Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4RToEConvForPositron class implementation << 27 // 23 // 28 // Author: H.Kurashige, 05 October 2002 - Firs << 24 // $Id: G4RToEConvForPositron.cc,v 1.3 2004/12/02 06:53:56 kurasige Exp $ 29 // ------------------------------------------- << 25 // GEANT4 tag $Name: geant4-07-00-patch-01 $ >> 26 // >> 27 // >> 28 // -------------------------------------------------------------- >> 29 // GEANT 4 class implementation file/ History: >> 30 // 5 Oct. 2002, H.Kuirashige : Structure created based on object model >> 31 // -------------------------------------------------------------- 30 32 31 #include "G4RToEConvForPositron.hh" 33 #include "G4RToEConvForPositron.hh" 32 #include "G4ParticleDefinition.hh" 34 #include "G4ParticleDefinition.hh" 33 #include "G4ParticleTable.hh" 35 #include "G4ParticleTable.hh" >> 36 #include "G4Material.hh" >> 37 #include "G4PhysicsLogVector.hh" >> 38 >> 39 #include "G4ios.hh" >> 40 #include <iomanip> >> 41 #include <strstream> 34 42 35 #include "G4PhysicalConstants.hh" << 43 G4RToEConvForPositron::G4RToEConvForPositron() : G4VRangeToEnergyConverter() 36 #include "G4SystemOfUnits.hh" << 37 #include "G4Pow.hh" << 38 #include "G4Log.hh" << 39 #include "G4Exp.hh" << 40 << 41 // ------------------------------------------- << 42 G4RToEConvForPositron::G4RToEConvForPositron() << 43 : G4VRangeToEnergyConverter() << 44 { 44 { 45 theParticle = G4ParticleTable::GetParticleTa << 45 theParticle = G4ParticleTable::GetParticleTable()->FindParticle("e+"); 46 if (theParticle == nullptr) << 46 if (theParticle ==0) { 47 { << 48 #ifdef G4VERBOSE 47 #ifdef G4VERBOSE 49 if (GetVerboseLevel()>0) << 48 if (GetVerboseLevel()>0) { 50 { << 49 G4cout << " G4RToEConvForPositron::G4RToEConvForPositron() "; 51 G4cout << "G4RToEConvForPositron::G4RToE << 50 G4cout << " Positron is not defined !!" << G4endl; 52 G4cout << "Positron is not defined !!" < << 53 } 51 } 54 #endif 52 #endif 55 } << 53 } 56 else << 57 { << 58 fPDG = theParticle->GetPDGEncoding(); << 59 } << 60 } 54 } 61 55 62 // ------------------------------------------- << 56 G4RToEConvForPositron::~G4RToEConvForPositron() 63 G4RToEConvForPositron::~G4RToEConvForPositron( << 57 { 64 {} << 58 } 65 << 59 66 // ------------------------------------------- << 60 67 G4double G4RToEConvForPositron::ComputeValue(c << 68 c << 69 { << 70 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3 << 71 const G4double Tlow=10.*CLHEP::keV, Thigh=1. << 72 const G4double taul = Tlow/CLHEP::electron_m << 73 const G4double logtaul = G4Log(taul); << 74 const G4double taul12 = std::sqrt(taul); << 75 const G4double bremfactor = 0.1; << 76 << 77 G4double Zlog = G4Pow::GetInstance()->logZ(Z << 78 G4double ionpot = << 79 1.6e-5*CLHEP::MeV*G4Exp(0.9*Zlog)/CLHEP::e << 80 G4double ionpotlog = G4Log(ionpot); << 81 61 82 G4double tau = kinEnergy/CLHEP::electron_mas << 83 G4double dEdx = 0.0; << 84 62 >> 63 // ********************************************************************** >> 64 // ************************* ComputeLoss ******************************** >> 65 // ********************************************************************** >> 66 G4double G4RToEConvForPositron::ComputeLoss(G4double AtomicNumber, >> 67 G4double KineticEnergy) const >> 68 { >> 69 static G4double Z; >> 70 static G4double taul, ionpot, ionpotlog; >> 71 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3=1., cbr4=0.072; >> 72 const G4double Tlow=10.*keV, Thigh=1.*GeV; >> 73 static G4double bremfactor = 0.1 ; >> 74 >> 75 G4double Mass = theParticle->GetPDGMass(); >> 76 // calculate dE/dx for electrons >> 77 if( std::abs(AtomicNumber-Z)>0.1 ) { >> 78 Z = AtomicNumber; >> 79 taul = Tlow/Mass; >> 80 ionpot = 1.6e-5*MeV*std::exp(0.9*std::log(Z))/Mass; >> 81 ionpotlog = std::log(ionpot); >> 82 } >> 83 >> 84 G4double tau = KineticEnergy/Mass; >> 85 G4double dEdx; 85 86 86 if(tau<taul) << 87 if(tau<taul) 87 { 88 { 88 G4double t1 = taul+1.; 89 G4double t1 = taul+1.; 89 G4double t2 = taul+2.; 90 G4double t2 = taul+2.; 90 G4double tsq = taul*taul; 91 G4double tsq = taul*taul; 91 G4double beta2 = taul*t2/(t1*t1); 92 G4double beta2 = taul*t2/(t1*t1); 92 G4double f = 2.*logtaul - << 93 G4double f = 2.*std::log(taul) 93 (6.*taul+1.5*tsq-taul*(1.-tsq/3.)/t2 << 94 -(6.*taul+1.5*tsq-taul*(1.-tsq/3.)/t2-tsq*(0.5-tsq/12.)/ 94 -tsq*(0.5-tsq/12.)/(t2*t2))/(t1*t1); << 95 (t2*t2))/(t1*t1); 95 dEdx = (G4Log(2.*taul+4.)-2.*ionpotlog+f)/ << 96 dEdx = (std::log(2.*taul+4.)-2.*ionpotlog+f)/beta2; 96 dEdx *= Z*taul12/std::sqrt(tau); << 97 dEdx = twopi_mc2_rcl2*Z*dEdx; 97 } << 98 G4double clow = dEdx*std::sqrt(taul); 98 else << 99 dEdx = clow/std::sqrt(KineticEnergy/Mass); 99 { << 100 100 G4double t1 = tau+1.; << 101 } else { >> 102 G4double t1 = tau+1.; 101 G4double t2 = tau+2.; 103 G4double t2 = tau+2.; 102 G4double tsq = tau*tau; 104 G4double tsq = tau*tau; 103 G4double beta2 = tau*t2/(t1*t1); 105 G4double beta2 = tau*t2/(t1*t1); 104 G4double f = 2.*G4Log(tau) - (6.*tau+1.5*t << 106 G4double f = 2.*std::log(tau) 105 -tsq*(0.5-tsq/12.)/(t2*t2))/(t1*t1); << 107 - (6.*tau+1.5*tsq-tau*(1.-tsq/3.)/t2-tsq*(0.5-tsq/12.)/ 106 dEdx = Z*(G4Log(2.*tau+4.)-2.*ionpotlog+f) << 108 (t2*t2))/(t1*t1); >> 109 dEdx = (std::log(2.*tau+4.)-2.*ionpotlog+f)/beta2; >> 110 dEdx = twopi_mc2_rcl2*Z*dEdx; 107 111 108 // loss from bremsstrahlung follows 112 // loss from bremsstrahlung follows 109 G4double cbrem = (cbr1+cbr2*Z) 113 G4double cbrem = (cbr1+cbr2*Z) 110 * (cbr3+cbr4*G4Log(kinEnerg << 114 *(cbr3+cbr4*std::log(KineticEnergy/Thigh)); 111 dEdx += cbrem*Z*(Z+1.)*bremfactor*tau/beta << 115 cbrem = Z*(Z+1.)*cbrem*tau/beta2; >> 116 cbrem *= bremfactor ; >> 117 dEdx += twopi_mc2_rcl2*cbrem; 112 } 118 } 113 return dEdx*CLHEP::twopi_mc2_rcl2; << 119 return dEdx; 114 } 120 } 115 121 116 // ------------------------------------------- << 122 >> 123 >> 124 void G4RToEConvForPositron::BuildRangeVector(const G4Material* aMaterial, >> 125 G4double maxEnergy, >> 126 G4double aMass, >> 127 G4PhysicsLogVector* rangeVector) >> 128 { >> 129 // create range vector for a material >> 130 const G4double tlim = 10.*keV; >> 131 const G4int maxnbint = 100; >> 132 >> 133 const G4ElementVector* elementVector = aMaterial->GetElementVector(); >> 134 const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector(); >> 135 G4int NumEl = aMaterial->GetNumberOfElements(); >> 136 >> 137 // calculate parameters of the low energy part first >> 138 size_t i; >> 139 G4double loss=0.; >> 140 for (i=0; i<size_t(NumEl); i++) { >> 141 G4bool isOut; >> 142 G4int IndEl = (*elementVector)[i]->GetIndex(); >> 143 loss += atomicNumDensityVector[i]* >> 144 (*theLossTable)[IndEl]->GetValue(tlim,isOut); >> 145 } >> 146 G4double taulim = tlim/aMass; >> 147 G4double clim = std::sqrt(taulim)*loss; >> 148 G4double taumax = maxEnergy/aMass; >> 149 >> 150 // now the range vector can be filled >> 151 for ( i=0; i<size_t(TotBin); i++) { >> 152 G4double LowEdgeEnergy = rangeVector->GetLowEdgeEnergy(i); >> 153 G4double tau = LowEdgeEnergy/aMass; >> 154 >> 155 if ( tau <= taulim ) { >> 156 G4double Value = 2.*aMass*tau*std::sqrt(tau)/(3.*clim); >> 157 rangeVector->PutValue(i,Value); >> 158 } else { >> 159 G4double rangelim = 2.*aMass*taulim*std::sqrt(taulim)/(3.*clim); >> 160 G4double ltaulow = std::log(taulim); >> 161 G4double ltauhigh = std::log(tau); >> 162 G4double ltaumax = std::log(taumax); >> 163 G4int nbin = G4int(maxnbint*(ltauhigh-ltaulow)/(ltaumax-ltaulow)); >> 164 if( nbin < 1 ) nbin = 1; >> 165 G4double Value = RangeLogSimpson( NumEl, elementVector, >> 166 atomicNumDensityVector, aMass, >> 167 ltaulow, ltauhigh, nbin) >> 168 + rangelim; >> 169 rangeVector->PutValue(i,Value); >> 170 } >> 171 } >> 172 } 117 173