Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4RToEConvForGamma class implementation << 27 // 26 // 28 // Author: H.Kurashige, 05 October 2002 - Firs << 27 // $Id: G4RToEConvForGamma.cc,v 1.4 2006/06/29 19:30:24 gunter Exp $ 29 // ------------------------------------------- << 28 // GEANT4 tag $Name: geant4-08-01-patch-01 $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------- >> 32 // GEANT 4 class implementation file/ History: >> 33 // 5 Oct. 2002, H.Kuirashige : Structure created based on object model >> 34 // -------------------------------------------------------------- 30 35 31 #include "G4RToEConvForGamma.hh" 36 #include "G4RToEConvForGamma.hh" 32 #include "G4ParticleDefinition.hh" 37 #include "G4ParticleDefinition.hh" 33 #include "G4ParticleTable.hh" 38 #include "G4ParticleTable.hh" 34 #include "G4SystemOfUnits.hh" << 39 #include "G4Material.hh" 35 #include "G4Log.hh" << 40 #include "G4PhysicsLogVector.hh" 36 #include "G4Exp.hh" << 41 37 #include "G4Pow.hh" << 42 #include "G4ios.hh" 38 << 43 39 // ------------------------------------------- << 44 G4RToEConvForGamma::G4RToEConvForGamma() : G4VRangeToEnergyConverter() 40 G4RToEConvForGamma::G4RToEConvForGamma() << 41 : G4VRangeToEnergyConverter() << 42 { 45 { 43 theParticle = G4ParticleTable::GetParticleTa << 46 theParticle = G4ParticleTable::GetParticleTable()->FindParticle("gamma"); 44 if (theParticle == nullptr) << 47 if (theParticle ==0) { 45 { << 46 #ifdef G4VERBOSE 48 #ifdef G4VERBOSE 47 if (GetVerboseLevel()>0) << 49 if (GetVerboseLevel()>0) { 48 { << 50 G4cout << " G4RToEConvForGamma::G4RToEConvForGamma() "; 49 G4cout << " G4RToEConvForGamma::G4RToECo << 51 G4cout << " Gamma is not defined !!" << G4endl; 50 G4cout << "Gamma is not defined !!" << G << 51 } 52 } 52 #endif 53 #endif 53 } 54 } 54 else << 55 TotBin = 100; 55 { << 56 fPDG = theParticle->GetPDGEncoding(); << 57 } << 58 } 56 } 59 57 60 // ------------------------------------------- << 58 G4RToEConvForGamma::~G4RToEConvForGamma() 61 G4RToEConvForGamma::~G4RToEConvForGamma() << 59 { 62 {} << 60 } 63 << 61 64 // ------------------------------------------- << 62 65 G4double G4RToEConvForGamma::ComputeValue(cons << 63 // *********************************************************************** 66 cons << 64 // ******************* BuildAbsorptionLengthVector *********************** >> 65 // *********************************************************************** >> 66 void G4RToEConvForGamma::BuildAbsorptionLengthVector( >> 67 const G4Material* aMaterial, >> 68 G4double , >> 69 G4double , >> 70 G4RangeVector* absorptionLengthVector ) 67 { 71 { 68 // Compute the "absorption" cross-section of << 72 // fill the absorption length vector for this material 69 // Cross-section means here the sum of the c << 73 // absorption length is defined here as 70 // pair production, Compton scattering and p << 74 // 71 << 75 // absorption length = 5./ macroscopic absorption cross section 72 const G4double t1keV = 1.*CLHEP::keV; << 76 // 73 const G4double t200keV = 200.*CLHEP::keV; << 77 const G4CrossSectionTable* aCrossSectionTable = (G4CrossSectionTable*)(theLossTable); 74 const G4double t100MeV = 100.*CLHEP::MeV; << 78 const G4ElementVector* elementVector = aMaterial->GetElementVector(); 75 << 79 const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector(); 76 G4double Zsquare = Z*Z; << 80 77 G4double Zlog = G4Pow::GetInstance()->logZ(Z << 81 // fill absorption length vector 78 G4double Zlogsquare = Zlog*Zlog; << 82 G4int NumEl = aMaterial->GetNumberOfElements(); 79 << 83 G4double absorptionLengthMax = 0.0; 80 G4double tmin = (0.552+218.5/Z+557.17/Zsquar << 84 for (size_t ibin=0; ibin<size_t(TotBin); ibin++) { 81 G4double tlow = 0.2*G4Exp(-7.355/std::sqrt(Z << 85 G4double lowEdgeEnergy = absorptionLengthVector->GetLowEdgeEnergy(ibin); 82 << 86 83 G4double smin = (0.01239+0.005585*Zlog-0.000 << 87 G4double SIGMA = 0. ; 84 G4double s200keV = (0.2651-0.1501*Zlog+0.022 << 88 85 << 89 for (size_t iel=0; iel<size_t(NumEl); iel++) { 86 G4double cminlog = G4Log(tmin/t200keV); << 90 G4bool isOut; 87 G4double cmin = G4Log(s200keV/smin)/(cminlog << 91 G4int IndEl = (*elementVector)[iel]->GetIndex(); 88 << 92 SIGMA += atomicNumDensityVector[iel]* 89 G4double slowlog = G4Log(t200keV/tlow); << 93 (*aCrossSectionTable)[IndEl]->GetValue(lowEdgeEnergy,isOut); 90 G4double slow = s200keV * G4Exp(0.042*Z*slow << 94 } 91 G4double logtlow = G4Log(tlow/t1keV); << 95 // absorption length=5./SIGMA 92 G4double clow = G4Log(300.*Zsquare/slow)/log << 96 absorptionLengthVector->PutValue(ibin, 5./SIGMA); 93 G4double chigh = (7.55e-5 - 0.0542e-5*Z)*Zsq << 97 if (absorptionLengthMax < 5./SIGMA ) absorptionLengthMax = 5./SIGMA; 94 << 95 // Calculate the cross-section (using an app << 96 G4double xs; << 97 if ( energy < tlow ) << 98 { << 99 xs = (energy < t1keV) ? slow*G4Exp(clow*lo << 100 slow*G4Exp(clow*G4Log(tlow/energy)); << 101 } << 102 else if ( energy < t200keV ) << 103 { << 104 G4double x = G4Log(t200keV/energy); << 105 xs = s200keV * G4Exp(0.042*Z*x*x); << 106 } 98 } 107 else if( energy<tmin ) << 99 } 108 { << 100 109 const G4double x = G4Log(tmin/energy); << 101 110 xs = smin * G4Exp(cmin*x*x); << 102 >> 103 // *********************************************************************** >> 104 // ********************** ComputeCrossSection **************************** >> 105 // *********************************************************************** >> 106 G4double G4RToEConvForGamma::ComputeCrossSection(G4double AtomicNumber, >> 107 G4double KineticEnergy) const >> 108 { >> 109 // Compute the "absorption" cross section of the photon "absorption" >> 110 // cross section means here the sum of the cross sections of the >> 111 // pair production, Compton scattering and photoelectric processes >> 112 static G4double Z; >> 113 const G4double t1keV = 1.*keV; >> 114 const G4double t200keV = 200.*keV; >> 115 const G4double t100MeV = 100.*MeV; >> 116 >> 117 static G4double s200keV, s1keV; >> 118 static G4double tmin, tlow; >> 119 static G4double smin, slow; >> 120 static G4double cmin, clow, chigh; >> 121 // compute Z dependent quantities in the case of a new AtomicNumber >> 122 if(std::abs(AtomicNumber-Z)>0.1) { >> 123 Z = AtomicNumber; >> 124 G4double Zsquare = Z*Z; >> 125 G4double Zlog = std::log(Z); >> 126 G4double Zlogsquare = Zlog*Zlog; >> 127 >> 128 s200keV = (0.2651-0.1501*Zlog+0.02283*Zlogsquare)*Zsquare; >> 129 tmin = (0.552+218.5/Z+557.17/Zsquare)*MeV; >> 130 smin = (0.01239+0.005585*Zlog-0.000923*Zlogsquare)*std::exp(1.5*Zlog); >> 131 cmin=std::log(s200keV/smin)/(std::log(tmin/t200keV)*std::log(tmin/t200keV)); >> 132 tlow = 0.2*std::exp(-7.355/std::sqrt(Z))*MeV; >> 133 slow = s200keV*std::exp(0.042*Z*std::log(t200keV/tlow)*std::log(t200keV/tlow)); >> 134 s1keV = 300.*Zsquare; >> 135 clow =std::log(s1keV/slow)/std::log(tlow/t1keV); >> 136 >> 137 chigh=(7.55e-5-0.0542e-5*Z)*Zsquare*Z/std::log(t100MeV/tmin); 111 } 138 } 112 else << 139 113 { << 140 // calculate the cross section (using an approximate empirical formula) 114 xs = smin + chigh*G4Log(energy/tmin); << 141 G4double s; >> 142 if ( KineticEnergy<tlow ) { >> 143 if(KineticEnergy<t1keV) s = slow*std::exp(clow*std::log(tlow/t1keV)); >> 144 else s = slow*std::exp(clow*std::log(tlow/KineticEnergy)); >> 145 >> 146 } else if ( KineticEnergy<t200keV ) { >> 147 s = s200keV >> 148 * std::exp(0.042*Z*std::log(t200keV/KineticEnergy)*std::log(t200keV/KineticEnergy)); >> 149 >> 150 } else if( KineticEnergy<tmin ){ >> 151 s = smin >> 152 * std::exp(cmin*std::log(tmin/KineticEnergy)*std::log(tmin/KineticEnergy)); >> 153 >> 154 } else { >> 155 s = smin + chigh*std::log(KineticEnergy/tmin); >> 156 115 } 157 } 116 return xs * CLHEP::barn; << 158 return s * barn; 117 } 159 } 118 160 119 // ------------------------------------------- << 120 161