Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/adjoint/src/G4AdjointBremsstrahlungModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/adjoint/src/G4AdjointBremsstrahlungModel.cc (Version 11.3.0) and /processes/electromagnetic/adjoint/src/G4AdjointBremsstrahlungModel.cc (Version 1.0)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26                                                   
 27 #include "G4AdjointBremsstrahlungModel.hh"        
 28                                                   
 29 #include "G4AdjointCSManager.hh"                  
 30 #include "G4AdjointElectron.hh"                   
 31 #include "G4AdjointGamma.hh"                      
 32 #include "G4Electron.hh"                          
 33 #include "G4EmModelManager.hh"                    
 34 #include "G4Gamma.hh"                             
 35 #include "G4ParticleChange.hh"                    
 36 #include "G4PhysicalConstants.hh"                 
 37 #include "G4SeltzerBergerModel.hh"                
 38 #include "G4SystemOfUnits.hh"                     
 39 #include "G4TrackStatus.hh"                       
 40                                                   
 41 //////////////////////////////////////////////    
 42 G4AdjointBremsstrahlungModel::G4AdjointBremsst    
 43   : G4VEmAdjointModel("AdjointeBremModel")        
 44 {                                                 
 45   fDirectModel = aModel;                          
 46   Initialize();                                   
 47 }                                                 
 48                                                   
 49 //////////////////////////////////////////////    
 50 G4AdjointBremsstrahlungModel::G4AdjointBremsst    
 51   : G4VEmAdjointModel("AdjointeBremModel")        
 52 {                                                 
 53   fDirectModel = new G4SeltzerBergerModel();      
 54   Initialize();                                   
 55 }                                                 
 56                                                   
 57 //////////////////////////////////////////////    
 58 void G4AdjointBremsstrahlungModel::Initialize(    
 59 {                                                 
 60   SetUseMatrix(false);                            
 61   SetUseMatrixPerElement(false);                  
 62                                                   
 63   fEmModelManagerForFwdModels = new G4EmModelM    
 64   fEmModelManagerForFwdModels->AddEmModel(1, f    
 65   SetApplyCutInRange(true);                       
 66                                                   
 67   fElectron = G4Electron::Electron();             
 68   fGamma    = G4Gamma::Gamma();                   
 69                                                   
 70   fAdjEquivDirectPrimPart   = G4AdjointElectro    
 71   fAdjEquivDirectSecondPart = G4AdjointGamma::    
 72   fDirectPrimaryPart        = fElectron;          
 73   fSecondPartSameType       = false;              
 74                                                   
 75   fCSManager = G4AdjointCSManager::GetAdjointC    
 76 }                                                 
 77                                                   
 78 //////////////////////////////////////////////    
 79 G4AdjointBremsstrahlungModel::~G4AdjointBremss    
 80 {                                                 
 81   if(fEmModelManagerForFwdModels)                 
 82     delete fEmModelManagerForFwdModels;           
 83 }                                                 
 84                                                   
 85 //////////////////////////////////////////////    
 86 void G4AdjointBremsstrahlungModel::SampleSecon    
 87   const G4Track& aTrack, G4bool isScatProjToPr    
 88   G4ParticleChange* fParticleChange)              
 89 {                                                 
 90   if(!fUseMatrix)                                 
 91     return RapidSampleSecondaries(aTrack, isSc    
 92                                                   
 93   const G4DynamicParticle* theAdjointPrimary =    
 94   DefineCurrentMaterial(aTrack.GetMaterialCuts    
 95                                                   
 96   G4double adjointPrimKinEnergy   = theAdjoint    
 97   G4double adjointPrimTotalEnergy = theAdjoint    
 98                                                   
 99   if(adjointPrimKinEnergy > GetHighEnergyLimit    
100   {                                               
101     return;                                       
102   }                                               
103                                                   
104   G4double projectileKinEnergy =                  
105     SampleAdjSecEnergyFromCSMatrix(adjointPrim    
106                                                   
107   // Weight correction                            
108   CorrectPostStepWeight(fParticleChange, aTrac    
109                         adjointPrimKinEnergy,     
110                         isScatProjToProj);        
111                                                   
112   // Kinematic                                    
113   G4double projectileM0          = fAdjEquivDi    
114   G4double projectileTotalEnergy = projectileM    
115   G4double projectileP2 =                         
116     projectileTotalEnergy * projectileTotalEne    
117   G4double projectileP = std::sqrt(projectileP    
118                                                   
119   // Angle of the gamma direction with the pro    
120   // G4eBremsstrahlungModel                       
121   G4double u;                                     
122   if(0.25 > G4UniformRand())                      
123     u = -std::log(G4UniformRand() * G4UniformR    
124   else                                            
125     u = -std::log(G4UniformRand() * G4UniformR    
126                                                   
127   G4double theta = u * electron_mass_c2 / proj    
128   G4double sint  = std::sin(theta);               
129   G4double cost  = std::cos(theta);               
130                                                   
131   G4double phi = twopi * G4UniformRand();         
132                                                   
133   G4ThreeVector projectileMomentum =              
134     G4ThreeVector(std::cos(phi) * sint, std::s    
135     projectileP;  // gamma frame                  
136   if(isScatProjToProj)                            
137   {  // the adjoint primary is the scattered e    
138     G4ThreeVector gammaMomentum =                 
139       (projectileTotalEnergy - adjointPrimTota    
140       G4ThreeVector(0., 0., 1.);                  
141     G4ThreeVector dirProd = projectileMomentum    
142     G4double cost1        = std::cos(dirProd.a    
143     G4double sint1        = std::sqrt(1. - cos    
144     projectileMomentum =                          
145       G4ThreeVector(std::cos(phi) * sint1, std    
146       projectileP;                                
147   }                                               
148                                                   
149   projectileMomentum.rotateUz(theAdjointPrimar    
150                                                   
151   if(!isScatProjToProj)                           
152   {  // kill the primary and add a secondary      
153     fParticleChange->ProposeTrackStatus(fStopA    
154     fParticleChange->AddSecondary(                
155       new G4DynamicParticle(fAdjEquivDirectPri    
156   }                                               
157   else                                            
158   {                                               
159     fParticleChange->ProposeEnergy(projectileK    
160     fParticleChange->ProposeMomentumDirection(    
161   }                                               
162 }                                                 
163                                                   
164 //////////////////////////////////////////////    
165 void G4AdjointBremsstrahlungModel::RapidSample    
166   const G4Track& aTrack, G4bool isScatProjToPr    
167   G4ParticleChange* fParticleChange)              
168 {                                                 
169   const G4DynamicParticle* theAdjointPrimary =    
170   DefineCurrentMaterial(aTrack.GetMaterialCuts    
171                                                   
172   G4double adjointPrimKinEnergy   = theAdjoint    
173   G4double adjointPrimTotalEnergy = theAdjoint    
174                                                   
175   if(adjointPrimKinEnergy > GetHighEnergyLimit    
176   {                                               
177     return;                                       
178   }                                               
179                                                   
180   G4double projectileKinEnergy = 0.;              
181   G4double gammaEnergy         = 0.;              
182   G4double diffCSUsed          = 0.;              
183   if(!isScatProjToProj)                           
184   {                                               
185     gammaEnergy   = adjointPrimKinEnergy;         
186     G4double Emax = GetSecondAdjEnergyMaxForPr    
187     G4double Emin = GetSecondAdjEnergyMinForPr    
188     if(Emin >= Emax)                              
189       return;                                     
190     projectileKinEnergy = Emin * std::pow(Emax    
191     diffCSUsed          = fCsBiasingFactor * f    
192   }                                               
193   else                                            
194   {                                               
195     G4double Emax =                               
196       GetSecondAdjEnergyMaxForScatProjToProj(a    
197     G4double Emin =                               
198       GetSecondAdjEnergyMinForScatProjToProj(a    
199     if(Emin >= Emax)                              
200       return;                                     
201     G4double f1 = (Emin - adjointPrimKinEnergy    
202     G4double f2 = (Emax - adjointPrimKinEnergy    
203     projectileKinEnergy =                         
204       adjointPrimKinEnergy / (1. - f1 * std::p    
205     gammaEnergy = projectileKinEnergy - adjoin    
206     diffCSUsed =                                  
207       fLastCZ * adjointPrimKinEnergy / project    
208   }                                               
209                                                   
210   // Weight correction:                           
211   // First w_corr is set to the ratio between     
212   // if this has to be done in the model.         
213   // For the case of forced interaction this w    
214   // the forced interaction.  It is important     
215   // creation of the secondary                    
216   G4double w_corr = fOutsideWeightFactor;         
217   if(fInModelWeightCorr)                          
218   {                                               
219     w_corr = fCSManager->GetPostStepWeightCorr    
220   }                                               
221                                                   
222   // Then another correction is needed due to     
223   // differential CS has been used rather than    
224   // direct model Here we consider the true di    
225   // numerical differentiation over Tcut of th    
226   // Migdal term. Basically any other differen    
227   // (example Penelope).                          
228   G4double diffCS = DiffCrossSectionPerVolumeP    
229     fCurrentMaterial, projectileKinEnergy, gam    
230   w_corr *= diffCS / diffCSUsed;                  
231                                                   
232   G4double new_weight = aTrack.GetWeight() * w    
233   fParticleChange->SetParentWeightByProcess(fa    
234   fParticleChange->SetSecondaryWeightByProcess    
235   fParticleChange->ProposeParentWeight(new_wei    
236                                                   
237   // Kinematic                                    
238   G4double projectileM0          = fAdjEquivDi    
239   G4double projectileTotalEnergy = projectileM    
240   G4double projectileP2 =                         
241     projectileTotalEnergy * projectileTotalEne    
242   G4double projectileP = std::sqrt(projectileP    
243                                                   
244   // Use the angular model of the forward mode    
245   // Dummy dynamic particle to use the model      
246   G4DynamicParticle* aDynPart =                   
247     new G4DynamicParticle(fElectron, G4ThreeVe    
248                                                   
249   // Get the element from the direct model        
250   const G4Element* elm = fDirectModel->SelectR    
251     fCurrentCouple, fElectron, projectileKinEn    
252   G4int Z         = elm->GetZasInt();             
253   G4double energy = aDynPart->GetTotalEnergy()    
254   G4ThreeVector projectileMomentum =              
255     fDirectModel->GetAngularDistribution()->Sa    
256                                             fC    
257   G4double phi = projectileMomentum.getPhi();     
258                                                   
259   if(isScatProjToProj)                            
260   {  // the adjoint primary is the scattered e    
261     G4ThreeVector gammaMomentum =                 
262       (projectileTotalEnergy - adjointPrimTota    
263       G4ThreeVector(0., 0., 1.);                  
264     G4ThreeVector dirProd = projectileMomentum    
265     G4double cost1        = std::cos(dirProd.a    
266     G4double sint1        = std::sqrt(1. - cos    
267     projectileMomentum =                          
268       G4ThreeVector(std::cos(phi) * sint1, std    
269       projectileP;                                
270   }                                               
271                                                   
272   projectileMomentum.rotateUz(theAdjointPrimar    
273                                                   
274   if(!isScatProjToProj)                           
275   {  // kill the primary and add a secondary      
276     fParticleChange->ProposeTrackStatus(fStopA    
277     fParticleChange->AddSecondary(                
278       new G4DynamicParticle(fAdjEquivDirectPri    
279   }                                               
280   else                                            
281   {                                               
282     fParticleChange->ProposeEnergy(projectileK    
283     fParticleChange->ProposeMomentumDirection(    
284   }                                               
285 }                                                 
286                                                   
287 //////////////////////////////////////////////    
288 G4double G4AdjointBremsstrahlungModel::DiffCro    
289   const G4Material* aMaterial,                    
290   G4double kinEnergyProj,  // kin energy of pr    
291   G4double kinEnergyProd   // kinetic energy o    
292 )                                                 
293 {                                                 
294   if(!fIsDirectModelInitialised)                  
295   {                                               
296     fEmModelManagerForFwdModels->Initialise(fE    
297     fIsDirectModelInitialised = true;             
298   }                                               
299   return G4VEmAdjointModel::DiffCrossSectionPe    
300     aMaterial, kinEnergyProj, kinEnergyProd);     
301 }                                                 
302                                                   
303 //////////////////////////////////////////////    
304 G4double G4AdjointBremsstrahlungModel::Adjoint    
305   const G4MaterialCutsCouple* aCouple, G4doubl    
306   G4bool isScatProjToProj)                        
307 {                                                 
308   static constexpr G4double maxEnergy = 100. *    
309   // 2.78.. == std::exp(1.)                       
310   if(!fIsDirectModelInitialised)                  
311   {                                               
312     fEmModelManagerForFwdModels->Initialise(fE    
313     fIsDirectModelInitialised = true;             
314   }                                               
315   if(fUseMatrix)                                  
316     return G4VEmAdjointModel::AdjointCrossSect    
317                                                   
318   DefineCurrentMaterial(aCouple);                 
319   G4double Cross = 0.;                            
320   // this gives the constant above                
321   fLastCZ = fDirectModel->CrossSectionPerVolum    
322     aCouple->GetMaterial(), fDirectPrimaryPart    
323                                                   
324   if(!isScatProjToProj)                           
325   {                                               
326     G4double Emax_proj = GetSecondAdjEnergyMax    
327     G4double Emin_proj = GetSecondAdjEnergyMin    
328     if(Emax_proj > Emin_proj && primEnergy > f    
329       Cross = fCsBiasingFactor * fLastCZ * std    
330   }                                               
331   else                                            
332   {                                               
333     G4double Emax_proj = GetSecondAdjEnergyMax    
334     G4double Emin_proj =                          
335       GetSecondAdjEnergyMinForScatProjToProj(p    
336     if(Emax_proj > Emin_proj)                     
337       Cross = fLastCZ * std::log((Emax_proj -     
338                                  Emax_proj / (    
339   }                                               
340   return Cross;                                   
341 }                                                 
342