimEnergy1,aLogPrimEnergy2; 1131 log_Tcut, *aLogSecondEnergyVector1, *aL << 1024 G4double aLogCS1,aLogCS2; 1132 log_minimum_prob2 = theInterpolator->Inte << 1025 G4double log01,log02; 1133 log_Tcut, *aLogSecondEnergyVector2, *aL << 1026 std::vector< double>* aLogSecondEnergyVector1 =0; 1134 aLogCS1 += log_minimum_prob1; << 1027 std::vector< double>* aLogSecondEnergyVector2 =0; 1135 aLogCS2 += log_minimum_prob2; << 1028 std::vector< double>* aLogProbVector1=0; >> 1029 std::vector< double>* aLogProbVector2=0; >> 1030 std::vector< size_t>* aLogProbVectorIndex1=0; >> 1031 std::vector< size_t>* aLogProbVectorIndex2=0; >> 1032 >> 1033 >> 1034 anAdjointCSMatrix->GetData(ind, aLogPrimEnergy1,aLogCS1,log01, aLogSecondEnergyVector1,aLogProbVector1,aLogProbVectorIndex1); >> 1035 anAdjointCSMatrix->GetData(ind+1, aLogPrimEnergy2,aLogCS2,log02, aLogSecondEnergyVector2,aLogProbVector2,aLogProbVectorIndex2); >> 1036 if (anAdjointCSMatrix->IsScatProjToProjCase()){ //case where the Tcut plays a role >> 1037 G4double log_minimum_prob1, log_minimum_prob2; >> 1038 log_minimum_prob1=theInterpolator->InterpolateForLogVector(log_Tcut,*aLogSecondEnergyVector1,*aLogProbVector1); >> 1039 log_minimum_prob2=theInterpolator->InterpolateForLogVector(log_Tcut,*aLogSecondEnergyVector2,*aLogProbVector2); >> 1040 aLogCS1+= log_minimum_prob1; >> 1041 aLogCS2+= log_minimum_prob2; 1136 } 1042 } 1137 << 1043 1138 G4double log_adjointCS = theInterpolator->L << 1044 G4double log_adjointCS = theInterpolator->LinearInterpolation(log_E,aLogPrimEnergy1,aLogPrimEnergy2,aLogCS1,aLogCS2); 1139 log_E, aLogPrimEnergy1, aLogPrimEnergy2, << 1045 return std::exp(log_adjointCS); 1140 return std::exp(log_adjointCS); << 1046 1141 } << 1047 >> 1048 } 1142 1049