Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// << 26 // $Id$ 27 // Class: G4AdjointCSMatrix << 28 // Author: L. Desorgher << 29 // Organisation: SpaceIT GmbH << 30 // 27 // 31 // An adjoint CS matrix is used by the model << 28 ///////////////////////////////////////////////////////////////////////////////// 32 // an adjoint secondary (being equivalent to << 29 // Class: G4AdjointCSMatrix.hh 33 // the integration over the energy of the adj << 30 // Author: L. Desorgher 34 // forward primary) of the differential cross << 31 // Organisation: SpaceIT GmbH 35 // discrete process (Ionisation, Brem, PE eff << 32 // Contract: ESA contract 21435/08/NL/AT 36 // model has its own cross section matrix for << 33 // Customer: ESA/ESTEC 37 // is therefore recomputed after a modificati << 34 ///////////////////////////////////////////////////////////////////////////////// >> 35 // >> 36 // CHANGE HISTORY >> 37 // -------------- >> 38 // ChangeHistory: >> 39 // 1st April 2007 creation by L. Desorgher >> 40 // >> 41 //------------------------------------------------------------- >> 42 // Documentation: >> 43 // An adjoint CS matrix is used by the model of a reverse process to sample an adjoint secondary (being equivalent to a forward primary). >> 44 // It represents the integration over the energy of the adjoint secondary (therefore the forward primary) of the differential cross section >> 45 // of the equiavlent forward discrete process (Ionisation, Brem, PE effect, Compton,..) . Each reverse model has its own cross section matrix for a given cut, >> 46 // material couple. It is therefore recompute after a modification of the cuts by the user. >> 47 // >> 48 // 38 // 49 // 39 ////////////////////////////////////////////// << 40 50 41 #ifndef G4AdjointCSMatrix_h 51 #ifndef G4AdjointCSMatrix_h 42 #define G4AdjointCSMatrix_h 1 52 #define G4AdjointCSMatrix_h 1 43 53 44 #include "globals.hh" << 54 #include"globals.hh" 45 #include "G4ParticleDefinition.hh" << 55 #include<vector> 46 << 56 #include"G4ParticleDefinition.hh" 47 #include <vector> << 48 57 >> 58 //////////////////////////////////////////////////////////////////////////////// >> 59 // 49 class G4AdjointCSMatrix 60 class G4AdjointCSMatrix 50 { 61 { 51 public: << 62 //////////////////////////////// 52 G4AdjointCSMatrix(G4bool aBool); << 63 // Constructors and Destructor 53 ~G4AdjointCSMatrix(); << 64 //////////////////////////////// 54 << 65 public: 55 void Clear(); << 66 G4AdjointCSMatrix(G4bool aBool); 56 << 67 ~G4AdjointCSMatrix(); 57 void AddData(G4double aPrimEnergy, G4double << 68 58 std::vector<G4double>* aLogSeco << 69 ////////////// 59 std::vector<G4double>* aLogProb << 70 // Methods // 60 << 71 ////////////// 61 G4bool GetData(unsigned int i, G4double& aPr << 72 void Clear(); 62 G4double& log0, std::vector<G << 73 void AddData(G4double aPrimEnergy,G4double aCS, std::vector< double>* aLogSecondEnergyVector, 63 std::vector<G4double>*& aLogP << 74 std::vector< double>* aLogProbVector,size_t n_pro_decade=0); 64 std::vector<std::size_t>*& aL << 75 65 << 76 G4bool GetData(unsigned int i, G4double& aPrimEnergy,G4double& aCS,G4double& log0, std::vector< double>*& aLogSecondEnergyVector, 66 inline std::vector<G4double>* GetLogPrimEner << 77 std::vector< double>*& aLogProbVector, 67 { << 78 std::vector< size_t>*& aLogProbVectorIndex); 68 return &fLogPrimEnergyVector; << 79 69 } << 80 inline std::vector< double>* GetLogPrimEnergyVector(){return &theLogPrimEnergyVector;} 70 << 81 inline std::vector< double>* GetLogCrossSectionvector(){return &theLogCrossSectionVector;} 71 inline std::vector<G4double>* GetLogCrossSec << 82 inline G4double GetDlog(){return dlog;} 72 { << 83 inline G4bool IsScatProjToProjCase(){return is_scat_proj_to_proj_case;} 73 return &fLogCrossSectionVector; << 84 void Write(G4String file_name); 74 } << 85 void Read(G4String file_name); 75 << 86 76 inline G4bool IsScatProjToProj() { return fS << 87 private: 77 << 88 78 void Write(const G4String& file_name); << 89 // we did first try to use G4PhysicsOrderedVector but they are not general enough for our purpose 79 << 90 80 void Read(const G4String& file_name); << 91 std::vector< double> theLogPrimEnergyVector; 81 << 92 std::vector< double> theLogCrossSectionVector; //Adjoint Cross sections in function of primary energy 82 private: << 93 std::vector< std::vector< double>* > theLogSecondEnergyMatrix; 83 std::vector<G4double> fLogPrimEnergyVector; << 94 std::vector< std::vector< double>* > theLogProbMatrix; //Each column represents the integrated probability of getting a secondary 84 // Adjoint Cross sections as functions of pr << 95 // in function of their energy 85 std::vector<G4double> fLogCrossSectionVector << 96 std::vector< std::vector< size_t >* > theLogProbMatrixIndex; //index of equidistant LogProb 86 << 97 std::vector< double> log0Vector; 87 std::vector<std::vector<G4double>*> fLogSeco << 98 88 std::vector<std::vector<G4double>*> fLogProb << 99 unsigned int nb_of_PrimEnergy; 89 // Each column represents the integrated pro << 100 G4bool is_scat_proj_to_proj_case; 90 // getting a secondary << 101 G4double dlog; 91 << 102 92 // index of equidistant LogProb << 93 std::vector<std::vector<std::size_t>*> fLogP << 94 std::vector<G4double> fLog0Vector; << 95 << 96 std::size_t fNbPrimEnergy = 0; << 97 103 98 G4bool fScatProjToProj; << 99 }; 104 }; 100 #endif 105 #endif 101 106